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Summary 
The intrinsic uncertainty of sensory information (i.e., evidence) does not necessarily deter an 

observer from making a reliable decision. It is believed that uncertainty is minimized by 

integrating (accumulating) this incoming sensory evidence. Traditionally, this integration has 

been modeled using two different approaches. First, rate-code integrators represent accumulated 

afferent inputs as monotonically increasing (‘ramping’) spiking activity. Second, location-code 

integrators represent accumulated inputs as the location of a highly localized ‘bump’ of elevated 

spiking activity. In general, rate-code integrators are thought to be a natural circuit candidate for 

perceptual decision-making, but they cannot account fully for recent experimental data 

suggesting that observers hold accumulated evidence in the temporal gaps in evidence. Here, we 

propose a novel location-code neural integrator that maintains accumulated evidence during such 

temporal gaps. Furthermore, our location-code integrator can be read out in two modes that 

mirror spiking activity patterns in cortical areas associated with decision-making.   
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Introduction 
One of the fundamental functions of the brain is to transform representations of external sensory 

stimuli into a categorical judgment, despite the inherent uncertainty of the incoming sensory 

evidence. For instance, we can determine the direction of the wind, even though its instantaneous 

direction continuously fluctuates. It is widely thought that this moment-by-moment uncertainty is 

minimized by temporally integrating (accumulating) this incoming sensory evidence (e.g., wind 

direction) (Goldman et al., 2009; Roitman and Shadlen, 2002). Potential neural correlates of this 

neural accumulation of sensory evidence have been identified in a variety of brain areas, 

including the lateral intraparietal cortex (LIP), prefrontal cortex (Kim and Shadlen, 1999), frontal 

eye fields (Ding and Gold, 2012), and basal ganglia (Ding and Gold, 2010; Horwitz and 

Newsome, 2001). In particular, spiking activity in these brain areas appears to ‘ramp up’ 

(accumulate) prior to a perceptual decision. Further, the rate of this accumulation (and, thus, the 

time to the perceptual decision) is correlated with the ambiguity of the sensory evidence: as the 

evidence becomes less ambiguous (e.g., the instantaneous fluctuations in wind direction 

decrease), the rate of the ramping increases (Gold and Shadlen, 2007).  

Such neural integration has been modeled in two very different ways, which rely on different 

coding strategies and mechanisms of integration (Goldman et al., 2009). In the first type of 

model, rate-code neural integrators (NI) integrate sensory evidence and represent accumulated 

evidence as monotonically increasing (‘ramping’) spiking activity. In this rate-code model (Gold 

and Shadlen, 2007; Roitman and Shadlen, 2002; Wang, 2012), the firing rates of individual 

neurons increase over time in response to continuous inputs. In an alternative model, location-

code NIs store accumulated evidence as the location of a highly localized elevated spiking 

activity. In such a location-code NI (Skaggs et al., 1995; Song and Wang, 2005), the location of 

highly active neurons, which is referred to as ‘bump’, travels through a network over time. That 

is, the location of bump activity corresponds to the total amount of afferent inputs.  

Because ramping activity has been found in several studies of perceptual decision-making (Gold 

and Shadlen, 2007; Goldman et al., 2009), it is generally believed that a rate-code NI is the more 

natural circuit candidate for neural integration of sensory information. However, recent 

behavioral studies have questioned whether a rate-code NI could, in fact, be an accurate 

descriptor of perceptual decision-making. For example, a temporal gap between stimulus 

presentations has little impact on the accuracy of an observer’s behavioral choices (Kiani et al., 

2013; Liu et al., 2015), indicating that accumulated evidence can be maintained during this 

temporal gap. Yet, during this gap, the firing rates of neurons in a rate-code NI are likely to 

deviate from the desired values if the network is perturbed even slightly. This deviation can 

occur because the balance between a rate-code NI’s feedback (recurrent) inputs and its leaky 

currents has to be precise in order to maintain the desired values (Cain et al., 2013; Kiani et al., 

2013). In addition, a rate-code NI does not fully account for empirically observed ‘stepping’ 

spiking activity, which may underlie the dynamics of decision-making (Latimer et al., 2015). 

On the other hand, a location-code NI can maintain stable states in the absence of external inputs 

(Song and Wang, 2005). Further, because neurophysiological studies have identified sequential 

activation similar to this propagation of bump activity (Beggs and Plenz, 2004; Harvey et al., 
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2012; Ikegaya et al., 2004a; Rajan et al., 2015; Xu et al., 2012), we hypothesized that a location-

code NI may be a viable alternative model for perceptual decision-making. 

We found, as in previous location-code NIs, that our model sustains bump activity at a specific 

location in the absence of sensory input, whereas sensory input causes activity to propagate 

through the network. Our model is unique in that it is based on depressing synapses and the 

interplay between two inhibitory neuron types which are commonly found in cortices the cortex 

(Beierlein et al., 2003; Hayut et al., 2011; Rudy et al., 2011). We also note that the sensory 

evidence, stored as the location of bump activity, can be read out in two different modes, 

depending on the connections to downstream readout neurons. When the connectivity is dense, 

readout neurons predominantly show classic ramping activity (i.e. linearly increasing activity 

over time) as the sensory evidence is accumulated into a decision variable (Gold and Shadlen, 

2007; Goldman et al., 2009; Mazurek et al., 2003). In contrast, when the connectivity is sparse, 

readout neurons predominantly exhibit stepping activity (Latimer et al., 2015). This observation 

predicts that either ramping or stepping mode can emerge depending on the connectivity between 

the integrator and downstream readout neurons. This dual-readout mode may, in part, reconcile 

the degree to which components of decision-making are encoded as ramping- or stepping-like 

spiking activity.  

Results  
The goal of this study was to propose an alternative location-code NI and to test its potential 

links with perceptual decision-making. We first performed a bifurcation analysis to quantify the 

stability of a rate-code NI during a temporal gap in the sensory evidence. That is, we tested the 

ability of a rate-code NI to act as a lossless (perfect) integrator. Next, we propose an alternative 

location-code NI, which is different from earlier location rate-code NIs that modeled head-

direction neurons (Skaggs et al., 1995; Song and Wang, 2005; Stringer et al., 2002). It differs 

from these previous model because it relied on depressing excitatory synapses and the interplay 

between two types of inhibitory neurons that are commonly found in the cortex (Beierlein et al., 

2003; Markram et al., 2004; Pfeffer et al., 2013; Rudy et al., 2011). Finally, we discuss how our 

proposed integrator can map onto two different modes of spiking activity that have been 

empirically observed during decision-making: the classic ‘ramping’ activity (Roitman and 

Shadlen, 2002) and newly identified ‘stepping’ activity (Latimer et al., 2015). 

Recurrent networks are unstable without sensory evidence  
In principle, rate-code NIs can be perfect lossless integrators when the recurrent inputs are 

precisely equivalent to the leak currents (Goldman et al., 2009). However, the dynamics of these 

rate-code NIs can become unstable when external sensory inputs are removed (Kiani et al., 2013). 

