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Abstract 1 

Phased, secondary siRNAs (phasiRNAs) are found widely in plants, from protein-coding 2 

transcripts and long, non-coding RNAs; animal piRNAs are also phased. Integrated methods 3 

characterizing “PHAS” loci are unavailable, and existing methods are quite limited and 4 

inefficient in handling large volumes of sequencing data. The PHASIS suite described here 5 

provides complete tools for the computational characterization of PHAS loci, with an emphasis 6 

on plants, in which these loci are numerous. Benchmarked comparisons demonstrate that 7 

PHASIS is sensitive, highly scalable and fast. Importantly, PHASIS eliminates the requirement of 8 

a sequenced genome and PARE/degradome data for discovery of phasiRNAs and their miRNA 9 

triggers. 10 

 11 

Background 12 

Phased siRNAs (phasiRNAs) are a major subclass of secondary siRNAs, found extensively in 13 

plants [1]. The defining characteristic of phasiRNAs is the DCL-catalyzed processing of double-14 

stranded RNA (dsRNA) precursors, starting from a precisely delimited 5’ terminus and 15 

generating regularly-spaced 21- or 24-nt populations of siRNAs [2]. PhasiRNAs can be further 16 

subdivided into three main categories based on their precursor mRNAs and spatiotemporal 17 

patterns of accumulation: i) The first phasiRNAs identified, so-called trans-acting siRNAs 18 

(tasiRNAs) generated from a small set of long, non-coding mRNAs (lncRNAs) referred to as TAS 19 

genes [3–5]; ii) phasiRNAs from protein-coding transcripts, such as NB-LRRs or PPRs  [6]; and iii) 20 

two classes, 21-nt premeiotic or 24-nt meiotic phasiRNAs, highly enriched in reproductive 21 

tissues and also produced from lncRNAs, reported in grasses, but with no as-yet reported 22 

targets [2,7]. Thus, the umbrella name of “phasiRNAs” refers simply to their biogenesis and not 23 

their function (unlike the subset of tasiRNAs) because many phasiRNAs lack validated targets, 24 

either in cis or trans [6,8].  25 

 26 

The biogenesis of phasiRNAs in plants is dependent on a triggering mechanism that sets the 27 

phase of the resulting secondary siRNAs, generated from a specific nucleotide in the mRNA 28 

precursor. To date, the only described type of trigger is a miRNA, and a breakthrough in our 29 
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understanding of plant miRNA function came with the observation that all or nearly all 22-nt 30 

miRNAs trigger phasiRNA biogenesis from their targets [9,10]. These miRNA triggers function 31 

via the ARGONAUTE (AGO) proteins into which they are loaded, and since phasiRNA biogenesis 32 

requires both SGS3 and RDR6 [3,4], there may be interactions between these proteins, 33 

ultimately recruiting DCL4 or DCL5. SGS3 and RDR6 proteins function in the cytoplasm, forming 34 

siRNA bodies [11]. Recent work has identified membrane-bound polysomes in the rough ER as 35 

the site where miRNA triggers of phasiRNAs accumulate, leading to phasiRNA biogenesis [12]. 36 

miRNA triggers are thus an important component in the analysis of plant phasiRNAs, and the 37 

identification of specific triggers with specific PHAS targets is an integral part of phasiRNA 38 

analysis. 39 

 40 

Since the discovery of phasiRNAs in 2005, TAS genes have been characterized in detail, 41 

especially the eight loci in Arabidopsis but these represent only a small fraction of the PHAS 42 

repertoire found in many plant genomes. In other eudicot genomes, there are hundreds of 43 

protein-coding genes that are targeted by diverse miRNAs, many of which are lineage-specific 44 

[8,13–15].  Grass genomes contain even more PHAS loci. For example, loci yielding reproductive 45 

phasiRNAs number in the hundreds to thousands in maize [7] and rice [16], and have yet to be 46 

characterized broadly in monocots or other lineages outside of the grasses. These include the 47 

premeiotic PHAS loci that are targeted by miR2118 family members, triggering production of 48 

21-nt phasiRNAs accumulating in early anther development, and the 24-PHAS loci that are 49 

targeted by miR2275 family members, triggering production of 24-nt phasiRNAs, accumulating 50 

in anthers during meiosis [7]. Analysis of the spruce genome, a gymnosperm that speciated 51 

~325 million years before the evolution of monocots and eudicots, identified over 2000 PHAS 52 

loci mostly from protein-coding genes, including over 750 NB-LRRs [17]. Thus, plant PHAS loci 53 

are widely prevalent and highly variable from genome to genome both in the total number and 54 

in terms of the types of loci that generate them. Characterization of PHAS loci from each 55 

sequenced plant genome will provide insights into this unusual type of post-transcriptional 56 

control, its evolution, and diversification.  57 

 58 
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Tools for the de novo identification of PHAS genes (or loci) to date have required an assembled 59 

genome for their discovery and additional experimental data such as PARE [18], degradome 60 

