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ABSTRACT 

Genome-wide analysis of chromatin accessibility in primary tissues has uncovered 

millions of candidate regulatory sequences in the human and mouse genomes1-4. 

However, the heterogeneity of biological samples used in previous studies has prevented 

a precise understanding of the dynamic chromatin landscape in specific cell types. Here, 

we show that analysis of the transposase-accessible-chromatin in single nuclei isolated 

from frozen tissue samples can resolve cellular heterogeneity and delineate 

transcriptional regulatory sequences in the constituent cell types. Our strategy is based 

on a combinatorial barcoding assisted single cell assay for transposase-accessible 

chromatin5 and is optimized for nuclei from flash-frozen primary tissue samples (snATAC-

seq). We used this method to examine the mouse forebrain at seven development stages 

and in adults. From snATAC-seq profiles of more than 15,000 high quality nuclei, we 

identify 20 distinct cell populations corresponding to major neuronal and non-neuronal 

cell-types in foetal and adult forebrains. We further define cell-type specific cis regulatory 

sequences and infer potential master transcriptional regulators of each cell population. 

Our results demonstrate the feasibility of a general approach for identifying cell-type-

specific cis regulatory sequences in heterogeneous tissue samples, and provide a rich 

resource for understanding forebrain development in mammals. 

 

MAIN 

A significant fraction of the non-coding DNA in the mammalian genome encodes 

transcriptional regulatory elements that play fundamental roles in mammalian 

development and human disease3,6. Identification of these sequences and characterizing 

their dynamic activities in specific cell types is a major goal in biology. Analysis of 

chromatin accessibility in primary tissues using assays such as DNase-seq2,4 and ATAC-

seq7,8 has led to annotation of millions of candidate cis regulatory elements in the human 

and mouse genomes1,3. Yet, the catalogue of current cis regulatory elements, based 

primarily on analysis of bulk, heterogeneous biological samples, lacks precise information 

regarding cell-type- and developmental-stage-specific activities of each element. In-vivo 

lineage tracing using INTACT mouse models8,9 and isolation of particular cell types based 
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on specific protein markers can address this limitation to some degree and in limited cell 

types10,11. But a more general strategy is necessary to study primary tissues from all 

stages of development in human as well as in other species.  

 

In theory, single cell based chromatin accessibility studies can be used for unbiased 

identification of subpopulations in a heterogeneous population, and proof of principle has 

been reported using cultured mammalian cells and cryopreserved blood cell-types5,12,13 . 

However, there has been no report that such approaches have been successfully used 

to dissect transcriptional regulatory landscapes in primary tissues.  The main difficulty is 

that primary tissues are typically preserved either by formalin fixed paraffin embedding or 

flash freezing, conditions that are not amenable for isolating intact single cells. Here, we 

show that it is possible to isolate single nuclei from frozen tissues and assay chromatin 

accessibility in each nucleus in a massively parallel manner.  

 

We adopted a combinatorial single cell ATAC-seq (scATAC-seq) strategy5 and optimized 

it for frozen tissue sections (Methods). Compared to the previous protocol5, key 

modifications were made to maximally preserve nuclei integrity during sample processing 

and optimize transposase-mediated fragmentation of chromatin in individual nuclei 

(Extended Data Fig. 1-3). We applied this improved protocol, hereafter referred to as 

snATAC-seq (single nuclei ATAC-seq), to mouse forebrain in the 8-week-old adult mouse 

(P56) and in seven developmental stages at 1-day intervals starting from embryonic day 

11.5 (E11.5) to birth (P0) (Fig.1a, b). Sequencing libraries were sequenced to almost 

saturation as indicated by a read duplication rate of 36-73% per sample (Extended Data 

Table 1). We filtered out low quality datasets using three stringent quality control criteria 

including read depth (Extended Data Fig. 3d), recovery rate of constitutively accessible 

promoters in each nucleus (Extended Data Fig. 3e), and signal-over-noise ratio estimated 

by fraction of reads in peak regions (Method; Extended Data Fig. 3f). In total, 15,767 high-

quality snATAC-seq datasets were obtained. The median read depth per nucleus ranged 

from 9,275 – 18,397, median promoter coverage was 11.6%, and the median fraction of 

reads in peak regions was 22% (Extended Data Table 2, 3). Our protocol maintains the 
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extraordinary scalability of combinatorial indexing, while featuring a ~ 6 fold increase in 

read depth per nucleus (Extended Data Table 3). The high quality of the single nuclei 

chromatin accessibility maps was supported by a high concordance between the 

aggregate snATAC-seq data and bulk ATAC-seq data (R > 0.9), and high reproducibility 

between biological replicates (R > 0.91, Fig. 1c, Extended Data Fig. 4).  