That is, the amount of accumulated sensory evidence can decrease during temporal gaps in the 

incoming sensory evidence. However, in contrast to this neural ‘leak’, the accuracy of the 

perceptual decision does not degrade during such temporal gaps (Kiani et al., 2013; Liu et al., 

2015). This discrepancy suggests that rate-code NIs may not fully account for sensory-evidence 

integration.  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 3, 2017. ; https://doi.org/10.1101/158865doi: bioRxiv preprint 

https://doi.org/10.1101/158865


To quantify the degree to which rate-code NI can leak during temporal gaps in incoming sensory 

evidence,  we developed a firing-rate model that describes a single recurrent network (Equation 1) 

similar to the one described previously (Goldman et al., 2009):  

𝜏𝑚
𝑑𝐹𝑒

𝑑𝑡
= −𝐹𝑒 + 𝐹𝑚𝑎𝑥

1

[1+𝑒−𝛽(𝑟𝐹𝑒+𝐸−𝜃)]
                                                                                             (1) 

, where Fe and r are the firing rate and recurrent connections, respectively; Fmax is the maximum 

firing rate; θ is the spiking threshold; E is the external input; and β represents the strength of 

stochastic inputs. The first term in the left-hand side of Equation 1 represents the leak current; 

this type of firing rate equation corresponds to the subthreshold dynamics of leaky integrate-and 

-fire neurons (Miller and Fumarola, 2012). The selected default parameters are Fmax=20, β=1, 

θ=0.5, r=1 and E=0 unless stated otherwise. We modeled the gain (transfer function; i.e., the 

number of spikes that a neuron can generate in response to afferent synaptic activity) with a 

logistic function because it best describes the response of neurons receiving stochastic inputs 

(Ermentrout and David, 2010); the firing rate of this neuron is not zero even when the synaptic 

inputs are smaller than the spike threshold. 

Next, we tested the stability of this network by conducting a bifurcation analysis with the 

XPPAUT analysis platform (Ermentrout, 2007). A bifurcation analysis identifies the steady-state 

solutions, in which a system can stay indefinitely until perturbed. Moreover, this analysis 

clarifies whether the steady-state solutions are stable in response to the perturbations of 

bifurcation parameters (which, in our analysis, is the strength of the recurrent connections r and 

the external inputs E; see Fig. 1A). In Figs. 1B and C, the stable and unstable steady-state 

solutions are shown in red and black, respectively. As seen in these figures, this recurrent 

network (Equation 1) has only two stable steady states (attractor), in which neurons in the 

network either fire at their maximum rate (Fmax) or become quiescent. This means that a small 

perturbation in the strength of the recurrent connections or changes in the external inputs (e.g., a 

temporal gap in the incoming sensory information) could lead to a loss in the network of the 

temporally accumulated information (Kiani et al., 2013).  

Biologically-plausible location-code neural integrator  
This finding opens the possibility that lossless integration may be mediated by a circuit other 

than a rate-code NI; in particular, by a location-code NI. The structure of this cortical integrator 

is inspired by the three broadly observed properties of cortical neurons. First, pyramidal (Pyr) 

neurons are topographically organized as a function of their sensory response profiles via spatial 

(Hubel and Wiesel, 1962, 1968) and functional (Ko et al., 2013) connections. Second, 

parvalbumin positive (PV) and somatostatin positive (SST) inhibitory interneurons are two of the 

most common types of inhibitory neuron (Rudy et al., 2011) in the neocortex; PV neurons have a 

fast-spiking pattern of activity, whereas SST neurons have a low-threshold spiking pattern. For 

our purposes, it is important to note that, although most inhibitory interneurons are broadly tuned 

to sensory inputs, the response profiles of SST neurons can be as sharply tuned as those of Pyr 

neurons (Ma et al., 2010). Third, SST neurons inhibit neighboring cortical neurons through 

lateral inhibition (Markram et al., 2004; Zhang et al., 2014). Below, we discuss the structure and 
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properties of a discrete and continuous version of this integrator (Fig. 2) and how information 

from this integrator can be read out by downstream neurons.  

Discrete location-code neural integrator  

Our discrete integrator is based on this generic cortical-network structure (Ardid et al., 2007; 

Compte et al., 2000; Wagatsuma et al., 2011) but it includes two major inhibitory neuron types, 

PV and SST neurons (Beierlein et al., 2003; Hayut et al., 2011; Rudy et al., 2011). In our model, 

Pyr neurons drive SST neurons locally within a population but drive PV neurons globally (i.e., 

across different neuronal populations). As a consequence of this connectivity, SST neurons can 

have more sharply tuned response profiles than PV neurons (Ma et al., 2010). 

Specifically, we constructed 17 neuronal populations, each consisting of 16 SST neurons and 

400 Pyr neurons. We note that the size of our network model (i.e., 17 populations of Pyr and SST 

neurons) is rather arbitrary and is designed to demonstrate how lossless integration works at a 

reasonable time scale: if we were to incorporate additional populations, the network would 

integrate synaptic inputs over a longer period of time. Each pair of neighboring neuronal 

populations are connected via Pyr-Pyr connections. This connectivity is unidirectional to ensure 

that bump activity propagates in one direction only; such unidirectional connections have been 

employed  in previous network models to specify the direction of signal propagation (Diesmann 

et al., 1999; Goldman, 2009). The recurrent connections between Pyr neurons form depressing 

synapses (see Table 1 and Methods). All of the other synapses are static including the Pyr-Pyr 

synapses that form across neighboring populations. Additionally, our model had two PV 

neuronal populations (PV1 and PV2) that interacted with each of these 17 neuronal populations. 

These two PV neuronal populations provide feedforward and feedback inhibition (Hu et al., 

2014). Importantly, the SST neurons mediate lateral inhibition: that is, they can inhibit all of the 

Pyr neurons except those in their population (Markram et al., 2004; Zhang et al., 2014). Fig. 2A 

and B illustrate the model structure, and Tables 1 and 2 provide details of the neuron/synapse 

models and the connectivity patterns. We instantiated 4 equivalent networks and ran simulations 

on each of these networks. All four simulations produced behaviors (Supplemental Fig. 3) 

consistent with that shown in Fig. 3A. 

Each neuron received background inputs that were simulated as Poisson spike trains (Table 1). 

Afferent (i.e., ‘thalamic’) sensory inputs to Pyr and PV neurons were also modeled as Poisson 

spike trains. These sensory inputs modeled two (200-ms) bursts of sensory information (evidence) 

that are separated by a 500-ms temporal gap in which there is not any sensory evidence. In this 

study, we assumed that transient (onset) sensory input (see Methods) can provide extra inputs to 

the first neuronal population (i.e., ‘population 1’) so that population 1 could always generate 

bump activity at the onset of stimulus. Due to the nonspecific inhibition of PV1 neurons, other 

populations can be kept quiescent at stimulus onset; see below. With this assumption, we 

exclusively introduced transient inputs to Pyr neurons in population 1, whereas sustained sensory 

inputs projected to all of Pyr and PV neurons during the entire duration of stimulation periods. 

To establish a baseline of activity, we had 100 ms of spontaneous activity prior to the onset of 

the sensory input. Fig. 3A shows the activity of each of the Pyr neurons in each of the 17 

neuronal populations during stimulus presentation. During each of the two stimulus periods 
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(time=100-300 ms and 800-1000 ms, marked by red arrows), Pyr neurons were sequentially 

activated. However, and more importantly, Pyr neurons within the same population continues to 

fire even during the temporal gap (time=300-800 ms). That is, this integrator had two functional 

modes: integration and retention.  

What is the basis for these two functional modes? First, the integration was based on the 

sequential activation of different Pyr neuronal populations (Fig. 3A). During the two stimulus 

periods (100-300 ms and 800-1000 ms, marked by red arrows), when one of Pyr neuronal 

populations was activated, the other Pyr neuronal populations were quiescent (Fig. 3A). This 

exclusive activation of a Pyr neuronal population depended on feedback inhibition, which was 

mediated by PV1 neurons which nonspecifically projected to Pyr neurons.  Because PV1 neurons 

were more active during the stimulus period than during the temporal gap (Fig. 3B), their 

feedback inhibition was stronger during the stimulus period than during the temporal gap. 

