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Abstract 22 

For decades, ecological theory has predicted that the complexity of communities should 23 

be related to their stability. However, this prediction has rarely been tested empirically, because 24 

of both the difficulty of finding suitable systems where the question is tractable and the trouble 25 

of defining “stability” in real systems. Microbial communities provide the opportunity to 26 

investigate a related question: how does community connectivity relate to the rate of 27 

compositional turnover? We used a newly developed metric called community “cohesion” to test 28 

how microbial community connectivity relates to Bray-Curtis dissimilarity through time. In three 29 

long-term datasets, we found that stronger connectivity corresponded to lower rates of 30 

compositional turnover. Using two case studies of disturbed and reference communities, we 31 

found that the predictive power of community connectivity was diminished by external 32 

disturbance. Finally, we tested whether the highly connected taxa were disproportionately 33 

important in explaining compositional turnover. We found that subsets of highly connected 34 

“keystone” taxa, generally comprising 1-5% of community richness, explained community 35 

turnover better than using all taxa. Our results suggest that stronger biotic interactions within 36 

microbial community dynamics are stabilizing to community composition, and that highly 37 

connected taxa are good indicators of pending community shifts. 38 
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Introduction 39 

Theoretical ecologists have studied the relationship between community complexity and 40 

stability for decades (MacArthur 1955, May 1972, Pimm 1979, Neutel et al. 2007). Initial results 41 

suggesting that complex communities should be unstable (May 1972) prompted a rich literature 42 

aimed at understanding how complex communities persist in nature. The primary source of 43 

“complexity” considered in these studies is the strength of species interactions (May 2001). 44 

These theoretical studies consistently find that connectivity arising from species interactions is a 45 

major contributor to community stability (McCann et al. 1998, Ives et al. 2000, Neutel et al. 46 

2002, Wiliams and Martinez 2004). Depending on the configuration and strength of species 47 

interactions within a community, greater connectivity can lead to increased or diminished 48 

stability (Allesina and Tang 2012). 49 

Despite the substantial theoretical literature on how complexity influences stability, 50 

comparatively few studies have investigated this question empirically (but see Kondoh 2008, 51 

Neutel and Thorne 2014, Jacquet et al. 2016). This is partly due to the logistical challenges of 52 

addressing this question in real systems; such challenges include the difficulty in quantifying 53 

species interactions (Laska and Wootton 1998), the need to observe many taxa to satisfy model 54 

assumptions (Allesina and Tang 2012), the difficulty of sampling communities completely (Polis 55 

1991), and the need to collect data spanning many generations of the study organisms (Morin 56 

and Lawler 1995). Another practical hurdle is defining the terms “complexity” and “stability” for 57 

real communities (Connell and Sousa 1983, Neubert and Caswell 1997). Studies that have tested 58 

how community complexity relates to community stability have found mixed results. Recently, 59 

an analysis of 116 food webs found no consistent pattern between complexity and stability 60 

(Jacquet et al. 2016). However, prior studies have found evidence of positive (Polis and Strong 61 
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1996, Fagan 1997, Dunne et al. 2002) and negative (Pimm and Lawton 1978, Stouffer and 62 

Bascompte 2011) relationships. Thus, relatively little of the ecological theory regarding the 63 

complexity-stability debate has been tested empirically, and results of these empirical studies are 64 

mixed. 65 

Microbial communities are promising systems for investigating the relationship between 66 

community structure and community stability. Several characteristics of microbial communities 67 

make it possible to overcome the previously described challenges of testing theoretical 68 

hypotheses in empirical systems; microbial communities are sufficiently diverse as to meet the 69 

richness assumptions of theoretical models, hundreds of generations can be observed within one 70 

dataset, and the resolution of next generation sequencing datasets means that even rare taxa (< 71 

0.01% of communities) are sampled. However, one prominent challenge of testing ecological 72 

hypotheses in microbial communities is that interactions between taxa are difficult to observe 73 

and therefore must be inferred from observed population dynamics. For this reason, we 74 

previously created a robust metric, called “cohesion,” that quantifies the instantaneous 75 

connectivity of microbial communities (Herren and McMahon in press).  Briefly, this method 76 

quantifies connectedness values for each taxon in a dataset based on its average correlations with 77 

other taxa. Cohesion metrics are calculated from the abundance and connectedness of the taxa 78 

present in each community. When many highly connected taxa are present, the cohesion values 79 

for a community are larger in magnitude. There are two cohesion values for each sample, 80 

corresponding to connectivity arising from positive taxon relationships and connectivity arising 81 

from negative taxon relationships.  82 

Recent studies have hypothesized that biotic interactions are important for mediating 83 

compositional stability in microbial communities. For example, Zelezniak et al. (2015) found 84 
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that persistent sub-networks within microbial communities often included a high degree of 85 

facilitation among taxa. This result suggested that facilitation reinforces existing community 86 

composition, leading to lower rates of compositional change. Furthermore, several microbial 87 

studies have found evidence of “keystone taxa,” which are highly interactive and have a 88 

disproportionate effect on their communities (Vick-Majors et al. 2014, Agler et al. 2016, 89 

