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DEPENDENT RACE MODEL 2

Race Model for the Stop Signal Paradigm Revisited:

Perfect Negative Dependence

Introduction and motivation

In the stop-signal paradigm, participants perform a response time task (go task) and,

occasionally, the go stimulus is followed by a stop signal after a variable delay, indicating

subjects to withhold their response (stop task). The main interest is in estimating the

unobservable stop-signal reaction time (SSRT), that is, the latency of the stopping process,

as a characterization of the response inhibition mechanism. In the Independent Race

Model ([1]) the stop-signal task is represented as a race with stochastically independent

GO and STOP processes. Under certain simplifying assumptions, some statistics of SSRT

can be estimated efficiently without making any distributional assumptions on processing

times. Neurophysiological studies, however, have shown that the neural correlates of the

GO and STOP processes produce saccadic eye movements through a network of

interacting neurons ([2]). Here we propose a Dependent Race Model that assumes

perfect negative stochastic dependence between GO and STOP processes. It resolves the

apparent paradox between behavioral and neural data but nonetheless retains the

distribution-free properties of the Independent Race Model.

The general race model

We distinguish two different experimental conditions termed context GO, where only

a go signal is presented, and context ST OP , where a stop signal is presented. In ST OP ,

let Tgo and Tstop denote the random processing time for the go and the stop signal,

respectively, with bivariate distribution function

H(s, t) = Pr(Tgo ≤ s, Tstop ≤ t), (1)
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where H has its probability mass concentrated on [0,∞)× [0,∞). The marginal

distributions of H(s, t) are denoted as

Fgo(s) = Pr(Tgo ≤ s, Tstop <∞) and Fstop(t) = Pr(Tgo <∞, Tstop ≤ t). (2)

In any given trial, a go signal triggering the realization of random processing time Tgo is

presented either in context GO or in context ST OP , but not in both at the same time.

Thus, the distribution of Tgo could differ depending on context. However, the general race

model rules this out by adding the important context invariance assumption: For

context GO, the distribution of go signal processing time is assumed to be

Fgo(s) = Pr(Tgo ≤ s) = Pr(Tgo ≤ s, Tstop <∞), (3)

identical to the marginal distribution Fgo(s) in the ST OP context.

In order to simplify calculations, it is further assumed that H(s, t) is absolutely

continuous, so that density functions for the marginals exist, denoted as fgo(s) and fstop(t),

respectively. Moreover, the partial derivatives of H are

H1(s, t) = ∂H

∂s
(s, t) and H2(s, t) = ∂H

∂t
(s, t). (4)

From these assumptions, the probability pr(td) of observing a response to the go signal

given a stop signal presented at delay td (td ≥ 0) after the go signal, is determined by

pr(td) = Pr(Tgo < Tstop + td). (5)

To help interpretation, by abuse of notation let us write, for any t,

Pr(Tgo = t ∩ Tstop + td > t) = Pr(Tgo = t)− Pr(Tgo = t ∩ Tstop + td ≤ t)

= fgo(t)−H1(t, t− td).
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Then,

pr(td) =
∫ ∞

0
Pr(Tgo = t ∩ Tstop + td > t) dt,

=
∫ td

0
Pr(Tgo = t) dt+

∫ ∞
td

Pr(Tgo = t ∩ Tstop + td > t) dt,

= Fgo(td) +
∫ ∞

td

Pr(Tgo = t) dt−
∫ ∞

td

Pr(Tgo = t ∩ Tstop + td ≤ t)dt,

= 1−
∫ ∞

td

H1(t, t− td) dt. (6)

According to the model, the probability of observing a response to the go signal

before time t, given the stop signal was presented td msec later, equals

Fsr(t | td) = Pr(Tgo ≤ t |Tgo < Tstop + td) (7)

This response time has sometimes been called signal-response RT. Its density is

fsr(t | td) = Pr(Tgo = t ∩ Tstop + td > t)/pr(td

= fgo(t)−H1(t, t− td)/pr(td)

=



fgo(t)/pr(td) if t < td,

fgo(t)−H1(t, t− td)
pr(td) if t ≥ td.