Further, because the PV1 neurons fired strongly and synchronously during the stimulus period 

(supplemental Fig. 1A), the inhibition from these synchronously firing neurons can effectively 

hyperpolarize target neurons (Börgers et al., 2008; Fries, 2005). Finally, the depressing synapses 

opened a window of opportunity for Pyr neurons in a neighboring population to respond to 

lateral excitation by lowering the lateral inhibition. As seen in supplemental Fig. 1B, the peak 

population activity in Pyr1 decreased over time due to depressing recurrent synapses, making 

PV1 activity weaker over time. When bump activity jumped to population 2 from population 1 a 

time=~210 ms, PV1 activity stayed at a low rate. Similarly, Pyr2 activity became weaker, on 

average, over time; see the black line in supplemental Fig.1B. In this way, Pyr neuronal 

populations were sequentially activated during the stimulus period.    

Second, the network mode switched into a retention mode when we removed the sensory input. 

In this retention mode, SST neurons became active (Fig. 3C). Unlike the global inhibition 

mediated by PV1 neurons, SST neurons selectively inhibited Pyr neurons in other populations but 

did not inhibit Pyr neurons within the same population. Due to this connectivity pattern, when 

SST neurons in a population fired, Pyr neurons in the same population (as the SST neurons) 

received the least amount of inhibition. If the inhibition induced by active SST neurons was 

strong enough, the next population could not respond to the excitatory inputs and remained 

quiescent. That is, the inhibition that was mediated by SST neurons transformed the network into 

an effective stable recurrent network, which is alternatively known as an attractor network.  

In contrast to their activity during temporal gaps in the sensory input, when there was afferent 

sensory input (i.e., time=100-300 ms), SST neurons were quiescent (Fig. 3C). They were 

quiescent because of the strong inhibition from the PV2-neuronal population that provided 

feedforward inhibition (Fig. 3B); see also Table 2. However, when the sensory inputs were 

removed at 300 ms, this feedforward inhibition was eliminated, allowing SST neurons to respond 

to the excitatory input from Pyr neurons within its population. As a consequence, those SST 

neurons that belonged to the population of active Pyr neurons at 300 ms became active and then, 

in turn, inhibited the Pyr neurons in other neuronal populations. In other words, Pyr neuronal 

populations, which were inactive at 300 ms, remained inactive. This network is virtually 
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equivalent to a stable recurrent network and the same neuronal population remained continuously 

active even in the absence of stimulus input (Fig. 3).  

What happens to this network when afferent sensory input is returned to the network? When 

sensory input was delivered at time=800 ms, population activity resumed propagating as SST 

neurons were, once again, inactivated by the feedforward inhibition from the PV1 and PV2 

neurons. We note that population 1 was not reactivated even though it received transient afferent 

inputs (Fig. 3A). This can be explained by the lateral inhibition mediated by PV1 neurons. 

Because population 5 was active, population 1 received strong lateral inhibition induced by 

population 5 and did not fire in response to transient stimulus inputs. To confirm the role of 

lateral inhibition, we removed the inhibition from PV1 to Pyr1 neurons during the temporal gap 

and found that transient afferent inputs reactivated population 1 (Supplemental Fig. 2). That is, 

lateral inhibition was necessary for an accurate encoding of the accumulated sensory information 

when that afferent information included temporal gaps.  

Finally, bump activity did not propagate (i.e., it stayed at neuronal population 1) when we 

replaced the recurrent depressing synapses with static synapses (Fig. 3D). This finding suggests 

that depressing excitatory synapses were fundamental to the propagation of bump activity 

through the network. See supplemental Fig. 4 for more examples with static synapses.    

To better understand how bump activity propagated during stimulus presentation and was stable 

during the delay period, we created a reduced version of this discrete neural integrator, which 

allowed us to analyze and quantify the dynamics of the network. This reduced network contained  

two neuronal populations and generated action potentials using the following firing-rate models 

(Equation 2).  

𝜏𝑚
𝑑𝐹1

𝑑𝑡
= −𝐹1 + 𝐹𝑚𝑎𝑥

1

[1+𝑒−𝛽(𝑟𝐹1−𝑟𝑚𝐹2+𝐸1−𝜃)]
  

𝜏𝑚
𝑑𝐹2

𝑑𝑡
= −𝐹2 + 𝐹𝑚𝑎𝑥

1

[1+𝑒−𝛽(𝑟𝐹2−𝑟𝑚𝐹1+𝐸2−𝜃)]
                                                                                  (2) 

The two populations had their own recurrent connections (r) and interacted with each other via 

lateral connections (rm); see Fig. 4A. This mutual inhibition models the lateral inhibition 

mediated by SST and PV neurons in the computational model. We assumed that population 1 

fired at the maximum rate, and population 2 was quiescent; that is, in the initial condition, 

population 1 retained bump activity.  

With this reduced network, we studied the response of this network to perturbations in (1) the 

recurrent connections within a population (r), (2) the external inputs (E1, E2) to populations 1 and 

2,  or (3) lateral interactions (rm) between the two populations. Three main findings emerged 

from this analysis and can be seen in Fig. 4. First, as the recurrent-connection stregnth (r) 

increased, the network remained stable (Fig. 4B). Second, the network remained stable as we 

increased E1 (i.e., the external input to population 1; the red lines in Fig. 4C) but became 

unstable (i.e., population 1 lost its bump activity) when E1 was reduced (black lines in Fig. 4C). 

On the other hand, as shown in Fig. 4D, the network became unstable when E2 (i.e., the external 

input to population 2) increased, but it became stable when E2 was decreased. In other words, the 
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noise introduced into quiescent populations needed to be regulated for reliable retention of 

information. Third, the lateral interactions (rm) strongly impacted the stability of the network. 

When rm was postive but small (i.e., weak mutual inhibition), the network became unstable (the 

black lines in Fig. 4E).  In contrast, when rm was postive and big (i.e., strong mutual inhibition), 

population 1 reliably retained bump activity (Fig. 4E), and population 2 remained quiescent (Fig. 

4F). That is, as long as population 1 retained bump activity intially, the mutual inhibition helped 

population 1 keep the bump activity. When the two populations excited each other (i.e., negative 

rm), neurons in both populations fired at the maximum rate (Figs. 4E and F). In this case, bump 

activity was not confined to population 1, indicating that a read-out of bump activity based on 

location was not an accurate reflection of the accumulated evidence.  

Overall, these simulationssuggest that recurrent connections within a neuronal population and 

mutual inhibition are key components of the network and are responsible for the retention of 

bump activity during a temporal gap in the incoming sensory information. Conversely, the 

propagation of bump activity required a reduction in the strength of the recurrent connections 

within a population or the strength of the mutual inhibition. In our integrator model, we found 

such reductionships: during stimulus presentation, mutual inhibition was reduced due to the 

silencing of the SST neurons (Fig. 3C). The feedback lateral inhibition of PV1 neurons ensured 

that only a single Pyr cell population was active. Also, recurrent inputs within a population 

decreased over time due to depressing recurrent connections; this can account for our finding that 

bump activity did not propagate with static recurrent connections (Fig. 3D).  