Banerjee et al. 2016). Changes in the abundance of keystone taxa lead to shifts in community 90 

composition due to cascading effects on other taxa (Mills et al. 1993). Finally, viruses and 91 

protists constitute a major source of mortality in marine bacterial communities (Fuhrman and 92 

Noble 1995, Suttle 2007), indicating the importance of predation in shaping community 93 

composition. Thus, multiple lines of evidence suggest that the strength of biotic interactions 94 

within microbial communities should be related to the rate of compositional change.  95 

In this study, we use three long-term microbial datasets (each spanning 10+ years) to test 96 

the hypothesis that higher connectivity in microbial communities is related to greater 97 

compositional stability through time. As mentioned previously, it is difficult to quantify stability 98 

for empirical systems. Instead, we use a related metric as our response variable, which is 99 

compositional turnover through time (Bray-Curtis dissimilarity). Modeling Bray-Curtis 100 

dissimilarity is a major aim of microbial ecology (Larsen et al. 2012), because the function of 101 

microbial communities is expected to change in parallel with changes in community composition 102 

(Urich et al. 2008, Sekirov et al. 2010). We also asked whether highly connected “keystone” taxa 103 

are disproportionally important for explaining compositional turnover (Power et al. 1996, Jordán 104 

et al. 1999). To answer this question, we repeated our analyses of community connectivity versus 105 

compositional stability using only the highly connected taxa. Finally, we reasoned that the 106 

influence of biotic interactions on compositional change would be diminished when external 107 
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disturbance to a community was high (Dai et al. 2017). To test this hypothesis, we analyzed two 108 

case studies where communities experienced different levels of disturbances. We hypothesized 109 

that connectivity would be a better predictor of compositional change when external forcing, and 110 

disturbance, was lower. Together, these analyses aimed to identify the conditions under which 111 

connectivity is related to compositional turnover and to investigate which taxa are most 112 

informative about overall community changes.   113 

 114 

Methods 115 

Datasets 116 

 To test our hypotheses about 1) the relationship between connectivity and compositional 117 

turnover and 2) the influence of highly connected taxa, we obtained three long-term, publicly 118 

available microbial datasets. These included the San Pedro Ocean Time Series bacterial dataset 119 

(SPOT) from the coastal ocean near southern California (described in detail in Cram et al. 120 

2015a), the Lake Mendota (Wisconsin, USA) phytoplankton dataset (ME-phyto, described in 121 

detail at https://lter.limnology.wisc.edu), and the Lake Mendota bacterial dataset (ME-bact, 122 

described in detail at https://lter.limnology.wisc.edu). Additional information and references for 123 

datasets can be found in the Supplementary Online Materials (SOM). We chose these datasets 124 

because of their long duration (SPOT: 10 years, ME-phyto: 19 years, ME-bact: 11 years), their 125 

large number of samples (SPOT: 274 samples with 437 taxa, ME-phyto: 293 samples with 409 126 

taxa, ME-bact: 91 samples with 7081 taxa), and the variety of technologies used to obtain the 127 

datasets (SPOT: automated ribosomal intergenic spacer analysis [ARISA], ME-phyto: cell 128 

counts under microscope, ME-bact: 16S rRNA gene amplicon sequencing).  129 
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 We identified two case studies where comparable microbial communities experienced 130 

differing levels of external disturbance. The first case study is the comparison of the 131 

phytoplankton communities in Peter Lake and Paul Lake in northern Wisconsin, USA (described 132 

in Elser and Carpenter 1988, Cottingham et al. 1998). These lakes were originally one water 133 

body, but were artificially divided into two lakes for the purpose of conducting ecological 134 

disturbance experiments. Paul Lake served as the undisturbed reference system, while Peter Lake 135 

was experimentally disturbed using nutrient supplementation and fish additions over the course 136 

of the time series (see SOM). Each lake was sampled 197 times over 12 years. Phytoplankton 137 

taxa were enumerated using direct cell counts under a microscope.  138 

The second disturbance case study is a comparison between two types of plaque 139 

communities sampled as a part of the Human Microbiome Project (HMP). Briefly, samples were 140 

collected from 242 human volunteers at up to 18 body sites at two sample collection dates with a 141 

maximum interval of 14 days. We compared the bacterial communities from the highly 142 

disturbed, exposed plaque site (supragingival plaque) to the protected plaque site beneath the 143 

gums (subgingival plaque). For both sites, we evaluated the relationship between community 144 

cohesion and compositional turnover (Bray-Curtis dissimilarity) in an individual’s microbiome 145 

between the two sampling times. 146 

Hypotheses: Long-Term Datasets 147 

 Following the result that persistent microbial sub-networks are enriched in taxon 148 

interactions (Zelezniak et al. 2015), we expected that greater connectivity would be related to 149 

lower compositional change. Additionally, we hypothesized that the highly connected taxa 150 

would have a disproportionate influence on community dynamics. Thus, we expected that 151 
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subsets of highly connected taxa would be better predictors of community turnover (Bray-Curtis 152 

dissimilarity) than randomly chosen subsets of taxa.  153 

Hypotheses: Case Study Comparisons 154 

 For Peter Lake and Paul Lake, we reasoned that the experimental perturbations would be 155 

a cause of community composition change in Peter Lake, but not in the undisturbed Paul Lake. 156 