[19] or GMUCT [20] libraries to identify their miRNA triggers. Integrated tools for discovery and 61 

in-depth characterization of PHAS genes have not yet been developed, and the existing options 62 

are both limited in number and function. These algorithmic limitations and bioinformatic gaps 63 

along with the increasing depth and volume of sequencing data necessitates scalable, fast and 64 

advanced methods to study this relatively new class of secondary siRNAs for which parallels 65 

exist between plants and animals [2,13,21,22]. Motivated by this need for software, the 66 

prospect of discovering novel phasiRNA modules, the emerging importance of phasiRNAs, and 67 

the explosion in the number of plant species that are being investigated for small RNAs (sRNAs), 68 

we developed a new computational suite that we call “PHASIS”. The name “PHASIS” is from the 69 

ancient Greek city of Phasis, a destination for Jason and the Argonauts according to Greek 70 

mythology; we selected the name as it links the colloquialism “phasis” as short for phasiRNAs, 71 

with the Argonaut proteins that bind them. This set of tools facilitates the discovery, 72 

quantification, annotation, comparison of PHAS loci (and precursors) and identification of their 73 

miRNA triggers, from a few to hundreds of sRNA libraries in a single run. PHASIS not only 74 

addresses crucial bioinformatic gaps while providing an integrated and flexible workflow for the 75 

comprehensive study of PHAS loci, but it is also fast and sensitive. 76 

 77 

Results 78 

Assessment and benchmarking 79 

We first sought to assess the sensitivity and specificity for PHASIS; ideally, this would be done 80 

with a gold-standard reference set of experimentally-validated PHAS loci in plants. While the 81 

definition of “gold standard” is as-yet unclear for PHAS loci, the recently-described maize loci 82 

are among the most exhaustively characterized [7], and thus we used these data below. We 83 

also compared PHASIS predictions and performance with PhaseTank [23]. Currently, two 84 

computational tools are capable of de novo discovery of PHAS loci – PhaseTank [23] and 85 

ShortStack [24]. PhaseTank is exclusively built for predicting PHAS loci in plants, while 86 

ShortStack aims to annotate and quantify diverse sRNA-associated genes (or clusters), and it’s 87 
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typically deployed for characterizing miRNAs in plants and animals [24]. A direct comparison 88 

between PHASIS and ShortStack is not possible due to significant differences in their scope, 89 

utility and workflow (Table 1). So, for comparative benchmarking, we chose PhaseTank, mainly 90 

because of matching objectives and its published superiority over ShortStack in predicting PHAS 91 

loci [23]. Benchmarking was performed across five plant species – Arabidopsis thaliana 92 

(Arabidopsis), Brachypodium distachyon (Brachypodium), Oryza sativa (rice), Zea mays (maize) 93 

and Lilium maculatum (Lilium). These species were selected based on availability of high-quality 94 

nuclear genome assemblies or anther transcriptomes (in case of Lilium – generated for a 95 

different study but included here), and deep sRNA libraries from premeiotic and meiotic anther 96 

or from at least one of these two stages that should contain many reproductive phasiRNAs 97 

(Supplementary Table 1). Arabidopsis was included because it was originally used in PhaseTank 98 

benchmarking [23]. For PhaseTank, the reference genome, transcriptome and sRNA libraries 99 

were converted to the appropriate formats, and the time for file conversion process, although 100 

complex and lengthy, was not added in the PhaseTank runtimes. PHASIS and PhaseTank use 101 

inherently different scoring schemas; because of this difference, we used a conservative p-value 102 

(1e-05) for PHASIS and the recommended score (i.e. 15) for PhaseTank.  All benchmarks were 103 

performed on a 28 core, 2.42 GHz machine with 512 GB of RAM, running CentOS 6.6. 104 

 105 

PHAS prediction and runtime performance 106 

We first compared PHAS loci and transcript predictions from PHASIS and PhaseTank. Since 107 

Arabidopsis lacks 24-PHAS loci (none have ever been published, nor have we found any), and 108 

the genome encodes just eight TAS genes, these were excluded from quantification of 109 

prediction and speed comparisons. PHASIS demonstrated an edge over PhaseTank in PHAS 110 

predictions: in genomic analyses, it predicted up to 2.5 times more PHAS loci, ranging from 73 111 

24-PHAS (145% gain) to 380 21-PHAS (24% gain) loci in Brachypodium and rice respectively 112 

(Table 2). The biggest gain was observed in an analysis of the Lilium transcriptome, in which 113 

PHASIS predicted ~10 times (n=408) more 21-PHAS and 18 times (n=9065) more 24-PHAS 114 

precursor transcripts compared to PhaseTank (Figure 2). The specific data format requirements 115 

of PhaseTank made it difficult to accurately determine the set of common PHAS predictions 116 
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(the ‘common PHAS pool’, hereafter) for transcriptome level analysis, however, by matching 117 

the sequences we determined that PHASIS captured at least 66% of 21-PHAS and 99% of 24-118 

PHAS predictions from PhaseTank. For genomic analyses, PHASIS captured >80% of PhaseTank 119 

predictions, except in rice and Arabidopsis in which PhaseTank predicted additional 24-PHAS 120 

loci (Table 2).  121 

 122 

The additional 24-PHAS loci predicted by PhaseTank in rice and Arabidopsis all had significantly 123 

lower quality scores (from PhaseTank) compared to the common PHAS pool, as did the 124 

PhaseTank-exclusive 21- and 24-PHAS predictions from other species. The average quality 125 

scores computed for each species were 1.7 to 7.8 times lower compared to the common PHAS 126 

pool (p-value < 0.001, t-test) (Supplementary Table 2); thus, the predictions exclusive to 127 