Continuous location-code neural integrator 

Because this discrete network model has only a limited number of attractors (i.e., the number of 

populations that can hold accumulated sensory inputs), it necessarily lowers the precision of the 

stimulus integration. However, this discrete network can be generalized to have continuous 

attractor states, as in linear attractor networks. Unlike the discrete integrator that consists of 

defined neuronal populations, in our continuous integrator, Pyr and SST neurons were distributed 

into circular lattices with uniquely assigned coordinates (Fig. 2C). For convenience, we refer to 

the direction from lower to higher coordinates as the clockwise direction and higher to lower as 

counterclockwise. Two Pyr neurons were connected with each other if the difference between 

their coordinates was ≤200. Because the connections are symmetrical, each Pyr neuron made 

excitatory synapses with 400 neighbors. These recurrent chain-like connections provided 

effective recurrent excitation to elevate Pyr activity enough to generate a highly localized ‘bump’ 

of elevated spiking activity. Further, because these connections between Pyr neurons are 

symmetrical in both directions, bump activity could propagate in both directions. To make bump 

activity propagate only in the clockwise direction, we added a second set of SST neurons (SST1 

and SST2).  

Except for the additional population of SST neurons (the SST2 neurons), the continuous and 

discrete integrators have equivalent structures; the structure of the continuous integrator is 

summarized in Fig. 2C and Table 3. All of the Pyr and SST neurons formed non-specific 

connections with PV1 neurons, and PV2 neurons exclusively provided feedforward inhibition to 

Pyr and SST1 neurons. The connections between Pyr neurons and SST neurons were formed 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 3, 2017. ; https://doi.org/10.1101/158865doi: bioRxiv preprint 

https://doi.org/10.1101/158865


based on their coordinates in the circular lattice. (1) Pyr neurons made one-to-one synaptic 

connections with SST1 and SST2 neurons, when they had the same coordinates; a connectional 

scheme that we refer to as ‘topographical’ hereafter. (2)  A SST1 neuron inhibited a Pyr neuron 

when the (absolute) difference between their coordinates was ≥200. (3) A SST2 neuron inhibited 

a Pyr neuron when the coordinate of a Pyr neuron was lower than that of a SST2 neuron and 

when the (absolute) difference was ≤400. Because of this connectivity pattern, the propagation of 

bump activity in the counter-clockwise direction was dampened, and only bump activity in the 

clockwise direction propagated through the network.  

In our first analysis, we examined whether our continuous integrator could integrate sensory 

information. Transient sensory inputs activated only the first 400 Pyr neurons (i.e., those with the 

lowest arbitrary coordinates) during time=100-200 ms, and then sustained sensory input was 

introduced to all of the Pyr and PV neurons during time=100-1000 ms. As seen in Fig. 5A, 

spontaneous spiking activity in the Pyr neurons at time=50 ms was not strong enough to induce 

bump activity. However, the transient sensory inputs that targeted the first 400 Pyr neurons 

elevated the rate of spiking activity strongly enough to generate bump activity. Once generated, 

the lateral inhibition mediated by the PV1 neurons was strong enough to prevent all of the other 

excitatory neurons from spiking during the presentation of this transient sensory input. That is, 

the onset of sensory information ensured that bump activity was generated at the designated 

place (the first 400 excitatory neurons) and that all other activity was quiescent. 

After the offset of this transient input, bump activity propagated to other Pyr neurons in the 

clockwise direction (Fig. 5A). Due to the periodic boundary condition, bump activity repeatedly 

circulated the integrator. Concurrently, PV1 and PV2 neurons fired asynchronously and sparsely 

(Fig. 5B). SST1 neurons were quiescent (Fig. 5C), but SST2 neurons, which received excitation 

from Pyr via topographic connections, mimicked Pyr activity (Fig. 5D). This SST2 activity 

prevented bump activity from propagating in the counterclockwise direction via asymmetrical 

feedback inhibition onto Pyr neurons. Because the propagation speed was constant, the location 

of bump activity was proportional to the duration of stimulus, when the strength of the sensory 

input was constant. As in the discrete integrator, when we replaced all the depressing synapses 

with the static ones, bump activity stays in the same location instead of travelling as shown in 

Figs. 5E and F. 

Next, we tested whether this network could perform lossless integration. As in the discrete neural 

integrator, stimulus inputs were introduced at time=100 and 300 ms and time=800-1000 ms. For 

simplicity, we did not consider the onset input at 800 ms because this input had no impact on 

network dynamics in the discrete integrator (Fig. 3A). As seen in Fig. 6A, bump activity 

cascaded through the network until there was a temporal gap in the stimulus inputs. Once we 

removed these stimulus inputs, bump activity remained in the same location. Then, it resumed 

moving from the previous location, as sensory inputs were reintroduced, consistent with lossless 

integration.  

As in the discrete integrator, during the temporal gap in sensory input, the PV1 and PV2 neurons 

(Fig. 6B) became quiescent. As a result, the inhibition from the PV1 and PV2 neurons to the SST1 

neurons was reduced, which, thereby, increased SST1 activity (Fig. 6C). The firing pattern of 
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these neurons was comparable to that of the Pyr neurons (Fig. 6D). Because the SST1 neurons 

were topographically connected to Pyr neurons, the SST1 inhibited non-active Pyr neurons, 

which prevented bump activity from propagating to a new location. Together, this transforms the 

network into an effective attractor network, like the case for the discrete integrator (Fig. 3). 

Finally, how sensitive was our model to the strength of the stimulus inputs (i.e., the amount of 

sensory evidence)? Neurophysiological experiments have clearly shown that the rate of 

accumulation of the sensory evidence is positively correlated with the strength of the stimulus 

inputs. Further, this rate of accumulation is accompanied by a decrease in reaction time (Gold 

and Shadlen, 2007). We asked if this continuous integrator could account for the correlation 

between reaction time and stimulus inputs. Specifically, we estimated how rapidly bump activity 

propagated as a function of the strength of the stimulus input (i.e., the firing rate of stimulus 

input). Indeed, as shown in Fig. 6E, as we increased the strength of the stimulus inputs, the 

propagation speed of bump activity also increased, supporting that our integrator can, in part, 

explain the correlation between reaction time and the strength of sensory evidence. 

Potential links to decision-making  
As we have discussed, the integration of afferent inputs is thought to be critical for perceptual 

decision-making (Goldman et al., 2009; Roitman and Shadlen, 2002) and navigation (Collett and 

Graham, 2004; Song and Wang, 2005). Interestingly, two different types of NIs have been 

proposed as models of decision-making and navigation. Rate-code NIs have been proposed to 

account for ramping activity in LIP, whereas location-code NIs account for head-direction 

neurons or path integration for place cells (Goldman et al., 2009). However, our simulation 

results raise the possibility that location-code NIs can also explain the lossless integration of 

afferent inputs necessary for perceptual decision-making (Kiani et al., 2013; Liu et al., 2015). 

That is, our newly proposed integrator may also underlie LIP activity during decision-making. 

Our integrator did not directly replicate either ramping (Roitman and Shadlen, 2002) or stepping 

activity (Latimer et al., 2015), which were identified in LIP. Thus, we asked if this activity was 

encoded at the population level and could be readout via downstream target neurons.  

To address this question, we created a downstream network that readout information from our 

integrator. Specifically, Pyr neurons in the continuous integrator were connected to a population 

of 5000 downstream neurons with coordinate-dependent probability 𝑝 (Fig. 8A): 

𝑝 =
𝑐

4000
𝑝0,                    (3) 

where c is the coordinate of pre-synaptic Pyr neurons ranging from 1 to 4000. That is, the Pyr 

integrator neurons with the highest coordinate projected to those readout neurons with the 

highest connection probability p0, whereas the connection probability between the first Pyr 

neuron to the readout neurons was p0/4000. The connectivity pattern between the integrator and 

these readout neurons is consistent with previous experimental findings (Perin et al., 2011), 

which demonstrated that the synaptic-connection probability depends on the distance between 

presynaptic and postsynaptic neurons: the probability decreased, as the spatial distance increased. 

