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Abstract 

Many developmental disorders are associated with deficits in controlling and regulating 

behaviour. These difficulties are foremost associated with attention deficit hyperactivity 
disorder (ADHD), but are also frequently observed in other groups, including children with 
diagnoses of specific learning difficulties, autistic spectrum disorder, or conduct disorder. 
The co-occurrence of these behavioural problems across disorders typically leads to 
comorbid diagnoses and can complicate intervention approaches. An alternative to 
classifying children on the basis of specific diagnostic criteria is to use a data-driven 
grouping that identifies dimensions of behaviour that meaningfully distinguish groups of 

children and become specific targets for intervention. The current study applies a novel 
data-driven clustering algorithm to group children by similarities in their ratings on a 
parent questionnaire that is commonly used to assess behavioural problems associated 
with ADHD. The sample consisted of 442 children identified by health and educational 
professionals as having difficulties in attention, learning and/or memory. The data-driven 
clustering yielded three distinct groups of children with symptoms of either: (1) elevated 

inattention and hyperactivity/impulsivity, and poor executive function, (2) learning 
problems, and (3) aggressive behaviour and problems with peer relationships. These 
groups were associated with significant inter-individual variation in white matter 
connectivity of the prefrontal and anterior cingulate. In sum, data-driven classification of 
executive function difficulties identifies stable groups of children, provides a good account 
of inter-individual differences, and aligns closely with underlying neurobiological 

substrates. 
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Introduction 

ADHD is commonly diagnosed on the basis of elevated symptoms of inattention and 

hyperactivity/impulsivity (ICD-10 F90.9, World Health Organization, 1992). These 
problems are typically linked to difficulties with executive function (Barkley, 1997; 
Castellanos & Tannock, 2002; Pennington & Ozonoff, 1996) and aggressive behaviours 
(Harty, Miller, Newcorn, & Halperin, 2008), and can lead to learning difficulties (Czamara 
et al., 2013) and problems making and sustaining friendships (Mrug et al., 2012). 
Symptoms of inattention and hyperactivity/impulsivity are also common among other 

developmental disorders including dyslexia (Germano, Gagliano, & Curatolo, 2004), autism 
(Corbett, Constantine, Hendren, Rocke, & Ozonoff, 2009) and conduct disorder (Szatmari, 
Boyle, & Offord, 1989). This symptom overlap complicates research into the causes and 
treatment of common developmental difficulties. In practical terms, this often results in 
children receiving comorbid diagnoses and standard intervention approaches for 
particular disorders (e.g. medication for ADHD) that often do not meet their individual 

needs. The aim of the current study was to use a data-driven approach to identify groups of 
children with similar dimensions of behavioural problems and to investigate the 
relationship between white matter connectivity and these groupings.  

Traditional categorical diagnostic approaches to understanding ADHD and other 
developmental disorders (e.g. ICD-10, World Health Organization, 1992) have considerable 
practical advantages by facilitating clinical decision making (Sonuga-Burke, 1998). 
However, current diagnoses are based on a tradition of clinical insight rather than 

knowledge about pathophysiological mechanisms (Sonuga-Burke & Halperin, 2010). The 
slow progress in understanding the mechanisms leading to neurodevelopmental disorders, 
and associated difficulties with identifying effective treatments, may in large part be 
attributable to the heterogeneous aetiology within traditional diagnostic classes. 
Subgroups within diagnostic categories may follow different pathways with a superficially 
similar clinical presentation (Nigg, 2006).  

An alternative to classifying children on the basis of specific diagnostic criteria is to use a 
data-driven grouping that identifies the dimensions of behaviour that meaningfully 
distinguish groups of children. Recent evidence from taxonomic and heritability studies 
support this approach to understanding ADHD (Marcus & Barry, 2011, Gjone, Stevenson, & 
Sundet, 1996). A dimensional approach can provide the practical advantages of clearly 
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defined categories, while also identifying the most pertinent behavioural characteristics for 
investigations into pathophysiological mechanisms. The current study uses a data-driven 
community clustering approach to do just this. This alternative approach is made possible 
by recent advances in network science methods, which we apply to a large dataset 

comprised of children identified as having problems in attention, learning and/or memory, 
who were referred to the study by educational and clinical professionals working in 
various specialist children’s services. This large sample includes children with specific, 
multiple and no diagnoses, and is not already restricted to children who have met 
particular diagnostic criteria. This offers the opportunity to identify the most pertinent 
behavioural dimensions, while side-stepping the biases inherent in recruiting according to 

current diagnostic classification. 

