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ABSTRACT 13 

Cassava (Manihot esculenta Crantz), a key carbohydrate dietary source for millions of people in 14 

Africa, faces severe yield loses due to two viral diseases: cassava brown streak disease (CBSD) 15 

and cassava mosaic disease (CMD). The completion of the cassava genome sequence and the 16 

whole genome marker profiling of clones from African breeding programs 17 

(www.nextgencassava.org) provides cassava breeders the opportunity to deploy additional 18 

breeding strategies and develop superior varieties with both farmer and industry preferred traits. 19 

Here the identification of genomic segments associated with resistance to CBSD foliar symptoms 20 

and root necrosis as measured in two breeding panels at different growth stages and locations is 21 

reported.  Using genome-wide association mapping and genomic prediction models we describe 22 

the genetic architecture for CBSD severity and identify loci strongly associated on chromosomes 23 

4 and 11. Moreover, the significantly associated region on chromosome 4 colocalises with a 24 

Manihot glaziovii introgression segment and the significant SNP markers on chromosome 11 are 25 

situated within a cluster of nucleotide-binding site leucine-rich repeat (NBS-LRR) genes 26 

previously described in cassava. Overall, predictive accuracy values found in this study varied 27 

between CBSD severity traits and across GS models with Random Forest and RKHS showing 28 

the highest predictive accuracies for foliar and root CBSD severity scores.   29 

 30 

Key words: Genome-wide association studies (GWAS), virus severity, augmented designs, de-31 

regressed best linear unbiased Predictions (drg-BLUPs), NBS-LRR proteins 32 
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 33 

INTRODUCTION 34 

Cassava (Manihot esculenta Crantz), is a major source of income and dietary calories for more 35 

than 800 million people across the globe especially in Sub Saharan Africa (SSA) and recently, 36 

due to the unique starch qualities of the storage roots cassava is also turning into an industrial 37 

crop (Pérez et al., 2011). Although cassava is a resilient crop, its production is threatened by 38 

viral diseases such as Cassava brown streak virus disease (CBSD), which causes major yield 39 

losses to poor farming families (ASARECA:, 2013; Ndunguru et al., 2015; Patil et al., 2015). 40 

CBSD is caused by two major strains; Cassava brown streak virus (CBSV) and Ugandan 41 

cassava brown streak virus (UCBSV) both CBSVs have successfully colonized the lowland and 42 

highland altitudes across East Africa and new strains are emerging (Winter et al., 2010; 43 

Ndunguru et al., 2015; Alicai et al., 2016). In Uganda, because of CBSVs and agronomical 44 

practices, cassava yields were recorded to be eight times lower than the yield potential for this 45 

crop (ASARECA:, 2013). 46 

In addition to the uncontrolled exchange of infected cassava stakes among farmers across 47 

borders, CBSVs are transmitted by the African whitefly (Besimia tobaci) in a semi-persistent 48 

manner (Legg, Sseruwagi, et al., 2014; McQuaid et al., 2016). Upon infection, the viruses use 49 

the transport system of the plant and cause yellow chlorotic vein patterns along minor veins of 50 

leaves in susceptible cassava clones (Ogwok et al., 2010; Maruthi et al., 2016; Anjanappa et al., 51 

2016). On the stem, prominent brown elongated lesions commonly referred to as “brown 52 

streaks” are formed and in the storage roots, necrotic hard-corky layers are formed in the root 53 

cortex of the most susceptible cassava clones (Hillocks et al., 1996; Legg, Somado, et al., 2014; 54 

Ndyetabula et al., 2016).  55 

Earlier, CBSD resistance breeding initiatives have highlighted the polygenic nature of 56 

inheritance in both intraspecific and interspecific cassava hybrids (Nichols, 1947; Hillocks and 57 

Jennings, 2003; Munga, 2008; Kulembeka, 2010). In view of the rapid virus evolution and the 58 

insufficiency of dependable virus diagnostic tools (Alicai et al., 2016) breeding for durable 59 

CBSD resistance, has been the main strategy to control CBSD spread in Eastern Africa. Most of 60 

the available elite cassava lines have exhibited some level of sensitivity to CBSVs ranging from 61 
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mild sensitivity to total susceptibility. Moreover, clones classified as resistant and tolerant show 62 

diverse symptom expression, restricted virus accumulation or recovery after clonal propagation 63 

(Hillocks and Jennings, 2003; Alicai et al., 2016). 64 

Overall, in cassava for many traits the rate of genetic improvement following a traditional 65 

breeding pipeline has been slower due to the combination of several biology-related issues such 66 

as: poor flowering, length of breeding cycle, limited genetic diversity and slow rate of 67 

multiplication of planting materials.  68 

Recently, using genotypic and phenotypic information genome wide association mapping 69 

(GWAS) has been used to unravel the genetic architecture of cassava mosaic disease (CMD) 70 

(Wolfe et al., 2016) and beta carotene content (Esuma et al., 2016). Both studies have been 71 

successful in identifying associated loci with traits of interest. In addition, the performance of 72 

genomic prediction for different traits was previously evaluated using historical phenotypic and 73 

genotyping by sequencing (GBS) datasets from the International Institute of Tropical Agriculture 74 

in Nigeria (Elshire et al., 2011; Ly, Hamblin, Rabbi, Melaku, Bakare, Gauch, et al., 2013). 75 

Genomic Selection (GS) is a breeding method alternative to marker assisted selection and 76 

conventional phenotypic selection which can accelerate genetic gains through the use of 77 

phenotypic and genotypic data from a training population (Meuwissen et al., 2001; Jannink et 78 

al., 2010; Lorenz et al., 2011). The performance of different GS models has been evaluated in 79 

various species and in many traits (Resende et al., 2012; Gouy et al., 2013; Heslot et al., 2014; 80 

Charmet et al., 2014; Cros et al., 2015). Recently the potential of GS for CMD resistance has 81 

been reported with predictive accuracies ranging from 0.53 to 0.58 (Wolfe et al., 2016). 82 

In the present study we followed a GWAS approach in combination with genomic prediction to 83 

unravel the genetic architecture of CBSD in two Ugandan breeding populations. While one of 84 

our main objectives was to assess the current predictive accuracy for CBSD we also aimed to 85 

identify the most promising genomic prediction models that can account for CBSD genetic 86 

architecture. 87 

GWAS identified loci strongly associated with CBSVs resistance to foliar symptoms which co-88 

locate with an introgression block from a cassava wild progenitor, M. glaziovii  (Bredeson et al., 89 