In other words, we assumed that the distance between integrator neurons and readout neurons 

decreased as the neurons’ coordinates increased. (Fig. 7A).  
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In our simulations, we tested two different levels of maximal connection probabilities: p0=0.1 

and p0=1.0. Independent of the connection probability, we found that population activity 

increased (ramped) over time (Figs. 7B and C). The maximum activity in the readout neurons 

occurred when bump activity reached the last Pyr neurons in the integrator. This can be 

explained by the fact that, as the bump moved to higher coordinate Pyr integrator neurons, the 

number of depolarized readout neurons also increased, due to the connectivity pattern between 

the integrator and the readout neurons (Equation 3). For instance, when p0=1, the first Pyr 

integrator neuron depolarized, on average, a single readout neuron but the last Pyr neuron 

depolarized all of the downstream neurons. Consequently, as the sensory stimulus unfolded over 

time, more and more readout neurons fired, and population activity ramped up, consistent with 

ramping LIP activity (Gold and Shadlen, 2007; Roitman and Shadlen, 2002) 

We also probed the behavior of individual readout neurons. Fig. 7D and E show the firing-rate 

time courses of 5 randomly chosen readout neurons. Although population activity ramped up in 

both low and high connection-probability states (i.e., p0=0.1 and p0=1.0), individual neurons 

showed either ramping or transient activity depending on p0. When p0 was high, individual 

neuronal activity appeared to ramp up like population activity (Fig 7D). In contrast, when p0 was 

low, individual downstream neuronal activity did not ramp up although the population activity 

did exhibit ramping activity (Fig. 7E). More specifically, individual readout neurons had either 

active or non-active periods. This activity pattern is reminiscent  with the stepping model of LIP 

activity (Latimer et al., 2015), in which the firing rates of individual neurons jump to a discrete 

value. Taken together, this analysis indicates that if all of the Pyr integrator neurons were 

connected to all of the readout neurons (i.e., p0=1; all-to-all), the readout neurons’ firing rates 

would ramp up, as bump activity propagated through the integrator. In contrast, if Pyr neurons 

were connected only to nearby readout neurons (i.e., p0=0.1), the readout neurons would only be 

transiently activated as the bump passed by a Pyr integrator neuron that was strongly connected 

to the respective readout neuron.  

If individual neurons showed ramping activity, as in Fig. 7D, the firing rate should be positively 

correlated time. In contrast, the correlation will be negligible if individual cell activity does not 

increase smoothly over time. Thus, we further tested individual neuronal activity by regressing 

the firing rates of individual neurons with time (between 100 and 400 ms). As seen in Fig. 8A, 

the slopes and correlation coefficients were higher and the p-values (of the correlation) were 

lower when p=1.0 than when p=0.1. This result is consistent with the idea that, on average, 

individual neurons had more linear (ramping) activity when connections between the integrator 

and readout neurons were dense. Interestingly, when we looked at the distribution of weakly 

connected (p=0.1) downstream neurons in more detail, we found that ~1000/5000 neurons had 

significant slopes (Fig. 8B), suggesting that these neurons’ firing rates increased over time. Thus, 

our model shows that stepping and ramping activity may not be isolated from each other. Instead, 

they are form a continuum depending on the connections between the integrator and readout 

neurons.  
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Discussion 
Perceptual decision-making has been thought to rely on accumulation of sensory evidence (i.e., 

decision-variables) extracted from ambiguous sensory stimuli (LaBerge, 1962; Mazurek et al., 

2003; Miller, 2015; Ratcliff, 1978; Ratcliff and Smith, 2004; Roitman and Shadlen, 2002; Smith 

and Ratcliff, 2004). For instance, drift-diffusion model (DDM) assumes that decision is initiated 

when accumulated evidence hits a decision-bound; see below. It is generally thought that 

perceptual decision-making is instantiated through rate-code neural integrators (NIs), which are 

based on recurrent networks (Goldman et al., 2009; Wang, 2012). However, the degree to which 

rate-code NIs can explain perceptual decision-making is limited. For example, rate-code NIs 

become unstable when there is a temporal gap in the flow of incoming sensory evidence (Fig. 1), 

whereas behavioral studies indicate that participants act as ‘perfect’ integrators and are not 

affected by these temporal gaps (Kiani et al., 2013; Liu et al., 2015). 

How then can the brain make reliable decisions even with temporal gaps? To answer this 

question, we proposed a novel integrator that can maintain accumulated sensory evidence even 

during temporal gaps. In our integrator, the location of bump activity represents the amount of 

presented sensory evidence; that is, our integrator shares the characteristics of location-code NIs 

previously proposed to account for head-direction neurons (Skaggs et al., 1995; Song and Wang, 

2005); see below. In our simulations, bump activity in the integrator progressed through the 

network when sensory inputs were provided, but stayed at the same location when the sensory 

inputs were removed; the location of the bump is stable due to the inhibition of SST cells (Fig. 4). 

This indicates that our integrator can account for the robustness of perceptual decision-making to 

temporal gaps. 

Comparison to other location code NIs  
In terms of functions, our model is equivalent to previously reported location-code NIs, which 

modelled head-direction neurons encoding the direction of an animal’s head, relative to their 

body and independent of their location in the environment. However, the underlying mechanisms 

are distinct.  

In these earlier location-code NIs, the shift in the location of bump activity was realized by so-

called “rotation” neurons, which employed either strictly excitatory neurons (Skaggs et al., 1995) 

or strictly inhibitory neurons (Song and Wang, 2005); these rotation neurons are located in the 

thalamic nucleus that receives inputs from the vestibular system. In contrast, our model showed 

that a cortical circuit, which consisted of excitatory pyramidal neurons and different types of 

inhibitory interneurons, can readily implement a location-code NI. More specifically, the two 

major inhibitory neuron types in the neocortex (Rudy et al., 2011) –PV and SST interneurons– 

make distinct contributions to this operation. PV neurons, which provide non-specific feedback 

inhibition to pyramidal neurons (Bock et al., 2011; Ma et al., 2010), ensure that bump activity 

exists exclusively at a single location. On the other hand, SST neurons mediating lateral 

inhibition transformed the network into an effective attractor network capable of maintaining 

accumulated sensory evidence during the temporal gaps (Figs. 3C and 6C). We note that the 

sustained activity of SST neurons during temporal gaps is consistent with the empirical finding 

that SST cells are selectively activated during a delay period when a stimulus is removed and an 
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animal needs to remember task-relevant information (Kim et al., 2016). In contrast to the role 

that interneurons and their inhibitory synapses played in our network model, depressing 

excitatory synapses made bump activity propagate through the network (Figs. 3D and 5E). 

Together, our simulation results suggest that neurons and synapses in the neocortex are indeed 

suitable for controlling and maintaining the propagation of bump activity.  

Links to sequential sampling models of decision-making 
Sequential sampling models have been widely used to study decision-making processes because 

of their ability to account for the trade-off between decision-accuracy and reaction time (Ratcliff 

and Smith, 2004). The two main classes of sequential sampling models are diffusion and 

accumulator models (Ratcliff and Mckoon, 2008; Smith and Ratcliff, 2004). Although they share 

the same fundamental principle that evidence is accumulated for decision-making about 

ambiguous evidence, they differ in the exact mechanisms (Ratcliff and Smith, 2004). Then, can 

our integrator explain the two main classes of sequential sampling method?  