Data-driven identification of behavioural profiles is not a straightforward task. Most 
clustering algorithms necessitate a priori assumptions, like the geometrical properties of 
the cluster shape, the tuning of some parameters, or setting the number of desired clusters. 
These assumptions are difficult to make with psychometric data, but network science 
provides a possible solution.  Network science is the study of complex networks, which 

represent relationships between data as a network of nodes connected by edges. This 
methodological approach provides mathematical tools for quantifying the organisation of 
networks and the relationships between the nodes within them (Bullmore & Sporns, 2009). 
Defining subdivisions of highly-connected nodes within a network, so called communities, 
is an area of network science that has received considerable attention as it applies to many 
real world problems (Barabasi, 2016). In the case of psychometric data, the network can 
represent the similarity of scores between participants. Community detection makes it 

possible to define subgroups of participants that are most similar, while being as distinct as 
possible from other subgroups. The aim of the current study was to investigate whether 
subtypes of behavioural problems commonly linked with ADHD can be identified in a large 
sample of children referred for cognitive and learning difficulties using a community 
detection approach based on parent ratings on the Conner’s questionnaire. This scale is 
routinely administered in health care and educational settings, and in many clinics in the 

U.K. it is used to measure behavioural problems at home and school to aid in the diagnosis 
of ADHD. 

One of the aims of data-driven nosology is to identify behavioural dimensions that are 
more closely related to biological mechanisms. In the current study, we explored 
differences in white-matter connectivity between groups identified through community 
detection. White matter maturation is a crucial process of brain development that extends 

into the third decade of life (Lebel, Walker, Leemans, Phillips, & Beaulieu, 2008), which has 
been found to relate closely to cognitive development (Bathelt, Gathercole, Johnson, & 
Astle, in press; Clayden et al., 2011; Stevens, Skudlarski, Pearlson, & Calhoun, 2009). White 
matter maturation is thought to support cognitive development through better 
communication and integration between brain regions, particularly over longer distances 
(Collin & van den Heuvel, 2013). Accordingly, the brain can be modelled as a network of 
brain regions connected by white matter, commonly referred to as a connectome. Brain 

regions vary in the number of their connections – their node degree - which gives an 
indication of their importance for the network (Rubinov & Sporns, 2010; van den Heuvel, 
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Kahn, Goni, & Sporns, 2012). To explore which brain regions were most closely linked to 
the behavioural profiles identified through consensus clustering, we used a multi-variate 
dimension-reduction technique called partial least squares (PLS) (Krishnan, Williams, 
McIntosh, Abdi, 2011). In our analysis, PLS defined brain components that maximally 

distinguished the behaviourally defined groups.  

Participants and Methods 

Participants 

The sample consisted of ratings on 442 children, using the Conner’s Parent Rating Short 
Form 3rd edition (Conners, 2013), referred to as “Conners 3” from here on. The ratings 
were completed by parents or caregivers (age: mean=110.51 months; SE=1.24; 

Range=62-215; 295 male) as part of a larger ongoing study at the Centre for Attention, 
Learning and Memory (CALM) at the MRC Cognition and Brain Sciences Unit. Children were 
recruited to the CALM research clinic on the basis of having problems in attention, learning 
and memory that had come to the attention of a professional working in schools (e.g. 
special needs teacher) or specialist children’s community services (e.g. clinical or 
educational psychologists, speech and language therapists or paediatricians). During the 
clinic visit, children completed a wide range of cognitive assessments while their 

parents/caregivers filled in questionnaires about the child’s behaviour. Children were also 
invited for an MRI structural scan (see Figure 1 for attainment). The data reported here 
include three questionnaires and the MRI data. Exclusion criteria for referrals were 
significant or severe known neurological disorders, problems in vision or hearing that were 
uncorrected, or having a native language other than English. This study was carried out in 
accordance with the Declaration of Helsinki and was approved by the local NHS research 

ethics committee (Reference: 13/EE/0157). Written parental/caregiver consent was 
obtained and children provided verbal assent. 

Some children in the broad sample of children referred for problems relating to attention, 
learning, and/or memory, had received diagnoses through standard community services 
(see Table 1 for a breakdown of diagnoses). Among the children with a diagnosis, ADHD 
was the most common. Other diagnostic labels were rare. Therefore, diagnostic labels were 

grouped together for the comparison between diagnoses and the data-driven groups. 
Primary diagnoses of dyslexia, dyscalculia, or dysgraphia were summarised as ‘learning 
deficits’. Primary diagnoses of autism spectrum disorder, autism, or Asperger syndrome 
were summarised as ‘ASD’. Other labels, like OCD, depression, anxiety, or developmental 
delay occurred only in a few individuals and were grouped as ‘other’.  