Therefore, we expected that biotic interactions would contribute less to compositional turnover 157 

in the disturbed lake, Peter Lake. Thus, we hypothesized that community cohesion would be a 158 

better predictor of Bray-Curtis dissimilarity in the undisturbed Paul Lake than in Peter Lake.  159 

 For the two plaque bacterial communities, we reasoned that compositional change at the 160 

exposed site (supragingival plaque) would be influenced more strongly by immigration and 161 

dispersal than by biotic interactions. Conversely, we expected that the protected plaque 162 

communities (subgingval plaque) would be influenced by biotic interactions, because taxa are 163 

contained in close proximity for long periods of time. Thus, we hypothesized that cohesion 164 

would be a significant predictor of Bray-Curtis dissimilarity for the protected plaque site 165 

(subgingival plaque), but not at the exposed site (supragingival plaque).  166 

Statistical Methods 167 

We used cohesion metrics (Herren and McMahon in press) as a measure of the 168 

connectivity of the microbial communities (see SOM). We calculated cohesion metrics for the 169 

five datasets (three long-term time series and two case studies). Briefly, this workflow calculates 170 

two metrics for each sample quantifying the connectivity due to positive correlations between 171 

taxa and connectivity due to negative correlations between taxa. Cohesion metrics are calculated 172 

for each sample by taking the sum of every taxon’s connectedness score (also calculated within 173 

the cohesion workflow) multiplied by its abundance in the sample.  174 
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For each dataset, we conducted linear regressions modeling the compositional turnover 175 

(Bray-Curtis dissimilarity) between time points as a function of the cohesion metrics. Stated 176 

another way, we asked whether cohesion metrics predict Bray-Curtis dissimilarity. For the SPOT 177 

dataset, we analyzed the bacterial communities from the chlorophyll maximum site, reasoning 178 

that the cholorophyll maximum site represented a discrete ecological community. For taxa in the 179 

HMP plaque datasets, we calculated taxon connectedness values using correlations between taxa 180 

among individuals at the first sampling timepoint. Additional methods and the parameter values 181 

used in the workflow for each dataset can be found in Supplementary Table 1.  182 

 To test the hypothesis that highly connected taxa are disproportionately influential in 183 

determining community dynamics, we iteratively repeated the regression analysis (modeling 184 

Bray-Curtis dissimilarity as a function of community cohesion), each time calculating cohesion 185 

from different subsets of taxa. We excluded taxa based on their connectedness values, where we 186 

removed the least connected taxa first. For example, when 40 taxa were included in the analysis, 187 

the negative cohesion metric was calculated from the 40 taxa with the strongest negative 188 

connectedness, and the positive cohesion metric was calculated from the 40 taxa with the 189 

strongest positive connectedness. We recorded the R2 value from the linear model (Bray-Curtis 190 

dissimilarity vs. cohesion) for each subset of taxa.  191 

We then repeated the workflow described above (removing taxa and running the linear 192 

regression) using random subsets of taxa, rather than using the most highly connected taxa. Thus, 193 

when 40 taxa were included, we randomly selected 40 taxa from which to calculate the positive 194 

and negative cohesion values. We recorded the model R2 value of the linear regression when taxa 195 

were randomly included in the workflow. Then, we repeated this process 500 times, as to 196 

generate a distribution of model R2 values when 40 random taxa were selected. We ran 500 197 
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models for each possible number of taxa included in the workflow. We had hypothesized that the 198 

highly connected taxa would be more informative about overall community changes than 199 

randomly chosen taxa; thus, we expected that the model using the highly connected taxa would 200 

have a larger R2 value.  201 

 202 

Results 203 

Long-Term Datasets 204 

 For each of the three long-term datasets (SPOT, ME-phyto, and ME-bact), we used linear 205 

regression to analyze the amount of variability in community composition turnover (Bray-Curtis 206 

Dissimilarity) that could be explained by community connectivity (cohesion metrics). 207 

Representative results from all datasets analyzed are presented in Table 1.  208 

 Stronger cohesion, whether positive or negative, was consistently and significantly 209 

related to lower rates of compositional change (Table 1).  Stronger negative cohesion was 210 

significantly related to lower Bray-Curtis dissimilarity in all three datasets (Fig. 1B, D, F). In the 211 