2016) and with root necrosis which were close to a cluster of plant defence response-related 90 
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genes annotated in the cassava genome (Lozano et al., 2015). The presence of introgressions 91 

segments from the wild progenitors into the elite breeding lines is the result of cassava 92 

improvement programs at the Amani Research Station throughout the 1940s and 1950s (Jennings 93 

and Iglesias, 2002; Hillocks and Jennings, 2003). 94 

Here we demonstrated with the synergistic implementation of GWAS and GS that GWAS could 95 

be used as a prioritization tool to identify markers for genomic prediction for CBSD resistance in 96 

cassava.In addition to unravelling the genetics of CBSD resistance these findings may help in the 97 

identification of significant causal polymorphisms to guide marker-assisted breeding for CBSD 98 

severity that may greatly improve cassava breeding in the face of increasing disease threats to 99 

agricultural production. 100 

 101 

 102 

 103 

 104 

 105 

 106 

 107 

 108 
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 120 

MATERIALS AND METHODS 121 

Plant material 122 

Phenotypic data was collected from two GWAS panels (Supplementary table 1), GWAS panel 1 123 

composed of 429 clones and GWAS panel 2 which was composed of 872 clones.The combined 124 

dataset of 1281 cassava clones were developed through three cycles of genetic recombination 125 

between cassava introductions and local elite lines by the National root crops breeding program 126 

at NaCRRI. These cassava clones have a diverse genetic background whose pedigree could be 127 

traced back to introductions from the International Institute of Tropical Agriculture (IITA), 128 

International Center for Tropical Agriculture (CIAT) and the Tanzania national cassava breeding 129 

program (Supplementary table 1).  130 

 131 

Phenotyping  132 

The GWAS panel trials were conducted in five locations; Namulonge, Kamuli, Serere, Ngetta 133 

and Kasese in Uganda.  134 

GWAS panel 1 data was collected in two years across three locations, each trial was designed 135 

and laid out as a 6 by 30 alpha-lattice design with two-row plots of five plants each at a spacing 136 

of 1 meter by 1 meter. GWAS panel 2 was evaluated in three locations, on each location, five 137 

rows of test clones were bordered by two CBSD susceptible clones in order to increase CBSD 138 

disease pressure (TME204). Clones from GWAS panel 2 were evaluated as single entries per 139 

location being connected by six common checks in an augmented completely randomized block 140 

design with 38 blocks per site (Federer et al., 2002; Federer and Crossa, 2012).  141 

CBSD severity was scored at 3 (CBSD3S), 6 (CBSD6S), and 9 (CBSD9S) months after planting 142 

(MAP) for foliar and 12 MAP (CBSDRS) for root symptoms respectively. The CBSD9S scores 143 

were not available for GWAS panel 1. 144 

CBSD severity was measured based on a 5-point scale with a score of 1 implying asymptomatic 145 

conditions and a score 5 implying over 50% leaf vein clearing under foliar symptoms. However, 146 

at 12 MAP a score of 5 implies over 50% of root-core being covered by a necrotic corky layer. 147 

(Supplementary Figure 1)   148 
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Clones were classified with a score of 5 if pronounced vein clearing at major leaf veins were 149 

jointly displayed with brown streaks on the stems and shoot die-back that appeared as a candle-150 

stick. Clones with 31 – 40% leaf vein clearing together with brown steaks at the stems were 151 

classified under score 4. A Score of 3 was assigned to clones with 21 – 30% leaf vein clearing 152 

with emerging brown streaks on the stems. While a score of 2 was assigned to clones that only 153 

displayed 1 – 20% leaf vein clearing without any visible brown streak symptoms on the stems. 154 

Plants classified with a score of 1 showed no visible sign of leaf necrosis and brown streaks on 155 

the stems. On the other hand, root symptoms were also classified into 5 different categories 156 

based on a 5 – point standard scale (Jennings and Iglesias, 2002; Hillocks and Jennings, 2003). 157 

 158 

Two-stage genomic analyses 159 

For the two stage analyses, the first stage involved accounting for trial-design using a linear 160 

mixed model to obtained de-regressed BLUPs (drgBLUPs) and the second stage involved the use 161 

of de-regressed BLUPs in GWAS and Genomic prediction. 162 

For the panel 1 we fitted the model: =  𝐗𝛽 +  𝐙𝐜𝐥𝐨𝐧𝐞𝑐 + 𝐙𝐫𝐚𝐧𝐠𝐞(𝐥𝐨𝐜.)𝑟 + 𝐙𝐛𝐥𝐨𝐜𝐤(𝐫𝐚𝐧𝐠𝐞)𝑏 + 𝜀 , using 163 

the lmer function from the lme4 R package (Bates et al., 2015). In this model, β included a fixed 164 

effect for the population mean and location. The incidence matrix Zclone and the vector c 165 

represent a random effect for clone 𝑐~N 0, 𝐈𝜎!!  and 𝐈 represent the identity matrix. The range 166 

variable, which is the row or column along which plots are arrayed, is nested in location-rep and 167 

is represented by the incidence matrix Zrange(loc.) and random effects vector 𝑟~N 0, 𝐈𝜎!! . Block 168 

effects were nested in ranges and incorporated as random with incidence matrix Zblock(range) and 169 

effects vector 𝑏~N 0, 𝐈𝜎!! . Residuals 𝜀 were fit as random, with 𝜀~N 0, 𝐈𝜎!! .  170 

For panel 2 we fitted the model 𝒚 =  𝐗𝛽 + 𝐙𝐜𝐥𝐨𝐧𝐞𝑐 + 𝐙𝐛𝐥𝐨𝐜𝐤𝑏 + 𝜀 Where y was the vector of raw 171 

phenotypes, β included a fixed effect for the population mean and location with checks included 172 

as a covariate. The incidence matrix Zclone and the vector c are the same as the aforementioned 173 

model and the blocks were also modeled with incidence matrix 𝐙𝐛𝐥𝐨𝐜𝐤 and b represents the 174 

random effect for block. The best linear predictors (BLUPs) of the clone effect (ĉ) were extracted 175 

as de-regressed BLUPS following the formula (Garrick et al., 2009): 176 
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𝐝𝐞𝐫𝐞𝐠𝐫𝐞𝐬𝐬𝐞𝐝 𝐁𝐋𝐔𝐏 =   
𝐁𝐋𝐔𝐏

𝟏 −  𝐏𝐄𝐕      
𝛔𝐜𝟐

                           