 

Table 1: Breakdown of children by pre-existing diagnoses and referral routes. 

Abbreviations: ADHD: attention deficit hyperactivity disorder, ASD: autism spectrum 

disorder, SENCo: special educational needs coordinator 
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Figure 1: Overview of data included in behavioural and connectome analysis 
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Behavioural Analysis 

Questionnaire Data 

We used the Conners-3 questionnaire for parents (Conners, 2013), which is designed to 
assess behavioural difficulties associated with ADHD and related disorders. This scale is 
well validated with good psychometric integrity (Internal consistency: Cronbach’s 
alpha=0.91 [Range: 0.85-0.94]; Factorial validity: RMSEA=0.07 based on confirmatory 

factor analysis in a replication sample; for details see Conners, 2013). Questionnaire items 
are summarised into six scales (Inattention, Hyperactivity/Inattention, Learning Problems, 
Executive Function, Aggression, Peer Problems) and a total ADHD score is also derived. T 
scores of 60 and above are indicative of clinical levels. A high proportion of children in the 
sample had scores in this range on each scale of the subscales (see Table 2). 

 

Table 2: Scores on each scale of the Conners-3 questionnaire (inattention, 

hyperactivity/impulsivity, learning problems, executive function, aggression, peer 

relationships) for the entire sample. The last two columns indicate the total number and 

the percentage of children in the sample with T scores in the clinical range on each scale. 

Abbreviations: std= standard deviation of the mean.  

 

 

The questionnaire also contains two validity scales that may indicate response bias, i.e. the 
rater tries to convey an overly positive or negative impression to secure a certain outcome 
(Conners, 2013). The validity scales indicated a possibly overly negative response style for 
80 responses. Highly negative scores may indicate extreme problems in the rating domains 
or a negative bias of the rater, which may overestimate the child’s difficulties. Analyses 
were carried out including and excluding ratings with high Negative Impression scores. 

The Behavioral Rating Inventory of Executive Function (BRIEF) is a questionnaire about 
behaviours associated with executive function problems for parents of children aged 5 to 
18 years (Gioia, Isquith, & Kenworthy, 2000). There are eight subscales measuring 
behaviour problems related to inhibition, shifting, emotional control, initiation, working 
memory, planning/organising, organisation of materials, and monitoring.  
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The Strengths and Difficulties Questionnaire (SDQ) is a parent-rated scale for children aged 
8 to 16 years. It provides ratings for emotional symptoms and prosocial behaviour as well 
as scores for problems related to behavioural conduct, hyperactivity/inattention, and peer 
relationships.  

 

Community Detection 

Community detection is an optimisation clustering method. Networks in the current 
analysis represented the child-by-child correlations across the 6 scales of the Conners 3 
questionnaire. The community algorithm starts with each network node, i.e. child, in a 
separate community and then iteratively parcellates the network into communities to 
increase the quality index (Q) until a maximum is reached. The current study used the 
algorithm described by Rubinov and Sporns (Rubinov & Sporns, 2011) as implemented in 
the Brain Connectivity Toolbox (https://sites.google.com/site/bctnet/) version of August 

2016. This algorithm is not deterministic and may yield different solutions at each run. In 
order to reach a stable community assignment, we applied the consensus clustering 
method described by Lancichinetti and Fortunato (Lancichinetti & Fortunato, 2012). In 
short, an average community assignment over 100 iterations was generated. The 
community assignment was then repeated further until the community assignment did not 
change between successive iterations. The analysis was implemented in Python 2.7.11. The 

code for the entire analysis is available online (http://www.github.com/joebathelt/). 

 

Statistical Analysis 

Groups defined by the community detection algorithm were compared on scales of the 
Conners 3 questionnaire. Shapiro-Wilk tests indicated that scores within groups deviated 

from normality assumptions (Shapiro & Wilk, 1965). Group contrasts were therefore based 
on non-parametric Mann-Whitney U tests (Mann & Whitney, 1947). The Bonferroni 
method was used to account for multiple comparisons. Statistical tests were carried out 
using Scientific Python (SciPy) version 0.17.0 implementation (Jones, Oliphant, Peterson, & 
others, 2001). 