ME-bact dataset, stronger positive cohesion was also significantly related to lower compositional 212 

turnover (Table 1). Maximum adjusted model R2 values were 0.485 for ME-phyto, 0.428 for 213 

ME-bact, and 0.478 for SPOT chlorophyll maximum.  214 

We re-calculated cohesion metrics from subsets of highly connected taxa in order to 215 

evaluate whether highly connected taxa were disproportionately informative about compositional 216 

turnover (black line, Fig. 1A, C, E). We also calculated cohesion metrics using random subsets 217 

of taxa to evaluate whether highly connected taxa modeled Bray-Curtis dissimilarity better than 218 

randomly chosen taxa (grey lines, Fig. 1A, C, E). In the models containing random subsets of 219 

taxa, model R2 values declined as fewer taxa were included in cohesion calculations (solid grey 220 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 3, 2017. ; https://doi.org/10.1101/159087doi: bioRxiv preprint 

https://doi.org/10.1101/159087
http://creativecommons.org/licenses/by-nc/4.0/


 11

line indicates the median). Conversely, in models using the most highly connected taxa, the 221 

adjusted R2 values remained stable as the least-connected taxa were removed (black line). In all 222 

three long-term datasets, adjusted R2 values increased when small subsets (< 5% total richness) 223 

of highly connected taxa were included (Table 1). Maximum R2 values occurred when using 15 224 

taxa in ME-phyto, 33 taxa in ME-bact, and 15 taxa in SPOT (Fig. 1A, C, E).  225 

In all three datasets, models based on the most highly connected taxa to calculate 226 

cohesion significantly outperformed the models using random subsets of taxa when small 227 

proportions of taxa were included. Significance was determined as instances when the model R2 228 

value using highly connected taxa was above the 95th percentile of R2 values from models using 229 

random taxa. For the SPOT dataset, the model using highly connected taxa performed 230 

significantly better than the model using randomly selected taxa when fewer than 25 taxa were 231 

included. For the ME-phyto dataset, it was when fewer than 35 taxa were included. For the ME-232 

bact dataset, it was fewer than 105 taxa.  233 

 234 

Identities of Highly Connected Taxa 235 

 We were curious about the identities of the most highly connected taxa in the three long-236 

term datasets. We focused on taxa that had the strongest negative associations with other taxa, 237 

because negative cohesion was highly significant in all long-term datasets (Fig. 1, Table 1). In 238 

the ME-phyto dataset, eight of the ten taxa with the largest negative connectedness values were 239 

cyanobacteria (see SOM for list). For the ME-bact dataset, we compared the lists of the fifty 240 

most abundant taxa and the fifty taxa with largest negative connectedness values (see SOM). 241 

Twenty-two taxa were on both these lists. Twenty-eight taxa were among the fifty most 242 

connected but not the fifty most abundant. These included three of the four recognized clades in 243 
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the acIV Actinobacteria lineage, a member of the Chloroflexi phylum, and two members of the 244 

Planctomycetes phylum, all of which are relatively understudied by freshwater microbial 245 

ecologists. Among the Proteobacteria in this list were PnecD, a relatively rare member of the 246 

genus Polynucleobacter, and several members of the order Rhizobiales. Although these 247 

organisms are not among the most ubiquitous or abundant taxa found in freshwater lakes, the 248 

results obtained here motivate us to study their ecology more intently, particularly with genome-249 

based methods. 250 

 251 

Case Study: Peter Lake and Paul Lake 252 

 As with the long-term datasets, we used cohesion metrics as predictors of Bray-Curtis 253 

dissimilarity for phytoplankton communities in Peter and Paul Lakes. We had hypothesized that 254 

cohesion metrics would be better predictors of compositional change in the reference system, 255 

Paul Lake. We conducted separate analyses for the two lakes.   256 

 As expected, cohesion metrics were better predictors for Paul Lake than for the disturbed 257 

system, Peter Lake. We evaluated this prediction by comparing model R2 values for the two 258 

lakes (Fig. 2). Across nearly the entire range of taxa included, models analyzing the Bray-Curtis 259 

dissimilarity of phytoplankton communities in Paul Lake had a higher R2 value than similar 260 

models for Peter Lake. The exception was when very few (< 10) taxa were included in the 261 

cohesion calculations. In both lakes, model R2 values dropped significantly when fewer than 10 262 

taxa were used to calculate cohesion. The best model fit in Paul Lake occurred when 13 taxa 263 

were included (adjusted R2 = 0.487), whereas for Peter Lake it was 57 taxa (adjusted R2 = 264 