PhaseTank are likely unphased and a misinterpretation of loci yielding profuse heterochromatic 128 

siRNAs (hc-siRNAs). This may explain the 24-PHAS predictions in Arabidopsis by PhaseTank 129 

(Figure 2b and Table 2), as 24-nt phasiRNAs have not been reported in Arabidopsis despite 130 

exhaustive analyses [1]. Nonetheless, considering that these PhaseTank predictions could 131 

represent weak PHAS loci, we attempted to capture them by running PHASIS at lower p-value 132 

cutoff (1e-03) but still failed to detect >96% of them. Manual investigation of a portion of these 133 

PHAS loci using our custom sRNA browser, which uses a slightly different PHAS scoring schema 134 

[25], revealed that these are indeed either unphased or show typical characteristics of hc-siRNA 135 

loci such as similarity to transposons, and we concluded that these are false positives predicted 136 

by PhaseTank (Supplementary Figure 1A). However, we could detect 70% (n=67) of the total 137 

24-PHAS PhaseTank predictions in rice at the lower p-value cutoff (1e-03) of PHASIS, and a 138 

majority of these showed weak phasing patterns (Supplementary Figure 1B), suggesting that 139 

PHASIS missed these at the selected cutoff. However, the count of 24-PHAS loci predicted in 140 

rice by both tools in these libraries from a recent study [16], was lower than earlier estimates 141 

[2], indicating that the libraries likely missed meiotic peak of accumulation.  These contrasting 142 

observations – Arabidopsis, in which PHASIS correctly excluded 24-PHAS predictions even at 143 

relaxed cutoff, versus rice, in which it correctly captured 70% of weakly phased 24-PHAS loci – 144 

highlights differences in scoring in the two tools, with the default PHASIS p-value cutoff (1e-05) 145 
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more stringent than that of PhaseTank (score=15). Using a lower p-value cutoff for PHASIS 146 

could further increase the gain in PHAS predictions over PhaseTank without adding much noise. 147 

 148 

We manually investigated 21- and 24-PHAS predictions that are exclusive to PHASIS, using our 149 

public, custom genome browser (https://mpss.danforthcenter.org/). The majority of these 150 

displayed characteristics matching those of the canonical 21- and 24-PHAS loci reported in 151 

maize [7] (Supplementary Figure 2). Moreover, a major proportion of these PHASIS-exclusive 152 

predictions had PARE-validated miRNA triggers, matching to the earlier reports from maize, rice 153 

and Brachypodium [2,7,13]. Next, we compared prediction runtimes of PHASIS and PhaseTank 154 

from genome- and transcriptome-level experiments. To get the correct runtimes for both tools, 155 

we excluded the execution time for a common step performed by an external tool (Bowtie, 156 

version 1) that prepares the index for the reference genome or transcriptome. For genome-157 

level experiments, PHASIS displayed a minimum speed gain of 3x in Arabidopsis and rice and a 158 

maximum speed gain of 7x in maize (Figure 3). In transcriptome-level experiments, both tools 159 

took almost equal time (Figure 3). However, PHASIS yielded 10x (n=408) to 17x (n=9065) more 160 

PHAS predictions for 21- and 24-PHAS loci, respectively (Table 2 and Supplementary Figure 3), 161 

compared to PhaseTank, which means that PHASIS processed a high number of PHAS 162 

transcripts in the same runtime. Moreover, the time and effort required to convert the 163 

reference genome as well as the sRNA libraries to meet PhaseTank input requirements were 164 

not included in these runtime comparisons. Lastly, it should be noted that PHASIS takes 165 

significantly less time for any subsequent analyses in these species because of its unique ability 166 

to systematically store ancillary data in the first run, check data integrity and compatibility with 167 

parameters for subsequent runs, and avoid redoing the slowest steps, such as reference pre-168 

processing, index preparation, etc.  169 

 170 

Comparison of PHASIS predictions with manually-curated data  171 

We next wanted to address how well the predictions from PHASIS compare with a set of 172 

manually-curated PHAS loci. We and collaborators curated a set of 21- and 24-PHAS (n= 463 173 

and 176 loci from precisely-staged, premeiotic and meiotic maize anthers [7]. This curated set 174 
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was prepared by first combining all libraries from the sampled premeiotic and meiotic stages 175 

into a single file, followed by genome wide scans to identify phasiRNA generating loci using a 176 

score-based approach [5] and finally curating each PHAS locus to exclude those that overlap 177 

with repeat-associated regions or display sRNA distribution atypical of hc-siRNA generating loci 178 

[7]. PHASIS processes each library separately mainly to a) detect phased patterns independently 179 

in at least one of the input sRNA libraries, b) minimize any noise that could be added by 180 

combining sRNAs from multiple stages, tissues or treatments, and c) infer the correct 5’-end of 181 

PHAS loci by collating data from different libraries. Therefore, unlike the original analysis, we 182 

did not combine the 32 libraries (see Supplementary Table 1) for predictions by PHASIS. 183 

Furthermore, to emulate ‘real world’ conditions in which PHASIS would be used by non-experts, 184 

we did not provide a confidence cutoff - i.e. PHASIS was run in the default mode. Of the 185 

manually-curated 463 21-PHAS and 176 24-PHAS loci, PHASIS captured 89.0% (n=411) and 186 