 177 

Where PEV is the prediction error variance of the BLUP and 𝛔𝐜𝟐 is the clonal variance 178 

component. 179 

 180 

 181 

DNA preparation and Genotyping by sequencing (GBS) 182 

Total genomic DNA was extracted from young tender leaves of all cassava clones included in 183 

the phenotyping trials according to standard procedures using the DNAeasy plant mini extraction 184 

kit (QIAGEN, 2012). Genotyping-by-sequencing (GBS)(Elshire et al., 2011) libraries were 185 

constructed using the ApeKI restriction enzyme (Hamblin and Rabbi, 2014). Marker genotypes 186 

were called using TASSEL GBS pipeline V4 (Glaubitz et al., 2014) after aligning the reads to 187 

the Cassava v6 reference genome (Prochnik et al., 2012; Goodstein et al., 2014). Variant Calling 188 

Format (VCF) files were generated for each chromosome. Markers with more than 60% missing 189 

calls were removed. Genotypes with less than five reads were masked before imputation. 190 

Additionally, only biallelic SNP markers were considered for further processing. 191 

The marker dataset consisted of a total of 173,647 bi-allelic SNP markers called for 986 192 

individuals. This initial dataset was imputed using Beagle 4.1 (Browning and Browning, 2016). 193 

After timputation, 63,016 SNPs had an AR2 (Estimated Allelic r-squared) higher than 0.3 and 194 

were kept for analysis; from these, 41,530 had a minor allele frequency (MAF) higher than 0.01 195 

in our population. Dosage files for this final dataset were generated and used for both GWAS 196 

and GS analyses. 197 

 198 

Genetic correlations and heritability estimates  199 

 200 

Correlation across CBSD traits was estimated using pairwise correlations for each location using 201 

the drgBLUPs values obtained after fitting the aforementioned linear mixed model.  Broad sense 202 
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heritabilities (plot-mean basis) were calculated using the estimated variance components from 203 

the first step of the two-step genomic analysis as explained previously.  204 

In addition,SNP-based heritabilities were calculated for each GWAS panel by fitting a single-205 

step mixed-effects model, the full models which specified clone as a random effect were fitted 206 

using the emmreml function from the EMMREML R package (Akdemir and Okeke, 2015). The 207 

random effect was modeled as having co-variance proportional to the kinship matrix, which was 208 

calculated using the A.mat function from the rrBLUP R package (Endelman, 2011). 209 

 210 

  211 

Genome-wide association analysis for CBSV severity 212 

Although pedigree records indicate the two GWAS panels to be closely related a principal 213 

component analysis (PCA) was performed in order to characterize these panels and to identify 214 

any population stratification between the two GWAS panels. We used the imputed dataset of 215 

63,016 SNP markers to calculate the PCs with the function princomp in R. 216 

With the imputed dataset of 63,016 SNP markers and 986 individuals genome wide association 217 

was performed using a mixed linear model association analysis (MLMA) accounting for kinship 218 

as implemented in GCTA (v 1.26.0) (Yang et al., 2011) . Specifically, we followed a leave one 219 

chromosome out approach, with this approach the chromosome on which the candidate SNP 220 

markers are tested gets excluded from the genomic relationship (GRM) calculation. Bonferroni 221 

correction (reference) was used to correct for multiple testing with a significance threshold set at 222 

5.9. Manhattan plots with transformed -log10(P-value) were generated using R package qqman 223 

(Turner, 2014).  224 

 225 

Genomic prediction models  226 

To assess the potential of implementing genomic selection for CBSD, seven genomic prediction 227 

models were keenly examined; genomic best linear unbiased prediction (GBLUP), reproducing 228 

kernel Hilbert spaces (RKHS), BayesCpi, Bayesian LASSO, BayesA, BayesB and Random 229 

forest (RF).  230 
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GBLUP. In this prediction model, the GEBVs are obtained after fitting a linear mixed model 231 

where the genomic realized relationship matrix is based on SNP marker dosages. Accordingly, 232 

the genomic relationship matrix was constructed using the function A.mat in the R package 233 

rrBLUP (Endelman, 2011) and follows the formula of VanRaden (2008), method two. GBLUP 234 

predictions were made with the function emmreml in the R package EMMREML (Akdemir and 235 

Okeke, 2015). 236 

Multi-kernel GBLUP. Because the most significant QTLs for foliar severity 3 and 6 MAP were 237 

mapped on chromosomes 4 and 11 (this paper) we followed a multi-kernel approach by fitting 238 

three kernels with genomic relationship matrices constructed with SNP markers from 239 

chromosomes 4 (Gchr4), 11 (Gchr11) and SNPs from the other chromosomes (Gallchr-[4,11]). Multi-240 

kernel GBLUP predictions were made with the function emmremlMultiKernel  in the R package 241 

EMMREML (Akdemir and Okeke, 2015). 242 

RKHS. Unlike GBLUP for RKHS we use a Gaussian kernel function: 𝐾!" = exp (− d!"θ ), 243 

where Kij is the measured relationship between two individuals, dij is their Euclidean genetic 244 

distance based on marker dosages and θ is a tuning (“bandwidth”) parameter that determines the 245 

rate of decay of correlation among individuals. This function is nonlinear and therefore the 246 

kernels used for RKHS can capture non-additive as well as additive genetic variation. To fit a 247 

multiple-kernel model with six covariance matrices we used the emmremlMultiKernel function 248 

in the EMMREML package, with the following bandwidth parameters: 0.0000005, 0.00005, 249 

0.0005, 0.005, 0.01, 0.05 (Multi-kernel RKHS) and allowed REML to find optimal weights for 250 

each kernel.  251 

Bayesian maker regressions. We tested four Bayesian prediction models: BayesCpi (Habier et 252 

al., 2011), the Bayesian LASSO (Park and Casella, 2008), BayesA, and BayesB (Meuwissen et 253 

al., 2001). The Bayesian models we tested allow for alternative genetic architectures by way of 254 

differential shrinkage of marker effects. We performed Bayesian predictions with the R package 255 

BGLR (Pérez and De Los Campos, 2014) 256 

Random Forest. Random forest (RF) is a machine learning method used for regression and 257 

classification (Breiman, 2001; Strobl et al., 2009; Charmet and Storlie, 2012). Random forest 258 

regression with marker data has been shown to capture epistatic effects and has been successfully 259 
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used for prediction (Breiman, 2001; Motsinger-Reif et al., 2008; Heslot et al., 2012; Charmet et 260 

al., 2014; Spindel et al., 2015). We implemented RF using the random Forest package in R 261 