0.374). In Paul Lake, stronger negative cohesion and weaker positive cohesion was both 265 

significantly related to lower Bray-Curtis dissimilarity (Table 1). In Peter Lake, stronger negative 266 
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cohesion and stronger positive cohesion were both significantly related to lower Bray-Curtis 267 

dissimilarity (Table 1).  268 

  269 

Case Study: Exposed and Protected Plaque Communities 270 

 We tested whether cohesion could explain community composition turnover in plaque 271 

communities in the human-associated microbiome. We expected that cohesion would be a 272 

significant predictor of compositional turnover at the protected plaque site (subgingival plaque), 273 

but not at the exposed plaque site (supragingival plaque). In this analysis, we calculated Bray-274 

Curtis dissimilarities from two communities sampled from the same individual host, collected at 275 

two different time points. 276 

 In the exposed plaque communities (supragingival plaque), we found that there was no 277 

significant relationship between either cohesion metric and Bray-Curtis dissimilarity (Fig. 3). 278 

However, in the protected plaque communities (subgingival plaque), cohesion was significantly 279 

related to Bray-Curtis dissimilarity. The model fit was best (adjusted R2  = 0.207) when 13 280 

OTUs were included (Fig. 3). Stronger positive cohesion and weaker negative cohesion were 281 

both significantly related to lower Bray-Curtis dissimilarity (Table 1).   282 

We conducted this same analysis using the other 16 body sites sampled as a part of the 283 

Human Microbiome Project (see SOM for results). Most sites (11 of 16) showed highly 284 

significant relationships (p < 0.001) between cohesion and the rate of compositional turnover 285 

(Bray-Curtis dissimilarity). At all 11 sites, stronger negative cohesion was related to lower Bray-286 

Curtis dissimilarity. Positive cohesion was highly significant at 6 of the 11 sites, but showed 287 

mixed relationships with Bray-Curtis dissimilarity.  288 

 289 
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Discussion 290 

 The consistent results from the three long-term (10+ year) microbial time series showed 291 

that stronger connectivity within aquatic microbial communities was related to greater 292 

compositional stability. In all three cases, stronger cohesion values were significantly related to 293 

lower Bray-Curtis dissimilarity over time (Fig. 1B, D, F). Moreover, models using information 294 

from small subsets of highly connected taxa predicted compositional turnover performed better 295 

than models using all taxa (Fig. 1A, C, E). Therefore, the most highly connected taxa had the 296 

strongest relationship with compositional change, and their presence corresponded to increased 297 

compositional stability. In all three long-term datasets, highly connected taxa performed 298 

significantly better than models built using random assemblages of taxa. Only a small fraction of 299 

taxa, generally comprising 1-5% of total richness, were necessary to model compositional 300 

turnover. These qualitatively consistent results show support for the hypotheses that 1) 301 

community connectivity is a strong mediator of compositional stability and 2) highly connected 302 

taxa have disproportionate influence on observed community dynamics.  303 

The predictive power of our models in the long-term datasets was striking, given that no 304 

environmental factors were included in these analyses. For the three long-term datasets, the 305 

model R2 values ranged between 0.4 and 0.5. For comparison, previous analyses modeling the 306 

community similarity between time points in the SPOT dataset obtained maximum R2 values of 307 

approximately 0.2, even when using over 30 environmental parameters (Cram et al. 2015a). 308 

Similarly, a model explaining compositional turnover in the ME-phyto dataset using 309 

environmental variables had an adjusted R2 value of 0.23 (Herren and McMahon in press).  310 

Our result that stronger negative cohesion was related to lower compositional turnover in 311 

the long-term time series was consistent across a variety of ecosystems, sampling methods, and 312 
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sample dates. The three datasets were obtained using different techniques for determining 313 

abundance, including direct cell counts (ME-phyto), 16S rRNA gene tag sequencing (ME-bact), 314 

and ARISA (SPOT). These methods all differ in their sensitivity and bias. Thus, the consistency 315 

of our results suggest that including cohesion as a predictor variable might improve models of 316 

compositional turnover in many microbial systems. 317 

 318 

Disturbance Decreases the Importance of Connectivity 319 

The case studies of disturbed systems showed that community cohesion had less 320 

explanatory power when communities experienced external disturbance. The Peter Lake vs. Paul 321 

Lake comparison showed that cohesion metrics were better predictors of Bray-Curtis 322 

dissimilarity in the undisturbed system, Paul Lake (Fig. 2). In Peter Lake, experimental 323 

perturbations caused shifts in the phytoplankton community (Carpenter et al. 1987, Carpenter et 324 

al. 1996, Cottingham and Carpenter 1998). Thus, some of the compositional change in Peter 325 

Lake was due to experimental disturbances. Our results agree with these previous conclusions, 326 

suggesting that connectivity had decreased influence on compositional change in the perturbed 327 

lake, Peter Lake.  328 

Analyses of the protected and exposed plaque sites showed that community cohesion was 329 

only an important explanatory factor in compositional turnover at the protected plaque site (Fig. 330 

3). Many of the same OTUs were present in the protected and exposed plaque communities, but 331 

their connectedness and power to predict compositional change were different at the two sites. 332 