85.79% (n=151) (Supplementary Table 5). The majority of those missed either lacked 187 

continuous phased positions or had a very low abundance across all sRNA libraries, and some 188 

had a single sRNA read accounting for the major proportion (>90%) of the abundance at the 189 

PHAS locus. The average abundance of siRNAs in the ‘missed’ 21- and 24-PHAS set was ~12- and 190 

252-times lower compared to the common pool (p < 1.02e-09), supporting the observation that 191 

those missed by PHASIS were weakly phased loci; a portion of these could be captured with a 192 

relaxed cutoff. Nonetheless, these results demonstrate that PHASIS predictions are largely 193 

consistent with the manually-curated data, and for most studies, the use of PHASIS may 194 

ameliorate the need to manually curate PHAS locus predictions, an otherwise complex and 195 

cumbersome task especially when PHAS loci number in the hundreds to thousands, as reported 196 

in many plant genomes [2,7,8,13,14,17]. 197 

 198 

Trigger prediction and runtime performance 199 

The identification of the miRNA triggers of PHAS loci is important for understanding their 200 

potential roles, classification and for discovery of secondary siRNA cascades. In addition, a set 201 

of PHAS loci or transcripts when combined with the trigger identity may serve as a gold-202 

standard reference set for downstream experimental and bioinformatics studies. Given the 203 
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importance of trigger identification, we compared the trigger prediction performance of PHASIS 204 

in ‘validation’ mode with PhaseTank. The PHASIS ‘validation’ mode will identify triggers for 205 

PHAS loci or transcripts using experimental data such as PARE, degradome or GMUCT libraries 206 

(‘PARE’, henceforth) [18–20]. PhaseTank by default predicts triggers in ‘validation’ mode, i.e. 207 

experimental data is required. Since PHASIS predicted more PHAS loci compared to PhaseTank, 208 

the number of PHAS loci (and transcripts) with the predicted triggers by PHASIS was higher too. 209 

So, for a fair comparison, we used only the common pool of PHAS loci to evaluate the trigger 210 

prediction performances. PHASIS displayed a gain of up to 76.0% in predicted triggers, except 211 

for 21-PHAS loci in Arabidopsis (Figure 2A and B), with a minimum accuracy of 96.0% for 24-212 

PHAS maize loci and maximum accuracy of 99.5% in Brachypodium 21-PHAS loci 213 

(Supplementary Table 3). This accuracy was computed as the proportion of triggers (out of the 214 

total) that match to known triggers of phasiRNAs and tasiRNAs described in earlier studies 215 

[2,5,6,8,25–27]. These estimates of accuracy are likely conservative, given that there might be a 216 

few new and unknown triggers that we counted as false positives in our accuracy 217 

computations. We excluded rice 24-PHAS loci from our comparisons because both tools failed 218 

to report triggers for these loci, likely due to sRNA libraries that were not precisely staged 219 

relative to the accumulation of 24-nt phasiRNAs and thereby making it difficult to capture the 5’ 220 

and 3’ ends of PHAS loci – information crucial to the identification of correct triggers. Lilium 21- 221 

and 24-PHAS transcripts were also excluded from the comparisons because of a lack of PARE 222 

data from the corresponding anther stages, data required by PhaseTank to predict triggers. 223 

Likewise, Arabidopsis 24-PHAS couldn’t be included in our comparison as PhaseTank predicted 224 

loci (n=146) were false positives, and there were no overlapping loci with PHASIS. 225 

 226 

We noticed a decline in number of predicted triggers by PHASIS for 21-PHAS loci in Arabidopsis, 227 

compared to those predicted by PhaseTank (Figure 2A). This decline in predicted triggers was 228 

traced to seven phased loci corresponding to the pentatricopeptide repeat (PPR) gene family, 229 

with phasiRNAs triggered by miR161. We found trigger sites predicted by PhaseTank for five of 230 

these loci, located 214 nt to 310 nt from the first or last phased cycle of the PHAS loci, towards 231 

their middle (Supplementary Table 4). Since phastrigs, the trigger discovery tool of PHASIS, is 232 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 3, 2017. ; https://doi.org/10.1101/158832doi: bioRxiv preprint 

https://doi.org/10.1101/158832
http://creativecommons.org/licenses/by-nd/4.0/


9 

built with the aim to eliminate the need for experimental data and because trigger sites are 233 

expected to overlap with 5’ or 3’ ends of the phased region, it uses a narrow search space at 234 

the 5’ and 3’ ends to search for triggers. Hence, these miR161 target sites were missed by 235 

PHASIS. In phastrigs, the search space to identify triggers is defined by the number of phased 236 

positions (PHAS-index) on either side of 5’ and 3’ ends of phased regions, and by default PHAS-237 

index is set to ± 3 positions for both ends. The PHAS-index setting to expand or the narrow 238 

search space for triggers is user tunable and can be adjusted to capture such cases. 239 

Nonetheless, these 21-PHAS loci from Arabidopsis support our estimates that trigger 240 

identification by phastrigs is conservative, and relaxing the phastrigs search parameters could 241 

further increase the gain in predicted triggers compared to PhaseTank. 242 

 243 

Identifying PHAS triggers without additional experimental data 244 

We next evaluated the performance of PHASIS in trigger ‘prediction’ mode by comparing it with 245 