 

Structural connectome 

The aim of this analysis was to explore whether the data-driven grouping was related to 
differences in brain structure. To this end, white matter connectivity of brain regions was 

estimated from diffusion-weighted images. Next, we employed a multivariate, dimension-
reduction technique to relate the white-matter connectivity of brain regions to the group 
assignment. 
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Participant sample for the connectome analyses 

A subset of 191 families agreed to the neuroimaging part of the study. A total of 43 scans 
were excluded for poor quality, i.e. incomplete scan data, visually identified movement 
artefact, maximum displacement in the diffusion sequence above 3mm as determined by 

FSL eddy (see Figure 1 for an overview of attrition). The final sample consisted of 148 
complete datasets (behaviour, T1, dwi). The MRI sample did not significantly differ in age 
from the behavioural sample (MRI sample [months]: mean=117.05, std=27.436, 
t(359)=1.34, p=0.181). The ratio of groups defined in the analysis of the behavioural 
sample was similar in the MRI subsample (MRI sample: C1: 0.36, C2: 0.33, C3: 0.30). 

MRI data acquisition 

Magnetic resonance imaging data were acquired at the MRC Cognition and Brain Sciences 
Unit, Cambridge U.K. All scans were obtained on the Siemens 3 T Tim Trio system (Siemens 
Healthcare, Erlangen, Germany), using a 32-channel quadrature head coil. The imaging 

protocol consisted of two sequences: T1-weighted MRI and a diffusion-weighted sequence. 

T1-weighted volume scans were acquired using a whole brain coverage 3D Magnetisation 
Prepared Rapid Acquisition Gradient Echo (MP RAGE) sequence acquired using 1mm 
isometric image resolution. Echo time was 2.98 ms, and repetition time was 2250 ms. 

Diffusion scans were acquired using echo-planar diffusion-weighted images with an 
isotropic set of 60 non-collinear directions, using a weighting factor of b=1000s*mm-2, 

interleaved with a T2-weighted (b = 0) volume. Whole brain coverage was obtained with 
60 contiguous axial slices and isometric image resolution of 2mm. Echo time was 90 ms 
and repetition time was 8400 ms. 

Structural connectome construction 

The white-matter connectome reconstruction followed the general procedure of estimating 
the most probable white matter connections for each individual and then obtaining 
measures of fractional anisotropy (FA) between regions (see Figure 2). The details of the 
procedure are described in the following paragraphs. In the current study, MRI scans were 
converted from the native DICOM to compressed NIfTI-1 format using the dcm2nii tool 

(http://www.mccauslandcenter.sc.edu/mricro/mricron/dcm2nii.html). Subsequently, a 
brain mask was derived from the b0-weighted volume of the diffusion-weighted sequence 
and the entire sequence was submitted for correction for participant movement and eddy 
current distortions through FSL’s eddy tool. Next, non-local means de-noising (Coupe 
2008) was applied using the Diffusion Imaging in Python (DiPy) v0.11 package 
(Garyfallidis 2014) to boost signal to noise ratio. The diffusion tensor model was fitted to 

the pre-processed images to derive maps of fractional anisotropy (FA) using dtifit from the 
FMRIB Software Library (FSL) v.5.0.6 (Behrens 2003). A spherical constrained 
deconvolution (CSD) model (Tournier 2008) was fitted to the 60-gradient-direction 
diffusion-weighted images using a maximum harmonic order of 8 using DiPy. An 
alternative analysis with a constant solid angle (CSA) model is present in the 
Supplementary Materials section. Next, probabilistic whole-brain tractography was 
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performed based on the CSD model with 8 seeds in any voxel with a General FA value 
higher than 0.1. The step size was set to 0.5 and the maximum number of crossing fibres 
per voxel to 2. 

For ROI definition, T1-weighted images were preprocessed by adjusting the field of view 

using FSL’s robustfov, non-local means denoising in DiPy, deriving a robust brain mask 
using the brain extraction algorithm of the Advanced Normalization Tools (ANTs) v1.9 
(Avants 2011), and submitting the images to recon-all pipeline in FreeSurfer v5.3 
(http://surfer.nmr.mgh.harvard.edu). Regions of interests (ROIs) were based on the 
Desikan-Killiany parcellation of the MNI template (Desikan 2006) with 34 cortical ROIs per 
hemisphere and 17 subcortical ROIs (brain stem, and bilateral cerebellum, thalamus, 

caudate, putamen, pallidum, hippocampus, amygdala, nucleus accumbens). The surface 
parcellation of the cortex was transformed to a volume using the aparc2aseg tool in 
FreeSurfer. Further, the cortical parcellation was expanded by 2mm into the subcortical 
white matter using in-house software. In order to move the parcellation into diffusion 
space, a transformation based on the T1-weighted volume and the b0-weighted image of 
the diffusion sequence was calculated using FreeSurfer’s bbregister and applied to volume 

parcellation. 

For each pairwise combination of ROIs, the number of streamlines intersecting both ROIs 
was estimated and transformed to a density map. A symmetric intersection was used, i.e. 
streamlines starting and ending in each ROI were averaged. 