(Liaw and Wiener, 2002) with the parameter, ntree set to 500 and the number of variables 262 

sampled at each split (mtry) equal to 300. 263 

 264 

Introgression Segment Detection 265 

To identify the genome segments in the two GWAS panels, we followed the approach described 266 

in Bredeson et al . (Bredeson et al., 2016). We used the M. glaziovii diagnostic markers 267 

identified in Supplementary Dataset 2 of Bredeson et al. (Bredeson et al., 2016), these ancestry 268 

diagnostic (AI) SNPs were identified as being fixed for different alleles in a sample of two pure 269 

M. esculenta (Albert and CM33064) and two pure M. glaziovii.  270 

Out of 173,647 SNP in our imputed dataset, 12,502 matched published AI SNPs. For these AI 271 

SNPs, we divided each chromosome into non-overlapping windows of 20 SNP. Within each 272 

window, for each individual, we calculated the proportion of genotypes that were homozygous 273 

(G/G) or heterozygous (G/E) for M. glaziovii allele and the proportion that were homozygous for 274 

the M. esculenta allele (E/E).  We assigned G/G, G/E or E/E ancestry to each window, for each 275 

individual only when the proportion of the most common genotype in that window was at least 276 

twice the proportion of the second most common genotype. We assigned windows a “No Call” 277 

status otherwise. 278 

We also used this approach on six whole-genome sequenced samples from the cassava HapMap 279 

II (Ramu et al., 2016). These included the two “pure cassava” and M. glaziovii (S) from 280 

Bredeson et al. (Bredeson et al., 2016), plus an additional M. glaziovii, and two samples labeled 281 

Namikonga. Because these samples came from a different source from most our samples, we 282 

could find only 11,686 SNPs that matched both the sites in the rest of our study sample and the 283 

list of ancestry informative sites for analysis. 284 

 285 

 286 

 287 

 288 
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Linkage disequilibrium plots  289 

To confirm whether a large haplotype block present on chromosome 4 colocate with a GWAS 290 

QTL identified on this chromosome we calculated LD scores of every SNP marker on 291 

chromosome 4 in a 1Mb window using GCTA (Yang et al., 2011). Briefly, LD score for a given 292 

marker is calculated as the sum of R2 adjusted between the index marker and all markers within a 293 

specified window. The adjusted R2 is an unbiased measure of LD: 294 

𝑅!"#! =  𝑅! −  
  1−  𝑅!

𝑛 − 2  

Where “n” is the population size and R2 is the usual estimator of the squared Pearson’s 295 

correlation (Bulik-Sullivan et al., 2015). The resulting LD scores were then plotted against the 296 

GWAS log10 (Pvalue) of every marker on chromosome 4. 297 

To highlight the importance of the associated markers on chromosome 11 we calculated pairwise 298 

squared Pearson's correlation coefficient (r2) between the top significant GWAS SNP hit on this 299 

chromosome and neighboring markers in a window of 2Mb (1Mb upstream and 1Mb 300 

downstream). (plink ref) 301 

 302 

Candidate gene identification 303 

We used the mlma GCTA output to filter out SNP markers based on -log10 (P-value) values 304 

higher than the Bonferroni threshold (~ 5.9). The resulting significant SNP markers were then 305 

mapped onto genes using the SNP location and gene description from the 306 

M.esculenta_305_v6.1.gene.gff3 available in Phytozome 11(Goodstein et al., 2014) for Manihot 307 

esculenta v6.1 using the intersect function from bedtools (Quinlan and Hall, 2010).  308 

 309 

 310 

 311 

 312 

 313 

 314 
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RESULTS   315 

Phenotypic variability for severity to cassava brown streak virus infection 316 

In the present study field disease scoring was done based on a standard CBSD scoring scale that 317 

ranges from 1 to 5 for both foliar and root symptoms (Supplementary figure 1).  318 

Datasets for CBSD foliar and root severities of the evaluated germplasm are presented in 319 

Supplementary figures 2 and 3, both GWAS panels exhibited differential response to CBSVs at 320 

three,six, nine and twelve months as revealed in the great variability of the deregressed BLUPs.  321 

Interestingly, clones which displayed an intermediate response were by far more abundant than 322 

clones with susceptible or resistance response.  323 

Phenotypic correlations for foliar and root severities (CBSD3S, CBSD6S and CBSDRS) within 324 

panels and within and across locations are presented in Supplementary figure 4, Supplementary 325 

tables 2 and 3 with clear differences in CBSD severity scores.  326 

For panel 1, results varied across locations and CBSD severity traits the lowest correlation value 327 

was between Ngetta and Kasese (0.09) and the highest between Namulonge and Kasese (0.60) 328 

both values correspond root severity scoring (Supplementary table 2A). 329 

For panel 2 the results varied across locations and CBSD severity traits with correlation values 330 

ranging between -0.08 for CBSD9S (Namulonge-Kamuli) and 0.51 CBSD3S (Kamuli-Serere) 331 

(Supplementary table 2B).  332 

Within locations across traits the highest correlation values were found in panel 1 for foliar 333 

scorings CBSD3S and CBSD6S (r2 > 0.5) (Supplementary table 3A). For panel 2, correlation 334 

across traits varied depending on the location, nonetheless correlations across foliar traits were 335 

generally higher than those between foliar and root severity (Supplementary table 3B). 336 

Heritability estimate values for CBSD3S, CBSD6S and CBDRS were low to intermediate with 337 

broad-sense heritability (H2) estimates spanning a wide range (11% to 73%) for both panels 338 

across locations (Table 1). For GWAS panel 2, broad-sense heritability (H2) estimates ranged 339 

between 56% and 63% for CBSD3S and between 60% and 62% for CBSD6S; while for GWAS 340 

panel 1 ranged between 11% and 51%.  341 

Narrow-sense heritability (h2), also referred to as SNP heritability, was estimated using the 342 

variance components obtained as a result of fitting a one step model using the genetic 343 
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relationship matrix (GRM) for each panel. For panel 1, the broad- and narrow-sense heritability 344 

values were comparable across locations except for the multi-location model. For panel 2, for 345 

most locations the broad-sense heritability estimates were larger than the narrow-sense 346 

heritability estimates. The high variability observed within and across GWAS panels reflects 347 

differences in population composition, field design and environmental effects. 348 