PhaseTank and PHASIS in the ‘validation’ mode. We define PHASIS ‘prediction’ mode as an 246 

analysis to predict triggers for PHAS loci or transcripts without any supporting experimental 247 

data such as PARE, degradome or GMUCT libraries. Lilium was excluded from the comparison of 248 

predicted triggers due to the lack of PARE data, which is compulsory for PhaseTank to predict 249 

triggers and required by PHASIS in ‘validation’ mode. Also, for reasons mentioned above, 24-250 

PHAS loci from Arabidopsis and rice were excluded from the comparisons. PHASIS displayed a 251 

minimum gain of 40.3% and maximum gain of 178.3% over PhaseTank in predicting triggers for 252 

21-PHAS and 24-PHAS loci from Brachypodium, respectively (Table 2 and Figure 2). The gain in 253 

the number of triggers ranged from a minimum of 35 for maize 24-PHAS loci to a maximum of 254 

611 for rice 21-PHAS loci. In addition to the gain in trigger prediction, PHASIS also displayed 255 

significant accuracy in prediction mode, with a minimum accuracy of 89.9% in predicting 256 

triggers for 24-PHAS loci from maize and maximum accuracy of 99.9% in the case of Lilium 24-257 

PHAS precursor transcripts, however, with an exception for Lilium 21-PHAS triggers. The 258 

accuracy of predicted triggers of Lilium 21-PHAS loci was significantly lower (43.9%) compared 259 

to the other species (Supplementary Table 2). For Lilium, we used miRNAs from well-260 

characterized monocots like rice and maize because a complete set of miRNAs were not 261 
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available due to the absence of a sequenced genome. Surprisingly, we found that for Lilium 21-262 

PHAS transcripts a majority of triggers corresponded to miR2275 instead of miR2118; this 263 

observation was puzzling because miR2275 is known to trigger 24-nt phasiRNAs in the grasses 264 

[2,7,13], and this was the basis for the low recorded accuracy in predicting Lilium 21-PHAS 265 

triggers. We did not further investigate the miR2275-triggered 21-PHAS transcripts. We also 266 

noticed that the proportion of 21- and 24-PHAS precursors for which triggers could be 267 

identified in Lilium, 18.1% and 25.9% respectively (Table 2 and Figure 2), was substantially 268 

lower compared to the overall average of 73.8% in other species for which genomic analysis 269 

was performed. Plant PHAS precursor transcripts are typically cleaved by the miRNA trigger, 270 

converted to dsRNA by an RNA-dependent RNA polymerase, and then successively diced by a 271 

Dicer enzyme. Since no data on transcriptional rate, stability and half-life of phasiRNA 272 

precursors are available, we speculated that a portion of the Lilium PHAS precursor transcripts 273 

were shortened by processing from the 5’ end, removing the trigger target sites. Identifying 274 

triggers from such “processed” precursor transcripts is not possible because the P1 site 275 

corresponding to the first phasiRNA (at the 5’ terminus) could be missing from the transcript. In 276 

addition, the presence of already-processed mRNAs will confound the de novo assembly of 277 

precursor transcripts from short-reads. 278 

 279 

To test whether the low yield of triggers by phastrigs resulted from our use of processed 280 

precursor transcripts and not a technical shortcoming of PHASIS, we generated Single Molecule 281 

Real Time (SMRT) PacBio sequencing data from Lilium anthers 4 mm to 6 mm in length. These 282 

sizes represented premeiotic and meiotic stages of anther development (see supplementary 283 

methods) and were selected based on the availability of the samples. Capturing PHAS 284 

precursors is complex, not just because these are targets of miRNAs presumably rapidly 285 

processed by a Dicer, but reproductive phasiRNAs are ephemeral in development and thus not 286 

easily captured [7]. SMRT-seq produced 425,897 full-length transcripts for 176,373 unique 287 

isoforms, which were pre-processed to generate 122,779 high quality (polished) transcripts. 288 

This set had 5,131 unique proteins covered by more than 80% protein length, relative to the 289 

Uniprot protein-sequence resource, thereby suggesting a reasonable assembly of the anther 290 
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transcriptome. PHASIS identified 87 21-PHAS and 175 24-PHAS precursor transcripts. This low 291 

yield of PHAS transcripts was expected, though not to such a degree, because of the 292 

combination of the following:  a) low read counts for SMRT-seq compared to the deep RNA-seq 293 

data, b) the coverage-based error correction algorithm - ‘Quiver’ implemented in the IsoSeq 294 

protocol (SMRT Analysis software version 2.3, Pacific Biosciences) which filters out transcripts 295 

with insufficient coverage, i.e. those that cannot be confidently corrected, and c) the 296 

aforementioned processive cleavage of PHAS precursors by Dicer. phastrigs could identify 297 

triggers for only 21.8% (n=19) of 21-PHAS precursors, a slight increase compared to 18.1% in 298 

the RNA-seq assembly, and these triggers included miR2275, miR2118 and miR390. This low 299 

proportion of triggers detected for 21-PHAS could result from missing the precise stage at 300 

which 21-PHAS precursors accumulate in the Lilium samples. However, phastrigs could identify 301 

triggers for 54.2% of the 24-PHAS precursors, a significant increase over the 25.9% in the RNA-302 

seq assembly, supporting our premise about the completeness of the PHAS precursor 303 

transcripts. The processed precursors were likely collapsed into the full-length or the longest 304 

transcript in SMRT-seq assembly, thereby enriching the proportion of uncleaved precursor 305 

transcripts. Hence, it should be noted that neither the precursors from neither RNA-seq nor 306 