The weight of the connection matrices was based on fractional anisotropy (FA). To obtain 
FA-weighted matrices, the streamline density maps were binarized after thresholding and 
multiplied with the FA map and averaged over voxels to obtain the FA value corresponding 

to the connection between the ROIs. This procedure was implemented in-house based on 
DiPy v0.11 functions (Garyfallidis 2014). False positive streamline can introduce spurious 
results in structural connectome analyses (Zalesky et al., 2016). To remove spurious 
connections in the FA-weighted and streamline density-weighted networks, consensus 
thresholding was applied so that only connections that were present in more than 60% of 
the sample were retained (de Reus & van den Heuvel, 2013). 
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Figure 2: Overview of processing steps for structural connectome estimation 

Statistical analysis of connectome data 

For the analysis of the connectome data, the node degree of each node in the network was

calculated for each participant. Partial least squares regression was used to identify the

linear combination of brain areas that best explained group membership for the groups

identified through community clustering. The PLS model was evaluated by fitting the model

to random selection of 60% of the data and evaluating the model fit in a test set of 40%

The root-mean-squared error of a model based on the training data was significantly lower

when assessed with the test data compared to randomly shuffled samples (10-fold cross-

validated RMSE: mean=0.35, SE=0.025; permuted sample: mean=0.81, SE=0.018;

permutation test: p=0.002). 

The contribution of brain regions to the PLS latent variables was evaluated in a bootstrap

procedure in which 60% of the sample was randomly selected and the PLS model was

fitted (1000 permutations). The loading of brain regions onto PLS latent variables was

expressed as the mean loading divided by the standard error across permutations

(Krishnan, Williams, McIntosh, & Abdi, 2011). A Procrustes rotation was applied to align

the factor across iterations of the permutation procedure. All procedures were
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implemented using scikit-learn functions v0.18.1 under Python v2.7.12 (Pedregosa et al., 
2011). 
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Results 

Community Detection indicates three subgroups 

The current study employed graph theory to derive clusters of children with a similar 
profile across ratings on the Conners-3 questionnaire. The community detection algorithm 
in conjunction with consensus clustering arrived at a stable solution with three clusters. 
The quality index (Q=0.55) indicated strong separation of the clusters. A highly similar 

three cluster structure was also detected when excluding participants with a high negative 
impression rating (Q=0.59), and when randomly selecting half (Q=0.6) or a quarter of the 
sample (Q=0.61). 

The cluster assignment resulted in roughly equal splits between the three clusters (Cluster 
1: 150(33.93%), Cluster 2: 145(32.80%), Cluster 3: 147(33.25%); numbers for the whole 
sample). Statistical comparison between the groups indicated significant differences on all 

rating scales of the Conners 3 questionnaire between the groups (see Figure 3 and Table 
3). Children in the clusters were characterised by problems associated with cognitive 
control (C1: Inattention, Hyperactivity/Impulsivity, Executive Function), learning 
difficulties (C2: Learning Problems), problems associated with deficits in behavioural 
conduct (C3: Aggression, Peer Relations). Standardised scores indicated that the majority 
of children in the current sample scored in the elevated to highly elevated range across all 
scales of the questionnaire compared to the normative sample of the Conners-3 

questionnaire. The profiles based on scaled raw scores were also apparent when using the 
age-standardised scores. (see Figure 3b). 

Next, the prevalence of pre-existing diagnoses in each cluster was evaluated. Children with 
a diagnosis of ADHD were over-represented in Cluster 1 (Executive Function) (see Table 4 
for a breakdown of diagnoses per cluster, ��(3,354)=72.87, �=0.000). Other diagnoses 

were equally distributed between the clusters (ASD: ��(3,354)=0.06, �=0.971, 

Anxiety/Depression: ��(3,354)=0.54, �=0.764, Learning Deficit: ��(3,354)=3.88, 

�=0.144). 
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Figure 3: a Profile of ratings on the Conners 3 questionnaire in the three clusters indicated

by the community detection algorithm. The top of the figure shows the mean of scores in

each group with two standard errors. The scores represent residuals after regressing the

effect of age. The bottom figure shows the results of group-wise contrasts on each scale

Red indicates a significant difference between groups ( ) after Bonferroni

correction. b Comparison of the groups on scores standardised with reference to the

normative data of the Conners-3 questionnaire. c Child-by-child correlation matrix of

Conners-3 scores after ordering the matrix according to the cluster assignment indicated

by consensus clustering. The order matrix shows a clear separation between the clusters. d