(8)

Thus, the distribution function can be written as

Fsr(t | td) = 1
pr(td)

∫ t

0
fgo(t′)−H1(t′, t′ − td) dt′

= Fgo(t)
pr(td) if t ≤ td. (9)

For t > td, transformations analogous to those leading to (6) yield

Fsr(t | td) = 1
pr(td)

∫ t

0
fgo(t′)−H1(t′, t′ − td) dt′

=
1−

∫ t
td
H1(t′, t′ − td) dt′

1−
∫∞

td
H1(t′, t′ − td) dt′ . (10)
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Observable, or at least estimable from data, are the following components of the

general stop signal race model: Fgo(t), Fsr(t | td), and pr(td). The main interest in modeling

is to obtain information about the distribution of unobservable stop signal processing time,

Tstop.

Independent race model

[1] suggested the independent race model by assuming stochastic independence

between Tgo and Tstop:

Stochastic independence assumption:. for all real-valued s, t

H(s, t) = Pr(Tgo ≤ s) Pr(Tstop ≤ t) = Fgo(s)Fstop(t).

Therefore, under stochastic independence

pr(td) =
∫ ∞

0
Pr(Tgo = t ∩ Tstop + td > t) dt

=
∫ ∞

0
fgo(t) [1− Fstop(t− td)] dt. (11)

For the density of the signal-response time distribution Fsr(t|td), we have

fsr(t | td) = fgo(t) [1− Fstop(t− td)]/pr(td). (12)

As observed in [3], rearranging Equation (12) yields an explicit expression of the

distribution of the unobservable stop signal processing time Tstop:

Fstop(t− td) = 1− fsr(t | td)pr(td)
fgo(t)

. (13)

However, as investigated in [4, 5], obtaining reliable estimates for the stop signal

distribution using Equation (13) requires unrealistically large numbers of observations in

practice. The most common alternative estimation method, called integration method,

assumes random variable Tstop to be equal to a constant, SSRT, say. Then

Fstop(t) =


0, if t < SSRT + td;

1 if t ≥ SSRT + td.
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Inserting into Equation (11) yields

pr(td) =
∫ SSRT+td

0
fgo(t)dt. (14)

Because estimates of both pr(td) and fgo(t) are available, this allows estimation of stop

signal processing mean SSRT.

Race model with negative dependence

Motivation: interactive race model based on neural data...Schall etal

Fréchet-Hoeffding bounds. Let G(x, y) be the bivariate distribution function of

a pair of random variables (X, Y ):

G(x, y) = P (X ≤ x, Y ≤ y)

with marginal distributions FX and FY . Then, it always holds that

G−(x, y) = max{FX(x) + FY (y)− 1, 0} ≤ G(x, y) ≤ min{FX(x), FY (y)},

for all x, y in the support of G. Both G−(x, y) and min{FX(x), FY (y)} are known as

Fréchet bounds and are distribution functions for (X, Y ) as well. Specifically, G−

correspond to perfect negative dependence between X and Y , while

G+(x, y) = min{FX(x), FY (y)} corresponds to perfect positive dependence (Nelson20xx).

The upper bound G+ will not play a role in the following.

Race model: Negative dependence. Replacing stochastic independence in the

race model by perfect negative dependence between go and stop signal processing time

(lower Fréchet bound G−) results in the following joint distribution for Tgo and Tstop:

H−(s, t) = max{Fgo(s) + Fstop(t)− 1, 0}. (15)

Then,

H−2 (t, t− td) =


fstop(t− td), if Fgo(t) + Fstop(t− td)− 1 > 0;

0 otherwise.
(16)
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Let

A = {t |Fgo(t) + Fstop(t− td)− 1 > 0}. (17)

We introduce an indicator function 1{A}(t) with set A by

1{A}(t) =


1 if t ∈ A,

0 else,

Then Equation (16) can be rewritten more compactly as

H−2 (t, t− td) = fstop(t− td) 1{A}(t). (18)

Clearly, H−2 (t, t− td) is increasing in t, so we define the infimum (greatest lower bound) of

A,

t∗ = inf A, (19)

and observe that t∗ > td.