SMRT-seq may accurately represent the true total count of PHAS loci in Lilium. 307 

 308 

Lastly, we compared runtimes for both tools for miRNA trigger prediction of PHAS loci and 309 

transcripts. PHASIS showed a minimum speed gain of 3.3x and a maximum speed gain of 12.6x 310 

over PhaseTank in ‘validation’ mode (Figure 3). In ‘prediction’ mode, PHASIS was at least 5.0x 311 

and at most 31.2x faster compared to its own ‘validation’ mode without any significant loss in 312 

accuracy (Supplementary Table 3). PhaseTank requires PARE data to predict triggers, and lacks 313 

a function equivalent to PHASIS ‘prediction’ mode, but since PHASIS, even without the 314 

additional experimental data (like PARE) displays >89.9% accuracy in trigger prediction, we 315 

decided to compare runtimes for both. PHASIS in ‘prediction’ mode displayed a minimum speed 316 

gain of 33.3x and a maximum gain of 104.3x for Arabidopsis 21-PHAS loci (Figure 3). The trigger 317 

predictions for 24-PHAS loci from Arabidopsis and rice, which displayed even higher speed 318 

gains, were excluded from the runtime comparisons due to the reasons described above. This 319 
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gain in PHAS trigger identification demonstrates the capacity of PHASIS to predict triggers 320 

without experimental data. This functionality will save time and the cost of preparing PARE 321 

libraries; it will also reduce the amount of sample required for phasiRNA analysis. Protocols for 322 

preparing PARE libraries require comparatively more input RNA relative to RNA-seq or sRNA-323 

seq [28]. 324 

 325 

Conclusions 326 

Loci generating 21- and 24-nt phasiRNAs are widely prevalent across land plants 327 

[2,5,8,14,16,17,29], varying in numbers per genome from tens to thousands, displaying diverse 328 

spatial and temporal expression patterns, and participating in an array of different functions 329 

[5,7,8,29,30]. Recently, piRNAs in Drosophila too were reported to be phased, generating 330 

‘trailer’ piRNAs in 27-nt intervals after cleavage by secondary siRNA and Zucchini-dependent 331 

processing of cleaved transcript [21,22]. Given the wide prevalence of phasiRNAs and the rate 332 

of genome sequencing, it is likely that they will be better characterized and studied in the 333 

coming years. The existing tools for computational characterization of PHAS loci or transcript 334 

are limited both in number and functionality.  335 

 336 

The PHASIS suite provides an integrated solution for the large-scale survey of tens to hundreds 337 

of sRNA libraries for the following applications: a) de novo discovery of PHAS loci and precursor 338 

transcripts, b) a summarization of PHAS loci from specific groups of sRNA libraries, c) a 339 

comparison of PHAS summaries between groups corresponding to samples from different 340 

stages, tissues and treatments, d) quantification and annotations of PHAS loci, and e) discovery 341 

of their miRNA triggers. PHASIS generates easily parsed output files for downstream 342 

bioinformatics analysis, formatted result files for immediate consumption and organized 343 

ancillary data to facilitate optimizations like a re-summarization to exclude or include libraries. 344 

 345 

More complete characterization of phasiRNAs in evolutionarily diverse plant genomes will 346 

advance our understanding of phasiRNA function and the adaptation of the pathway, and it 347 

may yet discover new classes of PHAS genes. PHASIS will thus facilitate the discovery of 348 
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phasiRNAs and their precursors, and the identification of their triggers by eliminating the 349 

requirement of a genome assembly and experimental PARE/degradome data. PHASIS offers 350 

flexibility to users to tailor analyses for their own goals and it integrates an array for functions 351 

in one package.  352 

 353 

Methods 354 

PHASIS comprises three components that together perform de novo discovery, annotation, 355 

quantification, comparison and trigger identification for PHAS loci or precursor transcripts. We 356 

chose a modular approach over the single ‘one-command’ style for the following reasons: a) to 357 

maximize the flexibility for specific data or study requirements; b) to integrate multiple, 358 

connected analyses; and, c) to reduce overall runtime by maximizing phase- and step-specific 359 

parallelization.  A description of these tools – phasdetect, phasmerge, phastrigs – in order of 360 

their utility or phases of study is provided below (see also Figure 1). PHASIS leverages the 361 

Python (v3) process-based “threading” interface to achieve efficient scalability and significantly 362 

reduce runtimes through parallel computing. 363 

 364 

phasdetect performs de novo prediction of PHAS loci or precursor transcripts using user-365 

supplied sRNA libraries along with a reference genome or transcriptome. It can efficiently 366 

process tens to hundreds of sRNA libraries in parallel, reducing runtimes. phasdetect operates 367 

via three main steps: a) first, sRNA libraries are normalized and mapped to the reference; b) 368 

second, mapped sRNA reads are scanned to identify regions rich for specific size classes, such as 369 

those generated by Dicer activity (typically 21, 22, or 24 nt in plants); and, c) finally these 370 

regions are stitched into clusters and the phasing of the small RNAs is computed as a p-value. 371 