First, accumulator model (a.k.a. race model) assumes that each evidence supporting a possible 

choice is independently integrated and that decision can be made if accumulated evidence hits 

the decision-bound (Miller, 2015; Ratcliff and Smith, 2004). This model can be implemented by 

using multiple location-code NIs, which independently integrate evidence. The decision-bound 

can be realized by assigning threshold neurons that project afferent inputs to readout neurons. If 

these connections between threshold neurons and the readout neurons are strong enough, readout 

neurons will fire whenever bump activity arrives at the threshold neurons; that is, the decision-

bound crossing is detected.  

Second, in DDM, the amount of accumulated evidence for one choice either increases or 

decreases over time depending on fluctuations in presented evidence (Ratcliff and Mckoon, 

2008). The mutual inhibition between integrators can account for the fluctuation of accumulated 

evidence (Ratcliff and Smith, 2004; Usher and McClelland, 2001). In our integrator, bump 

activity can propagate in only one direction, and thus direct mutual inhibition between location-

code NIs cannot replicate the fluctuation of accumulated evidence. However, readout neuron 

activity can increase or decrease if readout neurons receive afferent inputs from two integrators. 

If one integrator provides feedforward excitation and another provides inhibition onto the same 

readout neurons, readout-neuron activity either increases or decreases depending on which 

integrator provides stronger afferent inputs; the same scheme was indeed used in an earlier 

model (Mazurek et al., 2003). Alternatively, if the two integrators exclusively provide excitatory 

afferent inputs to two distinct sets of readout neurons, the mutual inhibition between the two sets 

of readout neurons can also replicate the fluctuation of accumulated evidence in DDM, as in an 

earlier model (Usher and McClelland, 2001).  

In principle, the combination of readout neurons and location-code integrators can account for 

most critical features of sequential sampling models. That is, our model does provide alternative 

potential mechanisms underlying sequential sampling models; furthermore, our model raises the 

possibility that sequential sampling models can be robust to temporal gaps in evidence.  
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Selection between stepping and ramping modes 
As shown in Figs. 7 and 8, readout neurons in our model can show either ‘ramping’ or ‘stepping’ 

activity depending on the density of connections between the integrator and readout neurons. 

That is, our model predicts that the same neural circuit can underlie the two types of neural 

activity seen in area LIP (Latimer et al., 2015; Roitman and Shadlen, 2002). Our model predicts 

that depending on the density of connections between the integrator and readout neurons, 

ramping or stepping activity will predominate (Figs. 7 and 8). Importantly, an earlier empirical 

study (Purushothaman and Bradley, 2005) found evidence supporting that synaptic connections 

can be changed flexibly depending on tasks. When animals performed fine-discrimination tasks, 

decisions relied on the highest precision neurons that carry the most relevant information in 

middle temporal areas (MT); that is, the decisions were based on a selective pooling of MT 

neurons. In contrast, low precision neurons’ contributions were identified when animals 

performed coarse-discrimination tasks; that is, the decisions were based on a broad and 

nonselective pooling of MT neurons. Indeed, the selective and broad pooling are equivalent to 

sparse and dense connections in our model in terms of the number of connections to readout 

neurons. Therefore, we hypothesize that the brain can flexibly select between sparse and dense 

connections depending on behavioral demands and that such distinctively selected connectivity 

patterns may underlie different observations of LIP neuron activity during perceptual decision-

making; indeed, Latimer et al. speculated that the two empirical studies provide different 

behavioral demands and thus different “context” to animals. (Latimer et al., 2016).  

However, it is still unclear why these two experimental studies (Latimer et al., 2015; Roitman 

and Shadlen, 2002) observed different activity patterns. Below we use our modeling results to 

shed light on potential reasons.  

As our integrator integrates only one type of evidence at a time, two integrators, independently 

accumulating evidence, are necessary to explain two-alternative forced choice tasks, like those 

done to study random dot-motion decisions (Latimer et al., 2015; Roitman and Shadlen, 2002). 

With these two integrators, decisions can be made in two different ways. First, when the 

accumulated evidence hits a decision bound, the corresponding choice is selected. This can be 

implemented by assigning threshold neurons in the two integrators and connect them to readout 

neurons. If the connections provide sufficient afferent inputs, the readout neurons will precisely 

detect the moment when bump activity arrives at the threshold neurons. As only the connections 

between the threshold neurons and readout neurons are necessary for these readout neurons to 

detect decision-bound crossing, sparse connections can be optimal for this operation; they can 

reduce the wiring cost and minimize the false-alarm rate of readout neurons by reducing the 

noise signals (afferent inputs independent of detection of threshold-crossing) to readout neurons.  

Second, the more probable choice can be selected by comparing accumulated evidence whenever 

decisions are necessary. If readout neurons receive afferent inputs via sparse connections, they 

would be agnostic about the location of bump activity before the bump arrives at the threshold 

neurons. That is, sparse connections cannot be used if the timing of decision-making is flexible. 

However, if readout neurons receive afferent inputs via dense connections, their spiking activity 

will depend on the location of bump activity, and thus the locations of bump activity in the two 
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integrators can be compared to make decisions. That is, dense connections will be necessary for 

“relative stopping criterion of integration” in diffusion models (Ratcliff and Smith, 2004)    

In brief, sparse connections would be optimal, and stepping activity would prevail when animals 

report their decisions after the integration of evidence is completed. In contrast, dense 

connections should be chosen, and ramping activity would prevail when animals are allowed to 

report decisions at any time. Indeed, stepping activity was observed from animals trained to 

report their decisions after watching the entire stimulus presentation (i.e., the fixed viewing task), 

whereas ramping activity was observed from animals allowed to report their decisions during the 

stimulus presentation (i.e., reaction-time task) (Latimer et al., 2015; Roitman and Shadlen, 2002; 

Shadlen et al., 2016).  

We would like to emphasize that even with sparse connections (p=0.1) 80% of neurons show 

stepping activity, whereas 20% of neurons show ramping activity (Fig 8). Therefore, our 

simulation results suggest that ramping and stepping activity are likely to coexist and that the 

only the proportion of stepping/ramping neurons varies depending on task demands.  

Empirical evidence for our location-code NI and concluding remarks 
Sequential activation, consistent with bump activity propagation in our model, has been observed 

in multiple brain regions (Pulvermuller and Shtyrov, 2009; Tang et al., 2008) including visual 

cortex (Beggs and Plenz, 2003, 2004; Ikegaya et al., 2004; Sato et al., 2012; Xu et al., 2012), 

parietal cortex (Harvey et al., 2012) and frontal cortex (Seidemann et al., 1996).   Although 

synfire chain (Diesmann et al., 1999) was proposed to account for such phenomena, most 

theoretical studies have been dedicated to study the neural correlations of persistent activity 

observed in prefrontal cortex due to potential links to working memory and decision-making 

(Goldman et al., 2009; Wang, 2012). Interestingly, recent theoretical studies raised the 

possibility that sequential activation of neurons could also be the substrates of working memory 

(Goldman, 2009; Lundqvist et al., 2016; Rajan et al., 2015), reigniting the interests of 

mechanisms underlying sequential activation. 

Although determining the exact mechanisms behind any cognitive functions remains difficult, 

we would like to underscore that our model showed that cortical circuits can natively switch 

between two seemingly distinct states, stable steady state (e.g., bump activity maintenance) and 

sequential activation state (e.g., bump activity propagation). In the model, the two major 

inhibitory cell types make this switching of states possible. As these two cell types are major 

inhibitory neuron types in the neocortex (Rudy et al., 2011) and bump activity propagation exists 

in the wide ranges of brain regions, we speculate that the switching between the two states may 

be one of the fundamental computing principles in the brain and plan to extend our current model 

to address this possibility. 