Correlation matrix in a spring layout colour-coded according to the cluster assignmen

indicated by consensus clustering. The spring layout representation shows clear spatia

separation between the clusters. 
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Table 3: Scales of the Conners-3 questionnaire: Inattention, Hyperactivity/Impulsivity 

(HyperactImpuls.), Learning Problems (LearnProb.), Executive Function (ExeFunc), 

Aggression, Peer Relationship Problems (PeerRel.); mad: median absolute deviance; U: 

Mann Whitney U statistic; all p-values are Bonferroni corrected.  
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Table 4: Breakdown of diagnoses in each cluster identified through data-driven clustering.  
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Subgroups show differences in other questionnaire measures of executive 

function and everyday difficulties 

Next, the groups defined through community assignment based on Conners-3 data were 
compared on other questionnaire measures of behavioural problems linked to executive 
function difficulties (BRIEF) and everyday behavioural problems (SDQ). A comparison of 
these measures indicated significant differences between the groups. For the BRIEF, 

children in Cluster 1 (hyperactivity/executive problems) had more problems with working 
memory. Children in Cluster 2 (learning problems) were rated as having fewer difficulties 
with inhibition and monitoring and Cluster 3 (conduct problems) were also rated as having 
significantly higher problems in emotional control compared to the other groups (see 
Figure 4a).  

 For the strengths and difficulties questionnaire, children in Cluster 1 

(hyperactivity/executive problems) were characterised by high ratings for hyperactivity 
compared to Cluster 2 (learning problems), but lower conduct and peer relationship 
problem ratings compared to Cluster 3 (conduct problems). Children in Cluster 2 (learning 
problems) received significantly lower ratings for problems related to hyperactivity. 
Children in Cluster 3 (conduct problems) received significantly higher ratings for conduct 
and peer relationship problems (see Figure 4b).  
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Figure 4: Profile of ratings for children in the clusters defined by consensus module

assignment on a) a questionnaire on executive function difficulties (BRIEF) and b) a

questionnaire on strengths and difficulties (SDQ). The lines indicate the mean of each

group across the questionnaire scales with error bars showing two standard errors around

the mean. The bottom of each figure shows the binary outcome of t-tests comparing the

groups. Red indicates a significant result ( ) after Bonferroni correction

Please note that higher scores indicate a higher level of difficulties on each scale, apart from

the Prosocial Behaviour (Prosoc) scale where high scores indicate more prosocial

behaviour. Abbreviations: top: Inh=Inhibition, EmotCont=Emotional Control, Init=

Initiate, WM=Wokring Memory, Org=Organisation of Materials, Monit=Monitoring;
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bottom: Emo=Emotional Problems, Cond=Conduct Problems, Hyper=Hyperactivity, 

Peer=Peer Problems, Prosoc=Prosocial Behaviour. 

Subgroups show differences in the structural connectome 

Next, we investigated the relationship between white matter connectivity and the groups 
defined through consensus clustering using partial least squares (PLS) regression. The first 
three PLS components explained 48% of variance in group membership (Component 1: 

21.23% (SD: 4.302); Component 2: 16.28% (SD: 5.944); Component 3: 10.57% (SD: 4.277), 
bootstrapped mean and standard deviation (SD) over 1000 permutations). Further 
components explained less than 5% of variance and were therefore dropped from the 
analysis. Comparison of component loadings per group indicated significant lower loading 
of C1 (Inattention/Hyperactivity) compared to the other groups for PLS component 1, 
significantly higher loading in C1 (Inattention/Hyperactivity) compared to C3 
(Aggression/Peer Problems) for PLS component 2, and significantly lower loading in C1 

(Inattention/ Hyperactivity) compared to C2 (Learning Problems) for PLS component 3. 

There were differences in the brain areas that distinguished the groups. PLS 1 that 
distinguished between C1 (Inattention/Hyperactivity) and the other groups loaded most 
heavily on the rostral middle frontal, superior frontal, lateral orbitofrontal, anterior 
cingulate, lateral occipital and fusiform cortex (see Figure 5). The second PLS component, 
which distinguished between C2 (Learning Problems) and C1 (Inattention/Hyperactivity), 

loaded the most on the rostral middle frontal, lateral orbitofrontal, anterior and posterior 
cingulate, and lateral occipital cortex. The third PLS component, which distinguished C3 
(Conduct) from the other groups, loaded on the lateral orbitofrontal, anterior cingulate, 
and entorhinal cortex, and also on connections of the right pallidum and putamen (see 
Table 5). 
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Figure 5: Relationship between the node degree of brain regions in the structural 

connectome and clusters based on Conners-3 responses. The brain maps show the score of 

PLS components for brain regions that most strongly distinguished the group (top 20%). 