 349 

Genome wide association mapping for CBSV severity in cassava 350 

The extent of subpopulation structure between the two GWAS panels was examined by PCA, 351 

which showed no distinct clusters: clones from both panels had mixed distribution. Overall, the 352 

first three PCAs accounted for 60% of the genetic variation observed in the data (Figure 1). The 353 

first PC accounted for 30% of the observed variation while the second and third PCs contributed 354 

20% and 10% respectively.  355 

Genotype-phenotype associations for CBSD severity traits based on the combination of multi-356 

location data and 986 individuals are presented in Figure 2. Additional GWAS analyses 357 

performed on each panel individually are presented in Supplementary tables 4 and 5 and 358 

Supplementary figures 5-12. 359 

We characterized SNP markers with a -log10 (P-value) above the Bonferroni threshold > 5.9 as 360 

significant marker–trait associations and further annotated those into candidate genes 361 

(Supplementary table 4).  362 

For the combined dataset, we identified 83 significant SNP markers associated to CBSD3S; the 363 

markers mapped to chromosome 11 with 61 markers located within genes (Supplementary Table 364 

4). The QTL on chromosome 11, top hit reference SNP -log10 (P-value) = 9.38, explained 6% of 365 

the observed phenotypic variation.  366 

On the other hand, for CBSD6S, we identified significant SNPs on chromosome 11, 367 

chromosome 4 and chromosome 12.  On chromosome 11, 33 SNPs surpassed the Bonferroni 368 

threshold with 27 SNP markers located within genes. The QTL on chromosome 11 is located on 369 

the same region as the QTL identified for CBSD3S and explained 5% of the observed 370 

phenotypic variation (Figure 3A).  371 
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It suffices to note that although several SNPs on chromosome 11 for CBSD6S exceeded the 372 

Bonferroni threshold, six SNPs were in linkage disequilibrium (r2 > 0.6) with the top reference 373 

SNP hit. The SNP markers, with an r2> 0.2 to the reference SNP, were annotated into candidate 374 

genes: Manes11G130500, a gene that is known to encode glycine-rich protein. 375 

Manes11G130000 gene that encodes Leucine-rich repeat (LRR) containing protein, 376 

Manes11G130200 gene that encodes the trigger factor chaperone and peptidyl-prolyl trans and 377 

Manes11G131100 that encodes a protein kinase (Figure 3B).  378 

Since several SNPs on the chromosome 4 QTL region are in high LD, no single locus can be 379 

highlighted as candidate gene(s) to be associated with CBSD severity (Figure 4A). The large 380 

haplotype on chromosome 4 is an introgression block from the a wild relative of cassava (M. 381 

glaziovii) (Jennings, 1959; Bredeson et al., 2016). We further confirmed the presence and 382 

segregation of the introgressed genome segment in both panels using a set of diagnostic markers 383 

from M. glaziovii (Figure 4B, supplementary figure 13 and 14).  384 

The significant QTL on chromosome 12 has been previously identified for CMD resistance in 385 

cassava  (Wolfe et al., 2016) Accordingly, after correction for CMD scoring in the first step 386 

calculation of CBSD deregressed BLUPs, the QTL on chromosome 12 was no longer significant 387 

and only QTLs on chromosomes 4 and 11 remained (supplementary Figure 15 ).  388 

For CBSDRS we could not identify SNPs surpassing the Bonferroni correction partly to the 389 

complexity of this trait with apparently several small effect genes and low heritability. However, 390 

the results of the analysis of CBSDRS multi-location data of panel 1 identified significant 391 

regions on chromosomes 5, 11 and 18 (-log10 (P-value) > 6.5), which explained 8, 6 and 10% 392 

phenotypic variance respectively. 393 

 394 

Genome-wide prediction for CBSV severity in cassava 395 

An important objective within this study was to assess the accuracy of prediction in cassava for 396 

CBSD-related traits. Using the combined dataset, we compared the performance of seven 397 

genomic prediction models with contrasting assumptions on trait genetic architecture. Some 398 

model predictions represent genomic estimated breeding values (GEBV) in that they are sums of 399 

additive effects of markers, while other model predictions represent genomic estimated total 400 
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genetic value (GETGV) because they include non-additive effects. Predictive accuracy for 401 

CBSD related traits had mean values across methods of 0.29 (CBSD3S), 0.40 (CBSD6S) and 402 

0.34 (CBSDRS) (Figure 5 and Supplementary table 6). 403 

Predictive accuracies for CBSD3S varied in the range of 0.27 (BayesB and GBLUP) and 0.32 404 

(RF), for CBSD6S we obtained a predictive value of 0.40 for most methods except for RKHS 405 

(0.42) and RF (0.41) and for CBSD root severity scores varied from 0.31 (BayesA, B, C and 406 

GBLUP) to 0.42 (RF and RKHS). It is clear from the results that higher predictive accuracies 407 

were consistently achieved when using Random forest and RKHS for the prediction of both 408 

foliar and root CBSD resistance traits. Although for foliar symptoms the increase in predictive 409 

accuracy using those methods is modest, for CBSDRS the increase in predictive accuracy was 410 

0.10. 411 

Based on the GWAS results, we identified for CBSD3S, CBSD6S and CBSDRS the strongest 412 

marker associations on chromosomes 4 and 11 . Markers from chromosomes 4, 11 and markers 413 

on other chromosomes were used independently to construct covariance matrices that were fitted 414 

in a multikernel GBLUP model (Supplementary figure 16). For all CBSD traits the mean 415 

predictive accuracy values from the single-kernel GBLUP model were similar to the mean total 416 

predictive accuracy following the multi-kernel approach (Supplementary table 6).  417 

Differences were found on the contribution of the individual kernels to the total predictive 418 

accuracies. For example, the multikernel GBLUP model for CBSD3S had the lowest total 419 

predictive accuracy (0.27) with the highest contribution coming from chromosome 11 and the 420 

rest of the genome (0.19). In contrast, the multikernel GBLUP model for CBSD6S gave the 421 

highest predictive accuracy (0.40) and most of the accuracy came from chromosome 4 (0.29). 422 

The multikernel GBLUP approach for CBSDRS had a total predictive accuracy of 0.30 with the 423 

rest of the genome (0.29) contributing the most to the total predictive accuracy (Supplementary 424 

figure 16). 425 

 426 

 427 

 428 

 429 
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DISCUSSION 430 

Cassava brown streak disease has been identified as one of the most serious threats to  food 431 

security (Pennisi, 2010) owing to the significant loses it imparts in cassava wherever it occurs. 432 