These results suggest that high levels of disturbance and dispersal can disrupt the relationship 333 

between biotic interactions and community stability. 334 
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There are two main ways in which disturbance can alter the relationship between biotic 335 

interactions and compositional change. First, disturbances causing high immigration or 336 

emigration of taxa disrupt established species interactions. Biotic interactions drive population 337 

dynamics by influencing taxon growth and death rates (Gotelli 2001); thus, the effects of biotic 338 

interactions will be most apparent when taxa interact consistently over many generations. 339 

Second, disturbances cause compositional change that is not linked to biotic interactions. For 340 

example, compositional change at the exposed plaque site may have resulted from tooth brushing 341 

or from consuming food. Thus, the proportion of total compositional change due to biotic 342 

interactions would be diminished in this case. The lower predictive power of cohesion when 343 

applied to highly disturbed communities suggests that the importance of biotic interactions in 344 

community assembly and turnover is context dependent.  345 

 346 

Highly Connected Taxa as Keystone Taxa 347 

Focusing on highly connected taxa may be a useful strategy for researchers seeking to 348 

understand microbial community assembly and compositional change. In all three long-term 349 

datasets, the ability to explain compositional turnover was highest when a small number (15-33) 350 

of highly connected taxa were included. Similarly, in the two reference systems in the case study 351 

analyses, the optimal number of taxa to include was 13 for both datasets (Table 1). Including 352 

taxa with weaker connectedness values in our models often obscured the signal of connectivity 353 

captured by the cohesion metrics. These results support the hypothesis that the highly connected 354 

taxa may function as “keystone taxa” within microbial communities; the relatively small subsets 355 

of highly connected taxa had outsized explanatory power of overall community dynamics. 356 

Additionally, although some of the datasets contained the same phytoplankton taxa (ME-phyto, 357 
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Peter Lake, Paul Lake), the same taxon received different scores of connectedness in the various 358 

datasets. This result suggests that the ecological context of the microbial communities is 359 

important for determining which taxa will act as keystone taxa in various environments.  360 

We propose that the approach of evaluating model fit using different subsets of taxa 361 

could be generalized to other analyses with different response variables. Model fit should be best 362 

when the most informative taxa are included in the analysis. One strategy for identifying taxa 363 

with disproportionate influence would be to include the taxa where the model R2 values spike in 364 

Fig. 1. Although model R2 values remained high when small numbers of taxa were included, we 365 

would caution against building predictive models with fewer than 5-10 taxa. In this case, 366 

cohesion values obtained from a training set of communities may be prone to high variability 367 

when applied to new communities, especially if there are directional trends in taxon abundances 368 

over time.   369 

 370 

Ecological Interpretation of Connectivity and Compositional Turnover  371 

  In the majority of instances where cohesion metrics were significant predictors of Bray-372 

Curtis dissimilarity, stronger connectivity was related to greater compositional stability. 373 

However, there were cases that deviated from this norm, where stronger connectivity was related 374 

to more rapid change. We hypothesize that these anomalies are mediated by the ecology of the 375 

different study sites. For example, the result from Paul Lake that stronger positive cohesion was 376 

destabilizing was driven by samples from the summer of 1993, when a large and persistent 377 

cyanobacterial bloom disrupted normal seasonal dynamics. Similarly, following the result that 378 

cohesion had lower explanatory power in disturbed systems, it would be interesting to investigate 379 

how the strength of deterministic versus stochastic forces alters the relationship between 380 
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community connectivity and community stability. This might be done with the Human 381 

Microbiome Project dataset, as immigration and selective pressure likely differ between body 382 

sites (Li and Ma 2016). Our preliminary analysis of this dataset showed that 12 of the 18 sites 383 

had a strong relationship between cohesion values and compositional turnover rate, but the 384 

explanatory power of the models varied. Quantifying dispersal and selection rates at different 385 

sites may shed light on the variability of the observed relationships and the degree to which 386 

community connectivity can explain compositional change.  387 

 Under the assumption that cohesion measures biotic interactions (Herren and McMahon 388 

in press), our results support the hypothesis that biotic interactions are stabilizing to microbial 389 

community composition. Several recent studies have concluded that biotic interactions can be 390 

strong drivers of microbial population dynamics, on par with or exceeding the influence of 391 

environmental factors (Cram et al. 2015b, Lima-Mendez et al. 2015, Weitz et al. 2016, Cabello 392 

et al. 2016, Trivedi et al. 2017). For example, many OTUs are more strongly related to other 393 

OTUs than to habitat variables (Cram et al. 2015b). However, few studies have tested the 394 

relationship between connectivity and compositional change, primarily because the methods to 395 

quantify connectivity have only been recently developed. Initial theoretical studies indicated that 396 

stronger biotic linkages would be destabilizing to ecological communities (May 1972, Pimm 397 