Next, we consider the signal-response RT distribution. It is more convenient to write

it in terms of H2 rather than H1:

Fsr(t | td) = Pr(Tgo ≤ t |Tgo < Tstop + td)

=
∫ t

0
H2(t′, t′ − td) dt′/pr(td)

=
∫ t

0
fstop(t− td) 1{A}(t) dt′/pr(td)

=
∫ t

t∗
fstop(t− td) dt′/pr(td). (20)

Multiplying by pr(td) and evaluating the integral,

pr(td)Fsr(t | td) = Fstop(t− td)− Fstop(t∗ − td). (21)

Letting t→∞ yields

pr(td) = 1− Fstop(t∗ − td). (22)

Finally, using (22) we can rewrite Equation (21),

pr(td)Fsr(t | td) = Fstop(t− td)− [1− pr(td)]
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and solve for the unobservable stop signal distribution,

Fstop(t− td) = 1− pr(td)[1− Fsr(t | td)] (23)

for all t ≥ t∗.

Comparing this with the case of independence (Equation 13)

F IND
stop (t− td) = 1− fsr(t | td)pr(td)

fgo(t)
, (24)

we see that perfect negative dependence replaces the ratio fsr(t | td)/fgo(t) by the much

simpler expression 1− Fsr(t | td). Moreover, the expected value of Tstop is easy to compute:

E[Tstop] =
∫ ∞

td

[1− Fstop(t− td)] dt

= pr(td)
∫ ∞

t∗
[1− Fsr(t | td)]dt

= pr(td) E[Tgo |Tgo < Tstop + td]. (25)

Example 1: Exponential Go and Stop distributions

While exponentially distributed go or stop signal reaction times lack empirical

support, this first example serves to illustrate the difference between independent and

negatively dependent race models. It also helps probing the derivations made so far.

Independent exponentially distributed Tgo and Tstop

In addition to the assumptions of the general race model, we define independent,

exponential distributions for Tgo and Tstop with parameters λgo > 0 and λstop > 0 for

context ST OP by

H(s, t) = Pr(Tgo ≤ s) Pr(Tstop ≤ t)

= (1− exp[−λgo s])(1− exp[−λstop t]),
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for all s, t ≥ 0. Inserting into (11),

pr(td) = Pr(Tgo < Tstop + td)

=
∫ ∞

0
fgo(t) [1− Fstop(t− td)] dt

=
∫ td

0
fgo(t) dt+

∫ ∞
td

fgo(t) [1− Fstop(t− td)]

= 1− exp[−λgo td] + λgo

λstop + λgo

exp[−λgotd]

= 1− λstop

λstop + λgo

exp[−λgotd]. (26)

For t > td, the density of the signal-response distribution is given by,

fsr(t | td) = fgo(t) [1− Fstop(t− td)]/pr(td)

= λgo exp[−λgot] exp[−λstop(t− td)]/
(

1− λstop

λstop + λgo

exp[−λgotd]
)

= 1
K

(λgo + λstop) exp[−(λgo + λstop)(t− td)], (27)

with K = exp[λgo td](1 + λstop/λgo)− λstop/λgo. Note that for td = 0, we have K = 1 and

the signal-respond density is identical to an exponential density for an independent race

between Tstop and Tgo, with parameter λgo + λstop and pr(td) = λgo/(λgo + λstop).