Host plant resistance, that is obtained through breeding efforts has been so far the most effective 433 

approach. However, this is only achievable when the host-pathogen behaviour and interaction is 434 

well understood and/or when the genetics of resistance to CBSD are clearly known. 435 

In the present study, ~1200 cassava clones from the NaCRRI breeding program in Uganda were 436 

evaluated for CBSD severity scores in leaves and root. Specifically, this paper sought to provide 437 

fundamental information on the genetics of resistance to CBSD which was previously unknown. 438 

From our analyses it was evident that correlation among foliar CBSD severities were higher than 439 

correlation between foliar and root severities.  440 

Selection of resistant clones has been hampered by the fact that some clones do not show 441 

symptoms on leaves or storage roots, while other varieties may only express symptoms on leaves 442 

and not on roots and still others do not show symptoms on leaves but instead on roots only 443 

(ASARECA:, 2013). Moreover, a lack of correlation between virus load and symptom 444 

expression in a field evaluation of selected cassava genotypes has been reported (Kaweesi et al., 445 

2014). Previous studies have also reported that 79% plants with above- ground symptoms of 446 

CBSD also exhibited root necrosis and 18% of plants had no visible symptoms of CBSV 447 

(Hillocks et al., 1996) 448 

Recently, efforts to understand CBSD have focused on CBSD resistance population development 449 

and preliminary insights into chromosomal regions and genes involved in resistance (Kawuki et 450 

al., 2016; Anjanappa et al., 2016, 2017). These studies have highlighted the existence of a QTL 451 

on chromosome 11 for CBSD root necrosis among cassava clones of Tanzanian origin (Kawuki 452 

et al., 2016).   453 

In our study, based on foliar CBSD severity scoring using a multi-location dataset we identified 454 

significant QTL regions on chromosome 4 and 11, though these associations were not always 455 

consistent when the panels were analyzed separately and per location. Overall, these results 456 

highlight the advantage of using a large GWAS panel and a multi-location approach were plants 457 

are exposed to different disease pressures to identify additional genomic regions.  458 
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On chromosome 11, a cluster of genes underlies the significant QTL ; candidate genes for further 459 

study are: Manes11G131100, Manes11G130500, Manes11G130200 and Manes11G130000. 460 

Lozano et al. 2015 previously reported Manes11G130000 when studying the distribution of 461 

NBS-LRR in cassava. Furthermore, a recent study on early transcriptome response to brown 462 

streak virus infection in susceptible and resistant cassava varieties identified Manes.11G130000 463 

among the differentially expressed genes in the susceptible line 60444 from the ETH cassava 464 

germplasm collection (Anjanappa et al., 2017). The QTL on chromosome 11 is particularly 465 

unstable across locations, which may be related to NBS-LRR genes conferring resistance to a 466 

particular strain, UCBSV exhibits a lower mutation rate, while CBSV is more aggressive and 467 

mutates faster.  468 

Throughout the 1940s and 1950s at the Amani Research Station, Manihot glaziovii and cassava 469 

varieties of Brazilian origin were used for crosses to obtain CBSD resistant varieties (Jennings 470 

and Iglesias, 2002). One of the introgression segments from these wild relatives has been 471 

reported to be located on chromosome 4, however the level of linkage disequilibrium in that 472 

region remains as a major constraint for the identification of the gene or genes that are 473 

responsible for CBSD resistance (Bredeson et al., 2016). Current on-going research efforts are 474 

focused on dissecting the extent of the effects of wild introgressions on cassava traits (Marnin 475 

Wolfe personal communication).  476 

One important objective of the present study was to test our ability to predict CBSD severity in 477 

cassava, which is, particularly relevant in two situations. First, when the objective is the 478 

introduction of germplasm from Latin america and/or from West Africa to East Africa and for 479 

early seedling or clonal selection of resistant lines.   480 

Thus, using a cross-validation approach, we evaluated the suitability of seven GS models with 481 

the expectation that the results may differ due to differences in genetics of foliar and root CBSD 482 

severity traits (B. J. Hayes et al., 2009; Grattapaglia et al., 2011). 483 

In cassava, previous genomic prediction studies have evaluated the predictive ability of GBLUP 484 

using historical phenotypic data from the International Institute of Tropical Agriculture (IITA) 485 

and GBS markers and in a small training population with relatively low-density markers (de 486 

Oliveira et al., 2012; Ly, Hamblin, Rabbi, Melaku, Bakare, Okechukwu, et al., 2013). 487 
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Principally, the GS models evaluated have varying underlying assumptions genomic-BLUP 488 

(GBLUP) model assume an infinitesimal genetic architecture; Bayesian methods such as BayesA 489 

and BayesB relax the assumption of common variance across marker effects (De Los Campos et 490 

al., 2009; Habier et al., 2011; Legarra et al., 2014), RKHS and random forest methods can model 491 

epistatic and other non-additive effects. 492 

A first assessment of predictive accuracy of CBSD foliar and root traits in cassava indicate that 493 

the use of genomic selection is a promising breeding method for resistance to Cassava brown 494 

streak virus. We found moderate to high predictive accuracies for these traits in relation to results 495 

from other traits in cassava (Ly, Hamblin, Rabbi, Melaku, Bakare, Okechukwu, et al., 2013). 496 

However, predictive accuracy values are lower in comparison to the values reported for cassava 497 

mosaic virus (Ly, Hamblin, Rabbi, Melaku, Bakare, Okechukwu, et al., 2013) possibly due the 498 

presence of a large effect GWAS QTL (CMD2) for CMD . 499 

Although, a priori knowledge of the loci affecting a trait is not needed for GS, we also tested a 500 

multiple kernel approach using GWAS results as a reference to construct covariance matrices. 501 

GWAS results have been incorporated in genome-wide prediction models to increase predictive 502 

accuracy through de-novo GWAS or using previously published GWAS results (Zhang et al., 503 

2014; Spindel et al., 2016).  504 

In our study, to avoid a correlation effect across covariance matrices we partitioned SNP markers 505 

into three sets: markers on GWAS QTLs chromosomes (chr 4 and 11) and markers on rest of the 506 

genome to built genomic relationship matrices (Gchr4,Gchr11,Gallchr-[4,11]).Remarkably, the 507 

predictive accuracy of each kernel modeled the genetic architecture found though GWA 508 

analyses. Our GWAS and GS results indicate that resistance to CBSD root necrosis severity is 509 

polygenic in nature, which is in accordance to Kawuki et al.’s (2016) results.  510 