1979). However, these initial studies also made several simplifying assumptions about the 398 

organization of ecological food webs. The ensuing literature has discovered several possible 399 

mechanisms that allow diverse and complex communities to persist in nature (e.g. McCann et al. 400 

1998, Brose et al. 2006, Kondoh 2006). Future work might consider how the attributes of 401 

microbial communities, including spatial structuring (Long and Azam 2001), dispersal rates 402 
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(Finlay 2002), and the possibility of dormancy (Lennon and Jones 2011) influence the 403 

relationship between connectivity and compositional stability.   404 

Biotic interactions create feedback loops within ecological communities that can amplify 405 

or dampen the effects of external perturbations (Berryman and Millstein 1989). One mechanistic 406 

hypothesis for the result that stronger connectivity is related to lower compositional change is 407 

that the taxon interactions in microbial communities are arranged to form negative feedback 408 

loops, thereby mitigating the effects of disturbance (Konopka et al. 2015, Coyte et al. 2015). 409 

Thus, stronger interactions would lead to stronger negative feedback loops that buffer 410 

communities from compositional change. Our findings also agree with recent work showing that 411 

persistent modules of taxa are enriched in taxon interactions (Zelezniak et al. 2015). Thus, 412 

another interpretation is that biotic interactions create self-reinforcing modules within bacterial 413 

communities, which leads to lower turnover. One possible mechanism generating these self-414 

reinforcing subunits is metabolite exchange between taxa (Morris et al. 2013, Levy and 415 

Borenstein 2013). Finally, our work agrees with recent studies that hypothesize that microbial 416 

communities contain keystone taxa, which shape community assembly due to their strong 417 

interactions with other taxa (Vick-Majors et al. 2014, Agler et al. 2016, Banerjee et al. 2016). We 418 

propose that studying these keystone taxa might allow researchers to prioritize organism-centric 419 

studies to learn why and how specific taxa have such a strong influence on communities.  420 

Ecological theory offers some insight into why negative cohesion was often more 421 

strongly related to compositional stability than positive cohesion. Under some circumstances, 422 

pairwise correlations may be indicative of pairwise taxon interactions; we make this simplifying 423 

assumption to investigate our results in the context of classical ecological theory. Mathematical 424 

models using local stability analysis with simple communities have indicated that stable 425 
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equilibria are common when negative interactions (e.g. competition, predation) are present. For 426 

instance, scenarios with stable eqiulibria include: two or more competitors (May and Leonard 427 

1975), one predator and one prey (Rosenzweig and MacArthur 1963), one predator with multiple 428 

prey (Holt 1977), and multiple predators with one or more prey (McPeek 2012). Conversely, 429 

stability is rare in food webs with exclusively positive pairwise interactions (May 1981). 430 

However, recent theoretical literature has indicated that mutualism within the context of other, 431 

negative interactions can be stabilizing (Mougi and Kondoh 2012). Thus, ecological theory 432 

indicates that the placement and strength of negative interactions within communities is critical 433 

to maintaining stable composition. The traits of the most highly connected Mendota 434 

phytoplankton taxa further support this line of reasoning. Most of the taxa associated with low 435 

compositional turnover were cyanobacteria, which often have a competitive relationship with 436 

other phytoplankton (Fong et al. 1993). Several studies have documented the self-reinforcing 437 

effect of competition for light in aquatic environments, showing that high cyanobacterial 438 

abundance can be a stable state in eutrophic lakes (Scheffer et al. 1997, Schröder et al. 2005). 439 

Thus, our results align with existing theoretical explanations of phytoplankton community 440 

transitions, and suggest that similar dynamics may be present in other systems. Although the 441 

knowledge of traits and interactions is scarce for taxa in the other two long-term datasets (SPOT 442 

and Mendota-bact), the lists of highly connected taxa provided here (available in SOM) may be 443 

useful starting places for trait-based studies.  444 

We encourage future studies to examine traits of highly connected taxa using modeling or 445 

experimental approaches. Although the assumption that taxon correlations are indicative of taxon 446 

interactions is useful for invoking ecological theory, there are several conditions where this 447 

assumption would be false. For example, two competing taxa might show a negative correlation 448 
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in their abundances through time due to competitive exclusion; conversely, two competing taxa 449 

may have similar niches, and therefore might show a positive correlation due to simultaneous 450 

responses to environmental drivers. Finally, other trophic levels likely influence the correlations 451 

and connectedness metrics observed in these microbial communities, although these factors are 452 

not explicitly included in these analyses. Thus, mechanistic models would greatly benefit further 453 

studies of the role of highly connected taxa in community dynamics.  454 

Our results show several empirical instances where stronger connectivity is related to 455 

greater compositional stability, contrary to the initial theoretical finding that highly connected 456 

communities should be unstable. Empirical food webs have many non-random attributes, which 457 

may explain why our results differ from theoretical expectations and analyses of simulated 458 

datasets (Pimm 1980, Polis 1991, Neutel et al. 2007). Our consistent finding that greater 459 

community connectivity (especially from negative connections between taxa) results in lower 460 

compositional turnover suggests that either evolutionary or community assembly processes 461 

arrange biotic interactions to form stabilizing feedback loops.  462 
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Figure 1: Analyses of the three long-term microbial datasets show that stronger cohesion is 636 

related to lower compositional turnover in all three long-term datasets. Left-hand panels (A, C, 637 