We adopted a standard approach to compute p-values [9]. Parameters controlling these steps 372 

can be modified by users via the setting file “phasis.set”, including values for phase, mindepth 373 

and clustbuffer; these refer to the phasing periodicity, minimum sRNA abundance to be 374 

included for p-value computation, and the minimum distance separating two clusters. These 375 

parameters are explained in detail on the PHASIS wiki page 376 

(https://github.com/atulkakrana/PHASIS/wiki/). The output for phasdetect includes library-377 
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specific list of PHAS loci (or transcripts) at several different confidence levels plus ancillary data, 378 

used to reduce runtime for subsequent analyses. For example, in case of a reanalysis after 379 

adding new libraries, phasdetect checks for any changes in parameters from the earlier analysis, 380 

assesses the integrity and compatibility of the ancillary data for, and reuses existing data to 381 

avoid repetition. This ancillary data also enables an array for downstream analyses and analysis-382 

specific optimizations directly through phasdetect. 383 

 384 

phasmerge generates a summary, matches PHAS loci to annotations and performs a 385 

comparison between the PHAS summaries using the library-specific PHAS lists and ancillary 386 

data generated by phasdetect. These operations are selected by using the -mode option with 387 

the merge (default) or compare values. The merge mode prepares a PHAS summary for the 388 

libraries of interest, or for libraries that belong to different groups based on sample stages, 389 

tissues or treatments. The analysis can be tailored to meet the study requirements. For 390 

example, to maximize discovery, a user might set a lower confidence level (p-value) for 391 

summarization and consider all loci with a trigger predicted without the PARE data (identified 392 

through phastrigs) for downstream analyses. In contrast, a user motivated to maximize the 393 

quality might identify PHAS loci with the highest confidence level, followed by pruning of results 394 

with stringent quality parameters (described on the phasmerge wiki), and use PHAS loci that 395 

have PARE-supported triggers. PHAS summaries from different groups of libraries can be 396 

compared using compare mode. This is particularly useful to identify intersecting and exclusive 397 

PHAS loci between different groups of stages, tissues or treatments. In merge mode, if an 398 

additional annotation file is provided, then merged PHAS loci are matched to genome 399 

annotations so as to identify coding PHAS loci or other available annotations. This function also 400 

supports quick discovery of precursor transcripts for summarized PHAS loci when provided with 401 

a GTF file generated from mapping the transcriptome assembly to genome. Furthermore, 402 

phasmerge attempts to determine the correct 5’ terminus of PHAS loci by optimizing for the 403 

best 5’ or 3’ coordinates based on the user’s sRNA data – a crucial functionality for 404 

determination of the correct miRNA trigger. phasmerge benefits from the modular PHASIS 405 
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workflow, allowing users to optimize their results for the study which may vary in purpose, and 406 

making phasmerge independent from other tools. 407 

 408 

The phasmerge workflow has three mandatory and two optional steps: a) via merge mode, 409 

phasmerge first generates a unique list of PHAS loci (or transcripts) for each user-specified 410 

library, by selecting predictions with the highest available confidence score (lowest p-value) 411 

that pass a user-supplied p-value cutoff, after comparing predictions from all available 412 

confidence levels; b) phasmerge clusters the “best” candidate loci from specified libraries 413 

specific by the user, based on the degree of overlap in phased positions (or ‘cycles’) to select a 414 

representative locus for each cluster; finally, c) phasmerge computes library-specific 415 

abundances, a size-class ratio, the maximum to total phasiRNAs abundance ratio, and other 416 

quality information. Optional steps include d) compare mode, which first reads PHAS loci (or 417 

transcripts) from user-supplied summaries (n=2) and then identifies matching PHAS pairs based 418 

on the overlap in phased positions, to report a combined matrix including both shared and 419 

unique loci in each PHAS summary file, and e) merge mode;  when supplied with annotations, 420 

as described above, phasmerge matches a merged set of PHAS loci with genome annotations or 421 

with a genome-matched transcriptome assembly, both provided as GTF file, to report exonic or 422 

complete overlaps with annotated transcripts. This step requires prior installation of SQLite on 423 

user’s machine. phasmerge generates several reports as output, most importantly, PHAS 424 

summary for libraries of interest which includes quality parameters (see online wiki for more 425 

information), FASTA files for size-specific siRNAs and all the siRNAs from phased positions along 426 

with detailed information on phased clusters with phasiRNAs, positions, associated p-values, 427 

etc. 428 

 429 

phastrigs identifies sRNA triggers for PHAS loci and precursor transcripts using the phasmerge 430 

summaries and a user-provided list of miRNAs (or any other small RNA). It was developed with 431 

the idea to minimize the requirement of experimental PARE libraries [18–20].  However, if such 432 

data (‘PARE’, henceforth) are provided, then phastrigs reports sRNA triggers with experimental 433 

support; these may be of higher confidence for some downstream experimental analyses. 434 
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phastrigs uses an algorithm designed to be both fast and exhaustive. It uses miRferno, an 435 

exhaustive target prediction algorithm that we developed [31] to predict target sites for user-436 

supplied miRNAs. The speed and precision of phastrigs is enhanced by a scan focused on the 5’ 437 

terminus of each PHAS locus (5’-end of the first cycle, the P1 position) for the trigger site, which 438 

reduces the search space and chance of reporting false triggers. This 5’ terminus is inferred at 439 