PLS scores above 2 are considered to be significantly predictive. The graphs show the 

statistical comparison of groups on loadings for each component. 

 

Table 5: PLS scores for subcortical areas 
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Discussion 

In the present study, we use a data-driven clustering algorithm to demonstrate that 

amongst a large sample of children referred by clinical and educational specialists there 
exist distinct behavioural profiles that transcend traditional diagnostic categories. Our 
data-driven clustering method produced groupings that were consistent in randomly-
selected subsets of the sample and reliably reproduced in simulated data with a known 
structure even when adding considerable noise. Our method also identified behavioural 
profiles evident in other parent ratings that were not used to inform the original algorithm.   

Specifically, we identified three subtypes of behavioural difficulties in children. One 
subgroup was characterised by high ratings for problems with behaviours related to 
inattention, hyperactivity/impulsivity, and executive function. This group was also rated as 
having increased difficulties with behaviours relating to working memory, organisation, 

planning, and hyperactivity on two other rating scales. The profile of behavioural 
difficulties in this subgroup captures core behavioural problems associated with the 
traditional ADHD diagnostic label (Barkley, 1997; Castellanos & Tannock, 2002; 
Pennington & Ozonoff, 1996, Willcutt, Doyle, Nigg, Faraone, & Pennington, 2005). Indeed, a 
disproportion number of children with an ADHD diagnosis was assigned to this cluster. 
However, this subtype was not synonymous with ADHD as half of the children with an 

ADHD diagnoses were split across the other two clusters that displayed markedly different 
behavioural profiles.  

Another subgroup identified through data-driven clustering were characterised by severe 
learning deficits relative to the other groups. In terms of their profiles on other 

questionnaires, this group received significantly lower ratings for behaviours relating to 
problems with inhibition.  Scales relating to other aspects of attention and executive 
function were also lower relative to the other two groups. However, when comparing the 
groups to the standardisation sample of the questionnaire, children in the learning 
difficulties groups still scored in the elevated to clinical range. This indicates that children 
in this group fall below age expectation for attention and executive function, but have less 
pronounced difficulties than children with primary concerns in these areas. The profile of 

more problems with inattention and executive function combined with fewer problems 
with hyperactivity/impulsivity resembles the profile described for the inattentive subtype 
of ADHD (Carlson & Mann, 2000). However, the current results suggest that learning 
difficulties are a more distinguishing feature on parent questionnaires for these children, 
while concerns around aspects of executive function are not as pronounced.  

A third subgroup was characterised by difficulties with aggression and peer relationships. 

Children in this group were also rated as having increased problems with behaviours 
related to emotional control and conduct on the two rating scales not used as part of the 
clustering algorithm. The distinction between groups with problems relating to either 
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executive function or behavioural conduct is reminiscent of the debate surrounding the 
overlap between ADHD and oppositional defiant disorder (ODD)/conduct disorder (CD). 
Some authors have argued for a high degree of overlap between these diagnostic groups 
(Szatmari, Boyle, & Offord, 1989), but evidence from genetic and imaging studies had 

suggested distinct pathophysiological mechanisms (Nadder, Rutter, Silberg, Maes, & Eaves, 
2002, Rubia et al., 2009; Banaschewski et al., 2003). Consistent with these results, the 
current study shows that behavioural ratings of inattention/hyperactivity and 
aggression/peer relationship problems form distinct clusters. 

 

These results demonstrate that data-driven clustering using a community detection 

algorithm can be used to characterise common and complex behavioural problems in 
children. The clustering algorithm identified groups that mirror some of the distinction of 
traditional diagnostic groups. One of the major advantages of this approach is that more 
homogeneous groupings were identified, and these are better suited for investigations into 
underlying biological mechanisms. Our data-driven sub-grouping was strongly associated 
with underlying differences in structural connectivity between groups. The areas that 

distinguish our groups have been suggested to play a role in relevant behaviours, making it 
possible to formulate hypotheses about neurobiological mechanisms associated with the 
different behavioural profiles. For instance, the group characterised by problems relating 
to attention and executive function showed differences in connectivity of the prefrontal, 
anterior cingulate cortex, and lateral occipital cortex. These differences in white matter 
connections of circuits related to inhibitory control (Miller & Cohen, 2001), goal-directed 
behaviour (Fjell et al., 2012) and visual attention (Castellanos & Proal, 2012) may play a 

role in the aetiology of these behavioural problems. In contrast, children with a profile of 
problems relating to emotional regulation and peer relationships were distinguished from 
the other groups by differences in white matter connectivity of the rostrolateral prefrontal 
cortex, anterior cingulate cortex, pallidum, and putamen. These findings may imply a 
difference in integration between the prefrontal cortex and the basal ganglia system 
(Finger et al., 2011; Rubia, 2011).  