Our results suggest that non-additive effects are likely to play a role shaping CBSD resistance 511 

particularly root necrosis. This conclusion derives from GS results using Random Forest and 512 

RKHS, which gave the highest predictive accuracies, and from the observed differences in broad 513 

sense and narrow sense heritability values. 514 

CBSD is a disease that has devastating consequences in cassava production and poses a risk 515 

particularly to countries in Central and West Africa where CBSD is not currently present. Our 516 
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study provides, through GWAS and genomic prediction, an insight into the genetic regulation of 517 

CBSD severity in leaves and roots. Although we were able to identify a candidate NBS-LRR 518 

gene on chromosome 11, the function of this gene in CBSD resistance requires further validation 519 

and more importantly, there is a risk that this gene might not be a source of durable resistance to 520 

CBSVs. Within this context, genomic selection arises as a promising tool that can accelerate 521 

breeding, though the average predictive accuracy is lower than CMD, this is highly variable 522 

across locations and the breeding panel evaluated. Further work will require screening of large 523 

diversity panels in multiple environments, identification of QTLs specific to viral strains and the 524 

introgression of genomic regions conferring resistance to CBSD from wild relatives and Latin 525 

American accessions. 526 

 527 

 528 

 529 

  530 
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Figures and supplementary legends 722 

Figure 1. Principal components analysis of panel 1 and panel 2 clones. The top two panels and the 723 
lower left panel show the distribution of clones in PC1-PC3. The lower right panel shows the variance 724 
explained by the first ten principal components. Green color shows the distribution of panel 1 clones and 725 
the orange color shows the distribution of panel 2 clones. 726 

 727 
Figure 2. GWAS results for CBSD severity .Analysis was performed with a multilocation combined 728 
dataset of panels 1 and 2.(a) scoring 3 MAP (b) 6 MAP and (c) root necrosis severity. Red line indicates 729 
Bonferroni threshold.  730 
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Figure 3. Chromosome 11 region with QTL for CBSD severity (a) 3 MAP (yellow), 6 MAP and root 732 
necrosis (blue).Outer ring black lines indicate clusters of NBS-LRR genes (Lozano et al 2015). 733 
Intermediate ring indicate regions homozygous (G/G)(blue) or heterozygous (G/E)(green) for M. glaziovii 734 
allele and the proportion that were homozygous for the M. esculenta allele (E/E)(orange) on seven clones. 735 
(b) LD association plot, 2 Mb region in chromosome 11, top SNP indicated in red, annotated genes within 736 
that region are indicated in the panel below.  737 
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Figure 4. Chromosome 4 region with QTL for CBSD severity with introgression segment (a) 3 MAP 746 
(yellow), 6 MAP and root necrosis (blue). Outer ring black lines indicate clusters of NBS-LRR genes 747 
(Lozano et al 2015). Intermediate ring indicate regions homozygous (G/G)(blue) or heterozygous 748 
(G/E)(green) for M. glaziovii allele and the proportion that were homozygous for the M. esculenta allele 749 
(E/E)(orange) on seven clones.  (b) Introgression region on chromosome 4 (colors description) are the 750 
same as the aforementioned),Nam: Namikonga,w: wild M. glaziovii, cm: CM330645,Alb:Albert, P1: 751 
panel 1 clones and P2 panel 2 clones. 752 
 753 
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Figure 5. Cross validation results for CBSD severity. 3 MAP (CBSD3S), 6 MAP (CBSD6S) and Root 758 
necrosis (CBSDRS). x-axis : predictive accuracy and y-axis : genomic prediction model.  759 
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Table 1. Broad sense heritability (H2)  and SNP heritability (h2) of foliar and root CBSD severity. 776 
Broad-sense heritability (H2) values were calculated using the variance components obtained from a 777 
model fitted using the lmer function from the lme4 R package. SNP heritability values were calculated 778 
using the variance components obtained obtained from a model fitted using the EMMREML R package. 779 
Heritability values estimates were calculated for sets 1 and 2 separately. 780 

 781 
Trait H2 h2 LOCATION-YEAR Panel 

CBSD3S 0.11 0.32 NAMULONGE 1 

CBSD6S 0.31 0.39 NAMULONGE 1 

CBSDRS 0.55 0.59 NAMULONGE 1 

CBSD3S 0.43 0.48 NGETTA 1 

CBSD6S 0.51 0.53 NGETTA 1 

CBSDRS 0.73 0.72 NGETTA 1 

CBSD3S 0.27 0.29 KASESE 1 

CBSD6S 0.21 0.27 KASESE 1 

CBSDRS 0.39 0.47 KASESE 1 

CBSD3S 0.61 0.17 MULTI LOCATION 1 

CBSD6S 0.35 0.31 MULTI LOCATION 1 

CBSDRS 0.37 0.34 MULTI LOCATION 1 

CBSD3S 0.60 0.37 NAMULONGE 2 

CBSD6S 0.60 0.32 NAMULONGE 2 

CBSD9S 0.68 0.34 NAMULONGE 2 

CBSDRS 0.24 0.53 NAMULONGE 2 

CBSD3S 0.63 0.28 SERERE 2 

CBSD6S 0.60 0.28 SERERE 2 

CBSD9S 0.73 0.34 SERERE 2 

CBSDRS 0.15 0.48 SERERE 2 

CBSD3S 0.56 0.27 KAMULI 2 

CBSD6S 0.62 0.29 KAMULI 2 

CBSD9S 0.75 0.34 KAMULI 2 

CBSDRS 0.28 0.44 KAMULI 2 

CBSD3S 0.42 0.28 MULTI LOCATION 2 

CBSD6S 0.47 0.34 MULTI LOCATION 2 

CBSD9S 0.56 0.38 MULTI LOCATION 2 

CBSDRS 0.25 0.33 MULTI LOCATION 2 

 782 
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Supplementary figure 1. Cassava brown streak disease symptoms on leaves and roots of 785 

sampled plants; Severity Score from 1 (no visible symptoms) to 5 (severely disease plants. (a) 786 

leaf veins chlorosis severity progresses with severity score, (b) dark brown necrotic areas within 787 

storage roots severity scale. 788 

 789 

Supplementary figure 2.Panel 1 phenotypic distribution of CBSD severity traits. 790 

( A) deregressed BLUPs distribution of CBSD 3 months foliar severity, (B) deregressed BLUPs  791 

distribution of CBSD 6 months foliar severity, (C) deregressed BLUPs distribution of CBSD 12 792 

months root severity 793 

 794 

Supplementary figure 3.Panel 2 phenotypic distribution of CBSD severity traits. 795 