 

 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 3, 2017. ; https://doi.org/10.1101/158865doi: bioRxiv preprint 

https://doi.org/10.1101/158865


Methods 
In this study, we developed discrete and continuous versions of a neural integrator. Both of these 

circuit networks were implemented within the NEST environment (Gewaltig and Diesmann, 

2007), a peer-reviewed, freely-available simulation package. In both versions of the integrator, 

all of the neurons were leaky integrate-and-fire (LIF) neurons. The excitatory and inhibitory 

neurons within an integrator formed excitatory and inhibitory connections onto a set of ‘target’ 

neurons. All of the integrator neurons and in the target neurons had identical internal dynamics; 

specifically, each presynaptic spike induced an abrupt increase in a neuron’s membrane potential 

that decayed exponentially. These neurons were implemented using the native NEST model 

iaf_psc_exp (Gewaltig and Diesmann, 2007).  Table 1 shows the exact parameters used for the 

neurons and synapses in both neural integrators.   

The structure of the discrete integrator 
The structure of the discrete integrator is summarized in Figs. 2A and B. As seen in Fig. 2A, the 

discrete integrator consisted of 19 different neuronal populations. 17 of these neuronal 

populations were modeled to contain 400 pyramidal (Pyr) neurons and 16 somatostatin (SST) 

neurons. Within each of these 17 populations, Pyr neurons formed excitatory synapses with both 

Pyr and SST neurons. These 17 populations were topographically organized: Pyr neurons within 

a population had unidirectional excitatory connections with the adjacent population (e.g., 

population 2 projected to population 3 but not to population 1). We had a periodic boundary 

condition in which the (last) population 17 connected to the (first) population 1; see Fig. 2B. In 

contrast, SST neurons formed inhibitory connections with Pyr neurons in all of the other 

populations. Recurrent connections between Pyr neurons within a population had depressing 

synapses, but all of the other synaptic connections were static. We implemented these depressing 

synapses using the Tsodyks-Markram model included in the NEST distribution.  

The two remaining populations each had 1088 parvalbumin (PV) neurons. All of the Pyr neurons 

had excitatory connections with the PV neurons in one population (PV1) but not with those in the 

second PV population (PV2). Both PV1 and PV2 neurons made non-specific inhibitory 

connections with Pyr and SST neurons; see Table 2 for the connection probability. These two PV 

populations simulated feedback and feedforward inhibition between Pyr neurons. 

The structure of the continuous integrator 
The continuous integrator was composed of a population of Pyr neurons, two PV populations 

(PV1 and PV2), and two populations of SST neurons (SST1 and SST2); see Fig. 4. Table 3 lists 

the parameters of these neuronal populations. In this network, 4000 Pyr, SST1 and SST2 neurons 

were distributed in a circular lattice, each of which had unique coordinate between 1-4000. We 

arbitrarily set the coordinates to increase in the clockwise direction. The neuronal numbers were 

arbitrary and were not constrained by the ratio of excitatory to inhibitory neurons, which is 

roughly 4:1. It should be noted that it is straightforward to extend this network model to include 

more excitatory neurons: instead of a single Pyr neuron at each coordinate, a small population of 

Pyr neurons at each coordinate can be instantiated without changing any of the details of the 

network structure.  
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Pyr neurons were mutually connected, via excitatory connections, to their neighboring Pyr 

neurons when the difference between their coordinates was ≤200, which is similar to a 

distance-dependent connection probability (Perin et al., 2011). These connections were 

established with a periodic boundary condition: Pyr neuron 4000 and Pyr neuron 1 were 

mutually connected. The PV1 and PV2 populations were independent of this circular lattice (see 

Fig. 4). 

Pyr neurons interacted with the PV1, SST1 and SST2 populations in distinct ways. First, the 

pattern of connectivity between the Pyr and PV1 populations was randomly generated. Second, a 

Pyr neuron projected only to those SST1 and SST2 neurons that had the same coordinates (i.e., a 

one-to-one topographic mapping). The connection strength was designed to be just strong 

enough for a single Pyr “spike” to cause a SST1 or SST2 neuron to fire (Table 3), like a single 

layer-5 pyramidal-neuron spike can induce SST-expressing Martinotti neurons to fire (Silberberg 

and Markram, 2007). SST1 and SST2 neurons also had inhibitory connections with Pyr neurons 

but the connectivity rules differed. (1) SST1 neurons formed connections only with those Pyr 

neurons in which the SST2-and-Pyr difference was ≥200. (2) SST2 neurons formed connections 

only with those Pyr neurons with lower coordinate values. PV2 neurons randomly inhibited SST1 

neurons, and the connection probability is shown in Table 3. In our continuous integrator, all of 

the excitatory synapses were depressing, whereas all of the inhibitory synapses were static.  

External inputs for both integrators 
The excitability of each neuron depended on the sum of its synaptic inputs from all of the other 

neurons in the network and from external inputs, which were modeled as Poisson spike trains. 

Tables 2 and 3 show the neuron-specific rates of these external inputs. Sensory information was 

simulated as Poisson spike trains. In the model, sensory information consists of transient and 

sustained sensory information. The transient sensory information represented the transient cell 

responses observed in the sensory systems including retina, lateral geniculate nucleus and cortex 

(Cleland et al., 1971; de la Rocha et al., 2008; Piscopo et al., 2013; De Valois et al., 2000), and 

we assumed that this transient activity helped to ensure that bump activity always initiated in the 

same location in the network. Transient inputs were introduced to the first 400 and 100 Pyr 

neurons in the discrete and continuous integrators, respectively. The duration of transient inputs 

were 100 msec, whereas the sustained inputs formed projections with all Pyr, PV1 and PV2 

neurons during the entire stimulus. One can think of these sensory inputs as originating from the 

thalamus; though, we did not explicitly model the properties of thalamic neurons.  

Travelling time for the bump 
Using the continuous integrator, we examined if the propagation speed of the bump depended on 

the input strength by calculating the time course of the last 400 Pyr neurons (i.e., those with 400 

highest coordinates). Specifically, we generated an event-related spike histogram using non-

overlapping 10 ms bins of spiking data. “Travelling time of the bump” was defined as the time, 

relative to stimulus onset, when the number of spikes in a single bin exceeds the sum of the mean 

plus two standard deviations of the number of spikes during the simulation period. 
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Figure Legends 
Figure 1:The stability of  a RNI. (A), Structure of a RNI with recurrent connections (r) and 

external input (E). The bifurcation analyses with r and E as bifurcaions parameters are shown in 

(B) and (C), respectively.   

Figure 2: The structure of the two versions of our integrator. (A), Connectivity between all 

19 neuronal populations in the discrete integrator. (B), interconnectivity between the 17 Pyr-SST 

populations; see Methods and Tables 1 and 2 for more details and parameters. The red arrows 

and blue circle-head arrows represent the excitatory and inhibitory connections within the 

network model, respectively. The thick and dashed black arrows represent onset and sustained 

stimulus inputs, respectively. (C), Structure of continuous integrator. The five neuronal 

populations (Pyr, PV1, PV2, SST1, and SST2) interact with each other via connections shown in 

the figure. The red arrows and blue circle-head arrows represent the excitatory and inhibitory 

connections between individual neurons, respectively. In contrast, the double lined arrows 

(including red and blue) show connections between the populations. All connections between 

populations are randomly established. Sensory inputs are introduced to Pyr, PV1 and PV2 

(dashed arrows). Periodic boundary condition is used to connect Pyr cells, as shown in the green 

arrow; see Methods and Table 3 for more details and parameters. 