 

In summary, groups of children identified through data-driven clustering of executive 
dysfunction behaviours show different profiles of impairment that relate to conduct, 
learning, and executive difficulties, respectively. These groups were also distinguished by 
the connectivity of circuits previously implicated in executive function and behavioural 
regulation, including the prefrontal cortex, cingulate cortex, and their subcortical 

connections. These findings act as an important proof of principle: data-driven profiling 
provides an alternative means of distinguishing common and complex behavioural 
problems in children. This data-driven classification of behavioural problems may provide 
a better account of cognitive differences and relate more closely to neurobiological 
mechanisms than traditional diagnostic approaches. 
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Supplementary Analyses 

Robustness of the consensus clustering algorithm 

In order to test the reliability of the community detection algorithm under varying

conditions, random networks with known community structure were created. The

networks consisted of 100 nodes with 4 modules. The connection likelihood within and

between clusters was systematically varied between 0.1 and 0.9. The quality index of the

community structure was calculated at each combination of between- and within-cluster

connection likelihood. The results indicated a high-quality index for network with higher

within-cluster than outside-cluster connection likelihood (see Figure S1a). High connection

density outside of clusters had a large influence, even when the connection likelihood

within modules was very high. 

For comparison with the empirical network of Conners-3 score correlations, the

connection density within and between networks was calculated. To this end, all

connections were binarized so that any connection with a Pearson correlation coefficient

above 0 was set to 1. The connection density was estimated as the ratio between existing

connections in the binarized empirical network and a fully connected network of the same

size. Connection density within modules based on consensus clustering was 0.79 and

connection density between modules was 0.05. Together with the results of the simulated

networks, these connection densities indicate very high separation of the network clusters. 

We further tested the robustness of the community assignment by adding increasing

percentages of random Gaussian noise ( =0, =1) to the network matrix and repeated the

consensus clustering procedure (see Figure S1b). The quality index indicated good

separation of the clusters between 5 and 30% noise (Q between 0.62 and 0.65). No stable

assignment could be reached at 35% of noise and above. These results indicate that the

community assignment is robust to a considerable amount of noise. 

 

Figure S1: Results of robustness testing a: Quality indices of consensus clustering using 

simulated networks with varying levels of within ( ) and between ( ) connections 
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probabilities. High within-cluster and low between-cluster connectivity lead to high 

separation of clusters with consensus clustering, i.e. high quality-indices. b: Consensus 

clustering using the empirical child-by-child network of Conners-3 correlations with 

varying levels of added noise. The three-cluster solution could be reconstructed up to 30% 

of added Gaussian noise. At higher-level of noise, no clustering solution could be obtained. 

Influence of connection weight and thresholding on structural connectome 

results 

Different methods exist for the construction of structural networks from diffusion-
weighted data and there is currently no scientific consensus on the best approach (Qi, 
Meesters, Nicolay, ter Haar Romeny, & Ossenblok, 2015). Networks in the current analysis 
were waited by fractional anisotropy (FA), a commonly used measure of white matter 
organisation based on the diffusion tensor model. FA characterises the directedness of 
diffusion within a voxel, but may lead to misinterpretation in regions of crossing fibres 

(Douaud et al., 2011). Therefore, the main analysis was repeated with networks weighted 
by Generalized FA (GFA) based on a constant solid angle (CSA) model, which is better able 
to take crossing fibres into account (Tuch, 2004). The node degree for each brain region 
was identical for the GFA and FA model for density thresholds between 5% and 15% 
(Kolmogorov-Smirnov test for two samples: p=1.0 uncorrected for all regions). It follows 
that the PLS analysis provides the same results for networks weighted by FA and GFA as 

this analysis was based on node degrees and node degrees were identical for both models 
within the relevant density range. 

Another potential source of variation in the analysis is the density threshold. Network 
analyses are sensitive to the number of connections. Therefore, density thresholding is 
often applied, but the chosen threshold may influence the results of the analysis. For the 
current investigation, the influence of different density thresholds was systematically 

investigated by repeating the analysis over a range of densities and comparing the factor 
scores in a repeated-measures analysis of variance model with factors for density and the 
interaction between density and component (components loading density + component + 
density*component). The results indicated no significant effect of density or the interaction 
between density and any component (model fit: F(9, 14790)�0.001, �=1, Adjusted-��=-

0.001; Density: � �0.001, �=1, Interactions: � �0.001, �=1). 
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