(A) deregressed BLUPs distribution of CBSD 3 months foliar severity, (B) deregressed BLUPs 796 

distribution of CBSD 6 months foliar severity, (C)  deregressed BLUPs distribution of CBSD 9 797 

months foliar severity, (D)  deregressed BLUPs distribution of CBSD 12 months root severity 798 

 799 

Supplementary figure 4. Correlation plots between de-regressed BLUPs for foliar and root 800 

symptoms. De-regressed BLUPs were calculated for different locations in panel 1 and panel 2.  801 

 802 

Supplementary figure 5. GWAS results for CBSD severity in panel 1 measure at Kasese.(a) 803 

scoring CBSD 3 months foliar severity (b) 6 CBSD 6 months foliar severity and (c) root necrosis 804 

severity. Red line Bonferroni correction. Blue line log10 P-value = 3.8. 805 

 806 

Supplementary figure 6. GWAS results for CBSD severity in panel 1 measure at Ngetta.(a) 807 

scoring CBSD 3 months foliar severity (b) 6 CBSD 6 months foliar severity and (c) root necrosis 808 

severity . Red line Bonferroni correction. Blue line log10 P-value = 3.8. 809 

 810 

Supplementary figure 7. GWAS results for CBSD severity in panel 1 measure at Namulonge. 811 

(a) scoring CBSD 3 months foliar severity (b) 6 CBSD 6 months foliar severity and (c) root 812 

necrosis severity. Red line Bonferroni correction. Blue line log10 P-value = 3.8. 813 
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 Supplementary figure 8. GWAS results for CBSD severity in with a multilocation dataset of 814 

panel 1 (a) scoring CBSD 3 months foliar severity (b) 6 CBSD 6 months foliar severity and (c) 815 

root necrosis severity. Red line Bonferroni correction. Blue line log10 P-value = 3.8. 816 

  817 

Supplementary figure 9. GWAS results for CBSD severity in panel 2 measure at Kamuli. (a) 818 

scoring CBSD 3 months foliar severity (b) 6 CBSD 6 months foliar severity (c) 9 CBSD 9 819 

months foliar and (c) root necrosis severity. Red line Bonferroni correction. Blue line log10 P-820 

value = 3.8.  821 

 822 

Supplementary figure 10. GWAS results for CBSD severity in panel 2 measure at Namulonge. 823 

(a) Scoring CBSD 3 months foliar severity (b) 6 CBSD 6 months foliar severity (c) 9 CBSD 9 824 

months foliar and (c) root necrosis severity. Red line Bonferroni correction. Blue line log10 P-825 

value = 3.8. 826 

 827 

Supplementary figure 11. GWAS results for CBSD severity in panel 2 at Serere. (a) Scoring 828 

CBSD 3 months foliar severity (b) 6 CBSD 6 months foliar severity (c) 9 CBSD 9 months foliar 829 

and (c) root necrosis severity. Red line Bonferroni correction. Blue line log10 P-value = 3.8. 830 

 831 

Supplementary figure 12. GWAS results for CBSD severity in with a multilocation dataset of 832 

panel 2 (a) scoring CBSD 3 months foliar severity (b) 6 CBSD 6 months foliar severity (c) 9 833 

CBSD 9 months foliar and (c) root necrosis severity. Red line Bonferroni correction. Blue line 834 

log10 P-value = 3.8. 835 

 836 

Supplementary figure 13. local LD in chromosome 4. Plot of the mean LD score for each 837 

marker .With a smooth line representing a relative measure of the local LD in chromosome 4. 838 

Dots are colored with the -log10 P-value for the association test for CBSD severity six months 839 

after planting.  840 
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Supplementary figure 14. Introgressions segment detection. For each clone of the two GWAS 843 

panels we calculated the proportion of genotypes that were homozygous (G/G) or heterozygous 844 

(G/E) for M. glaziovii allele and the proportion that were homozygous for the M. esculenta allele 845 

(E/E). 846 

 847 

Supplementary figure 15. (a) GWAS results for 6MAP CBSD severity panels 1 and 2 (b) 848 

GWAS Results after correction including markers in chromosome 12 as a covariate. 849 

 850 

Supplementary figure 16. Multi-kernel GBLUP approach by fitting three kernels constructed 851 

with non-overlapping SNPs (MAF> 0.01) from chromosomes 4, 11 and SNPs from the other 852 

chromosomes. Crossvalidation GS  predictive accuracies results for CBSD severity were 853 

calculated using the multilocation dataset of  the combined panels. Scoring CBSD 3 months 854 

foliar severity (CBSD3S),CBSD 6 months foliar severity (CBSD6S) and root necrosis severity 855 

(CBSDRS). 856 

 857 

Supplementary Table 1.Pedigree information from GWAS panels 1 and 2. Details are shown 858 

on the parental lines per clone and selected traits that came from the maternal side. 859 

 860 

Supplementary table 2. Correlation values across locations in panel 1 and panel 2. (A) 861 

Correlation of deregressed BLUPs across locations within traits in panel 1 measured in three 862 

locations.(B) Correlation of deregressed BLUPs across locations within traits in panel 2 863 

measured in three locations 864 

 865 

Supplementary table 3. Correlation values across locations and traits in panel 1 and panel 2. 866 

(A) Correlation of deregressed BLUPs across locations and traits in panel 1 measured in three 867 

locations.(B) Correlation of deregressed BLUPs across locations and four traits in panel 2 868 

measured in three locations 869 

 870 
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Supplementary table 4. Panel 1 and 2 and combined panels GWAS results. Gene annotation is 871 

only shown for significant SNPs. 872 

 873 

Supplementary table 5. Explained variance of phenotypic traits. Details are shown of the 874 

reference SNP, the -log10(pval)(score),chromosome and explained variance. 875 

 876 

Supplementary table 6.Genomic prediction accuracy values. (A) Cross validation results using 877 

7 GS models for CBSD severity prediction of 3 MAP CBSD3S, 6 MAP CBSD6S and Root 878 

necrosis (CBSDRS) (B) Multi-kernel GBLUP crossvalidation by fitting three kernels constructed 879 

with non-overlapping SNPs (MAF> 0.01) from chromosomes 4, 11 and SNPs from the other 880 

chromosomes. RKHS = Reproducing kernel Hilbert spaces regression, Total accuracy is the 881 

accuracy obtained by following the GBLUP multikernel approach. 882 
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