the summarization step by phasmerge while collating data from different sRNA libraries. In the 440 

case of PHAS transcripts, only the 5’ terminus of the phased precursor is scanned, while in case 441 

of genomic PHAS loci, either the 5’ or 3’ end of the phased region is chosen, based on the 442 

strand targeted by a specific miRNA. phastrigs analysis is divided into two main steps: a) PHAS 443 

transcripts or genomic sequences are extracted, and targets for user-supplied miRNAs are 444 

predicted; b) next, a scan of phased positions located at the 5’ or 3’ termini of precursor for a 445 

target site that corresponds with the production of phasiRNAs is performed; this scan looks for 446 

target sites within ± 3 nt of the ‘PHAS index’, defined as theoretical phased positions upstream 447 

from the 5’ terminus of P1. If PARE data is supplied, then PARE-validated cleavage sites are used 448 

for trigger identification. The phastrigs report includes detailed information on miRNA-target 449 

interactions, PARE abundances at the predicted cleavage site, and the PHAS index of the 450 

predicted trigger site relative to the P1 position.  451 

 452 

Software 453 

The methods and algorithm described in this article, implemented as PHASIS suite of tools for 454 

PHAS discovery, are freely available from https://github.com/atulkakrana/PHASIS. PHASIS is 455 

released under the OSI Artistic License 2.0. Tools and Perl libraries required to use PHASIS along 456 

with the instructions to install and usage of individual tools is provided in detail in the PHASIS 457 

wiki (https://github.com/atulkakrana/PHASIS/wiki/).  458 

 459 

Abbreviations 460 

PHASIS: PHAS Inspection Suite; tasiRNAs: trans-acting siRNAs; PMC: pollen mother cells; PARE: 461 

Parallel Analysis of RNA Ends; SMRT: Single Molecule Real Time Sequencing; GMUCT: genome-462 

wide mapping of uncapped and cleaved transcripts 463 
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Figure legends 573 

Figure 1. PHASIS workflow.  574 

PHAS loci or precursors transcripts are predicted through phasdetect in the first step. The 575 

library-specific list of PHAS predictions can be summarized and annotated through phasmerge 576 

for libraries of interest into a PHAS summary. These summaries from two different groups can 577 

also be compared using “compare” mode of phasmerge. Triggers for PHAS summaries are 578 

identified through phastrigs either with PARE data in “validation” mode or without any 579 

experimental data in “prediction” mode. Selection between these two modes is made 580 

automatically based on a PARE library input or the lack of it. All analysis steps are independent 581 

and their execution depends upon the requirements of the user. 582 

 583 

Figure 2. Number of PHAS loci or transcripts and their triggers, predicted by PHASIS. 584 

 PHASIS is labelled as ‘PS’ and it is compared to PhaseTank for benchmarking. A) 21-PHAS and 585 

B) 24-PHAS loci identified by both tools along with their triggers in Arabidopsis (ath), 586 

Brachypodium (bdi), Lilium (lma), rice (osa) and maize (zma). For PHASIS trigger prediction, 587 

results from both “validation” and “prediction” mode were included. The bars for Lilium 24-588 

PHAS loci are split at two different points for display purposes. Triggers assigned to PHAS loci 589 

that do not match with known or published miRNA triggers were represented as ‘unknown’ 590 

triggers. 591 

 592 

Figure 3. Runtime comparisons between PHASIS and PhaseTank.  593 

A) Time taken by both tools in prediction of 21- and 24-PHAS loci or precursors transcripts. 594 

Speed gain displayed by PHASIS over PhaseTank, approximated for both size classes, is 595 

individually marked for each species. B) and C) Time taken by both tools in predicting 21- and 596 

24-PHAS triggers, respectively. Speed gain displayed by PHASIS in “validation” and “prediction” 597 

mode over PhaseTank is displayed in blue and orange colors respectively. In all comparisons, 598 

Arabidopsis is marked as “ath”, Brachypodium as “bdi”, rice as “osa”, maize as “zma” and Lilium 599 

as “lma”. 600 

  601 
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Tables  602 

 603 

Table 1. Comparison of features from existing tools for phasiRNA characterization. 604 
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Table 2. Comparison of predictions for PHAS loci, precursor transcripts, and their miRNA 606 

triggers.  607 

 608 

Species Type 

PHAS locus 

gain with 

PHASIS over 

PhaseTank 

PhaseTank 

PHAS loci 

captured 

by PHASIS 

Gain in miRNA 

triggers: PHASIS 

(PARE supported) 

vs. PhaseTank 

(PARE supported) 

Gain in m

triggers, 

(predict

PhaseTan

support

Arabidopsis 
21-

PHAS 
21% 84% 

-54% 
-18

Brachypodium 

21-

PHAS 
145% 79% 

76% 
178

24-

PHAS 
49% 85% 

36% 
69%

Rice 
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24% 97% 5% 54%
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-33% 29% No predictions N.D

Maize 

21-

PHAS 
81% 97% 4% 55%
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64%

Lilium 

21-
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907% 67%* No PARE data No PAR

24-

PHAS 
1694% 94%* No PARE data No PAR

For Lilium, no PARE data were available for trigger predictions. N.D. = not determined, 

capture trigger miRNAs.  

* Estimates, as processing for PhaseTank data made it difficult to accurately assess the propo
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