Figure 3: The responses of populations of the discrete integrator. (A), Spiking activity of Pyr 

neurons in all 17 populations; each population had 400 Pyr neurons. Each row in the plot shows 

the spike times of an individual Pyr neuron. 17 populations are shown in different colors; for 

clarity, we show color codes corresponding to a few populations in the inset. The red and black 

arrows show sensory-stimulus periods and the temporal gap between them, respectively. (B), 

PV1 and PV2 activity, which indicates that PV activity is modulated by the sensory inputs. Both 

PV populations contained 1088 PV neurons. (C), SST neuron activity in all 17 populations; there 
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are 16 SST neurons in each population. The same color scheme is used as in (A), and during the 

temporal gap, active SST and Pyr neurons have the same color, indicating that active SST and 

Pyr neurons belong to the same population. We also repeated the same simulation by replacing 

all depressing synapses with static ones. Pyr cell activity with static recurrent connections is 

shown in Panel (D).  

Figure 4: The bifurcation analysis of the discrete integrator with a firing rate model. We 

studied the interactions between two populations shown in (A), using the firing rate model. Red 

and black lines represent stable and unstable steady solutions, respectively. (B)-(D) Firing rate of 

population 1 with respect to recurrent connections within a population (r) and external input to 

populations 1 and 2 (E1, E2), respectively. (E) and (F), Fring rate of populations 1 and 2, 

respectively, in terms of mutual interactions (rm). 

Figure 5: The propagation of the bump activity during the stimulus period. (A)-(D), Spiking 

activity in Pyr, PV (PV1 and PV2), SST1 and SST2 neurons, respectively. During the stimulus 

presentation (100-1000 ms, marked as the red arrow), the location of bump propagates through 

the circular lattice: PV neurons fire asynchronously. SST1 neurons are quiescent, whereas SST2 

neurons mimic Pyr neurons. We also show Pyr and SST1 activity in (E) and (F), respectively. 

Figure 6: Integration of synaptic inputs.  (A)-(D), Raster plots of Pyr, PV, SST1 and SST2, 

respectively, when there was a gap between stimulus presentations. During the gap (300-500 ms, 

marked by the black arrow), SST1 neurons became active, and the bump activity of Pyr neurons 

stayed at the same location. (E), Travelling time of bump activity to traverse the network as a 

function of the strength of the sensory inputs (i.e., input firing-rate values to PV1); see Methods 

for estimates of travelling time. The mean values and standard errors were calculated from 10 

independent simulations. The x-axis shows the sensory inputs to PV1 cells; Pyr cells receive 20% 

more spikes than PV1 cells.  

Figure 7: Ramping activity in the downstream neurons. We connected Pyr to downstream 

neurons with the coordinate-dependent connection probability as shown in (A). c, the coordinate 

of the individual neuron in Pyr, ranges from 1 to 4000. (B) and (C), Population activity of 

downstream neurons with higher and lower maximal connection probability, respectively; p0 is 

set to 1.0 and 0.1 for high and low connection probability. 50 ms non-overlapped bins were used 

to calculate the population activity. In contrast, (D) and (E) show the activity of randomly 

chosen 5 individual neurons with higher and lower probability, respectively, in the same 

temporal bins. 

Figure 8: Correlations between firing rates of individual cells and time. We performed linear 

regression analyses to see if individual cells’ activity increases over time. (A), Mean values and 

standard deviations of slopes, R2 and p-values from 5000 readout neurons. The blue and red 

represent dense (p=1.0) and sparse (p=0.1) connections, respectively. The mean value of p-

values is ~10-5 when p0=1.0. (B), Histogram of p-values.   
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Figure 5 
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Figure 6 
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Figure 7 
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Tables 

Table 1: Neural parameters for neurons and synapses. When a spike arrived, the membrane 

potential instantly jumped to a new value, which was determined by its capacitance (C) and time 

constant (τm). When the membrane potential was higher than the spike threshold, the membrane 

potential was reset to the predefined value (Vreset). Without any external input, the membrane 

potential relaxes back its the resting membrane potentials (EL). Synaptic events decay 

exponentially with a 2-ms time constant (τsyn). All synapses have a 1.5 ms delay unless otherwise 

stated; the only exception is given in Table 2. For depressing synapses, we selected the 

parameters (U and τref) given below.  

Neuronal Parameters Synaptic parameters 

C 

(membrane capacitance) 

1 pF τsyn  2.0 ms 

Vth 

(spike threshold) 

20 mV delay 1.5 

τm 

(Membrane time constant) 

20 ms U 0.5 

EL 

(resting membrane potential) 

0 mV τref 200 ms for discrete integrator 

50 ms for continuous integrator 

Vreset 

(reset after spiking) 

0 mV   
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Table 2: The parameters used for the discrete integrator. We connected populations by 

specifying connection probabilities and synaptic connection strengths. The presynaptic neurons 

are shown before the arrow. The first value in the parentheses is the connection probability. The 

connection strengths follow the Gaussian distributions. The mean values are the second value in 

the parentheses, and the standard deviations are chosen to be 10% of the mean. The excitatory 

and inhibitory connections cannot be less or higher than 0, respectively; when they violate this 

condition, we set them to 0. 

 Total Number Background inputs 

(Hz) 

Stimulus input (Hz; 

sustained) 

Pyr 6800 2,800 2000 

PV1 1088 4,500 2000 

PV2 1088 N/A 2000 

SST 544 3,200 N/A 

Connectivity within populations (connection probability, strength (pA)) 

PyrPyr (1.0 , 1.8) PyrSST (0.4, 0.96) 

PV1PV1 (0.3, -0.72) PV1PV1 (0.1, -0.72) 

Connectivity across populations (connection probability, strength (pA)) 

PyrPyr (0.2, 0.12) *delay 10 ms PV2SST (1.0, -6.0) 

PyrPV1 (0.2, 0.12) SSTPyr (1.0,-4.8) 

PV1Pyr (0.2, -1.08) SSTPV1 (0.3, -0.6) 

PV1SST (0.3, -0.6)   

Connection strength for background and stimulus inputs (pA) 

Pyr 0.12 PV2 0.36 

PV1 0.12 SST 0.12 

Onset stimulus input 

Target Pyr neurons  

in population 1 

Firing rate 1000 Hz 
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Table 3: The parameters used in the continuous integrator. Due to the lack of population 

structure, we connected neurons by specifying the number of inward connections to a specific 

neuron. Thus, we display the number of presynaptic neurons below.   

 Total Number Background inputs (Hz) Stimulus input (Hz) 

Pyr 4000 4,000 486 

PV1 1000 4,000 405 

PV2 1000 3,000 405 

SST1 4000 2,000 N/A 

SST2 4000 2,000 N/A 

Connectivity (Number of presynaptic neurons, strength (pA)) 

PyrPyr (400 , 0.12) PV1SST1 (100,-0.72) 

PyrPV1 (400, 0.12) PV2SST1 (1000, -0.72) 

PyrSST1 (1, 10.8) SST1Pyr (3600, -0.72) 

PyrSST2 (1, 10.8) SST1PV1 (100, -0.72) 

PV1Pyr (100, -0.72) SST2Pyr (400, -0.72) 

Connection strength for background and stimulus inputs (pA) 

All neurons 0.12 

Onset stimulus input 

Target First 400 Pyr neurons Firing rate 1000 Hz 
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