For t ≤ td, the density simplifies to

fsr(t | td) = fgo(t)]/pr(td)

= λgo exp[−λgot]
λgo

λstop + λgo

exp[−λgotd]

= 1
λstop + λgo

exp[−λgo(t− td)]. (28)

Comparing the distribution for go-signal response times, Fgo(t), with the signal-respond

distribution, Fsr(t | td), yields the typical fan shape for varying values of td (see Figure 1).
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Computation of the expected value of signal-response RTs is straightforward:

E[Tgo |Tgo < Tstop + td] =
∞∫

0

fsr(t | td)dt

=
∞∫

0

t fgo(t) [1− Fstop(t− td)]/pr(td)

= 1
pr(td)

λgo

(λgo + λstop)2 exp[λstop td]

= λgo exp[λgo + λstop]
(λgo + λstop)([exp[λgo td](λgo + λstop]− λstop) . (29)

In particular, for td = 0, we obtain E[Tgo |Tgo < Tstop + td] = 1/(λgo + λstop), consistent with

the density we mentioned above for this value of the stop signal delay.

Perfect negative dependence between exponentially distributed Tgo and Tstop

For the bivariate distribution of (Tgo, Tstop), we have

H−(s, t) = max{Fgo(s) + Fstop(t)− 1, 0}

= max{1− exp[−λgo s] + 1− exp[−λstop t]− 1, 0}

= max{1− exp[−λgo s]− exp[−λstop t], 0}. (30)

Then, from (16)

H−2 (t, t− td) =


λstop exp[−λstop (t− td)] if exp[−λgo t] + exp[−λstop (t− td)] < 1;

0 otherwise.
(31)

Defining set A as before in (17),

A = {t |Fgo(t) + Fstop(t− td)− 1 > 0}

= {t | exp[−λgo t] + exp[−λstop (t− td)] < 1}, (32)

this can be rewritten as

H−2 (t, t− td) = λstop exp[−λstop t] 1{A}(t). (33)
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Here, the smallest value t∗ satisfying the condition in (32) is a function of the parameters:

t∗(td, λgo, λstop) = min{t | exp[−λgo t] + exp[−λstop (t− td)] < 1}. (34)

For λgo = λstop = λ, solving for t∗ yields

t∗ = λ−1 log(1− exp[−λ td]).

When λgo 6= λstop, there is no closed-form solution but t∗ is easily obtainable to arbitrary

precision by numerical algorithms (e.g. Newton-Raphson).

For the signal-response RT distribution Fsr(t | td) we obtain, from inserting

exponential distributions into (21) and (22),

Fsr(t | td) = Fstop(t− td)− Fstop(t∗ − td)
1− Fstop(t∗ − td)

= 1− exp[−λstop (t− t∗)]. (35)

Although not made explicit in (35), note that the signal-response distribution function Fsr

does depend on td via the value of t∗, that is, there is a shift-dependency on td. Figure 2

depicts the no-stop signal distribution Fgo together with signal-response distribution

Fsr(t | td) for different td values employing the same parameters as in the independence case

above (λgo = .01, λstop = .02). Computing the values of t∗ according to (34) required

finding the fixed point of recursion (Newton-Raphson)

tn+1 = tn −
1− exp[−λgo tn]− exp[−λstop (tn − td)]

exp[−λgo tn] + exp[−λstop (tn − td)] , (36)

which was determined using function FixedPoint of Mathematica c©. From (25) the

expected value for the signal-response distribution is very easy to determine:

E[Tgo |Tgo < Tstop + td] = 1
pr(td) E[Tstop]

= 1
pr(td)λstop

= exp[λstop(t∗ − td)]
λstop

. (37)
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Final comments

- Just like the Independent Race Model, the Dependent Race Model provides a

distribution-free measure of the latency of the STOP process;

- by assuming perfect negative dependence between GO and STOP process, the

Dependent Race Model constitutes a behavioral framework that is consistent with the

finding of mutually inhibitory gaze-holding and gaze-shifting neurons ([6]).
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Figure 1 . Independent (exponential) race model: Fgo(t) (no-stop signal distribution)

compared to Fsr(t | td) (signal-respond distribution) for td = 10, 50, 100, 150 [msec] with

λgo = .01 and λstop = .02.
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Figure 2 . Negatively dependent (exponential) race model: Fgo(t) (no-stop signal

distribution) compared to Fsr(t | td) (signal-respond distribution) for td = 10, 50, 100, 150

[msec] with λgo = .01 and λstop = .02.
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