E) show the how the adjusted model R2 values of the regression analysis changed as taxa were 638 

excluded from cohesion calculations. For each number of taxa on the x-axis, cohesion values 639 

were calculated from the most highly connected taxa (black line) and from a random subset of 640 

taxa (grey lines). The solid grey line shows the median adjusted model R2 for randomly selected 641 

subsets, while the dashed grey lines give the 5% and 95% intervals. Median R2 values from 642 

models using random subsets of taxa declined as fewer taxa were included in the cohesion 643 

metrics. When 1-5% of taxa within a community were used to calculate cohesion, models using 644 

highly connected taxa generally had higher model R2 values than models using random taxa. The 645 

red stars in left-hand panels identify the regression model with the highest adjusted R2, which is 646 

displayed in the paired right-hand panel. Right-hand panels (A, C, E) show the best-fitting linear 647 

regressions modeling compositional turnover (Bray-Curtis dissimilarity) as a function of 648 

cohesion from negative connections between taxa. Points indicate Bray-Curtis dissimilarity 649 

between sequential samples. Solid lines show the fit of linear models. All three datasets showed 650 

that cohesion arising from negative correlations between taxa was a strong predictor of Bray-651 

Curtis dissimilarity (Table 1).  652 

 653 

Figure 2: Cohesion explained a greater amount of variability in phytoplankton community 654 

turnover in the undisturbed Paul Lake, as compared to an experimentally disturbed system, Peter 655 

Lake. The model R2 values predicting Bray-Curtis dissimilarity in Paul Lake were generally 656 

higher than for models predicting Bray-Curtis dissimilarity in Peter Lake. The exception was 657 

when models used very few (< 10) taxa to calculate cohesion metrics. As in Figure 1, taxa were 658 
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sequentially removed from the analysis in reverse order of their connectedness (i.e. least 659 

connected taxon removed first). 660 

 661 

Figure 3: The adjusted model R2 values for plaque communities sampled as part of the Human 662 

Microbiome Project show that cohesion was a significant predictor of Bray-Curtis dissimilarity 663 

in the protected plaque site (subgingival plaque, solid line), but not at the exposed plaque site 664 

(supragingival plaque, dashed line). Icons above the solid line indicate when positive cohesion 665 

was significant at p < 0.001 (+) and when negative cohesion was significant at p < 0.001 (-). At 666 

the exposed plaque site, cohesion was never a significant (p < 0.05) predictor of Bray-Curtis 667 

dissimilarity.   668 
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Table 1: Representative Results of Cohesion as a Predictor of Bray-Curtis Dissimilarity 1 

Dataset Total # 
of Taxa 

Optimal # 
of Taxa* 

Maximum 
Adjusted 
R

2
 

Positive 
Cohesion 
P value 

Negative 
Cohesion 
P value 

Positive 
Cohesion 
Direction + 

Negative 
Cohesion 
Direction + 

Data 
Points in 
Analysis # 

ME - 
phyto 

409 15 0.485 n.s. < 1*10-27 NA Stronger is 
stabilizing 

186 

ME - 
bact 

7081 33 0.428 < 1*10-3 < 1*10-7 Stronger is 
stabilizing 

Stronger is 
stabilizing 

54 

SPOT – 
Chl. Max. 

392 15 0.478 n.s. < 1*10-4 NA Stronger is 
stabilizing 

36 

Protected 
Plaque 

2190 13 0.207 < 1*10-4 0.014 Stronger is 
stabilizing 

Weaker is 
stabilizing 

93 

Exposed 
Plaque 

2124 79 0.018 n.s. n.s. NA NA 95 

Paul - 
Reference 

209 13 0.487 < 1*10-5 < 1*10-18 Weaker is 
stabilizing 

Stronger is 
stabilizing 

123 

Peter -  
Disturbed 

237 57 0.374 0.009 < 1*10-6 Stronger is 
stabilizing 

Stronger is 
stabilizing 

121 

* Indicates the number of taxa where the maximum adjusted R2 value occurred 2 

+ These columns indicate the direction of a significant relationship between cohesion and Bray-3 

Curtis dissimilarity. For example, “stronger is stabilizing” means that greater cohesion is related 4 

to lower Bray-Curtis dissimilarity. Non-significant relationships are denoted “n.s.”. 5 

# Because the time elapsed between samples is strongly related to Bray-Curtis dissimilarity, we 6 

only included paired sampled with similar time separation (see Supplementary Table 1 for 7 

further information). This reduced the number of data points available for our analyses.    8 
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