 

The snATAC-seq profiles from each forebrain tissue arise from a mixture of distinct cell 

types. We reasoned that cells of the same type should share higher similarity in the open 

chromatin profiles than cells from different cell types. Based on this assumption, we 

developed a computational framework to uncover distinct cell types from the snATAC-

seq datasets without prior knowledge of cell types in the tissue. Specifically, we first 

determined the open chromatin regions from the bulk ATAC-seq profiles of mouse 

forebrain tissue in seven fetal development time points and in adults, resulting in a total 

of 154,364 combined open chromatin regions that were detectable in one or more stages 

(Fig. 1d, Methods, Supplementary Table 1; Zhao et al. manuscript in preparation). Next, 

we constructed a binary matrix of open chromatin regions, using 0 and 1 to indicate 

absence and presence of a read at each open chromatin region, respectively, in each 

nucleus (Fig. 1d). Third, we calculated the pairwise similarity between cells using a 

Jaccard index. After applying a non-linear dimensionality reduction method, t-SNE14, the 

Jaccard index matrix was projected to a low-dimension space to reveal cell clusters (Fig. 

1d)15. Finally, we filtered out any cluster with abnormal sequencing depth or in-group 

similarity compared to other clusters5. We performed the clustering using the 140,103 

distal elements (outside 2 kb upstream of refSeq transcription start site), since previous 

studies have shown highly cell type-specific chromatin accessibility profiles at enhancer 

regions16, and that such sequences were more effective at classifying cell types than 

promoter or transcriptomics data12 (Extended Data Fig. 5a, b). 

 

To demonstrate the effectiveness of the above approach in uncovering cell type-specific 

chromatin landscapes from heterogeneous tissue samples, we first analysed the 3,033 

snATAC-seq profiles obtained from the adult forebrain (Extended Data Table 2).  As 
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negative controls, we included 200 “shuffled” nuclear profiles (Extended data Fig.5c, d, 

Methods). Initially, nine discrete cell populations, in addition to the group representing 

shuffled cells, were uncovered (Extended Data Fig. 5c, d). The cluster C2 (including 946 

nuclei), like the shuffled cells, exhibited significantly lower intra-group similarity than other 

clusters, and thus were not included in further downstream analysis (Extended Data Fig. 

5c, d). None of the t-SNE dimensions was correlated with read depth (R < 0.3 for all 

dimensions) and the clustering results were reproducible between two biological 

replicates (Extended data Fig. 5e, f). To categorize the final eight cell populations, we 

analysed transposase accessible chromatin at known cell type-specific gene loci and 

compared it to published data from sorted excitatory neurons8, GABAergic neurons9, 

microglia17 and NeuN negative nuclei which mostly comprise non-neuronal cells including 

astrocytes and oligodendrocytes18 (Fig. 2b, Extended Data Fig. 6a-c). Three cell 

populations and the sorted excitatory neurons showed high accessibility at the gene locus 

of the terminal neuronal differentiation factor Neurod6 and other excitatory neuron-

specific genes19 (Fig. 2b, Extended Data Fig. 7a).  Likewise, two cell clusters and the 

sorted GABAergic neurons showed similar accessibility at the GABA synthesis enzyme 

Gad1 locus (Fig. 2b, Extended Data Fig. 7b)20. Using this strategy we were able to identify 

an astrocyte subpopulation according to the accessibility at the Apoe locus and other 

known astroglia markers21, an oligodendrocyte subpopulation based on the myelin-

associated glycoprotein Mog and other oligodendrocyte marker genes22, and a microglia 

subpopulation based on complement factors including C1qb (Fig. 2b, Extended Data Fig. 

7c-e)17. The categorization of cell groups was further confirmed by hierarchical clustering, 

with one remarkable exception that the inhibitory neuron cluster 2 (IN2) clustered with 

excitatory neurons (Fig. 2c). According to snATAC-seq data, the adult mouse forebrain 

consisted of 52% excitatory neurons, 24% inhibitory neurons, 12% oligodendrocytes and 

6% astrocytes and microglia, respectively (Fig. 2d).  Since the cell type proportion varies 

between different forebrain regions, for example cortex and hippocampus19, the 

percentages derived from snATAC-seq represent an average of all forebrain region with 

numbers in between region-specific values (Extended Data Figure 6d, e; Fig.2e). The 

predominance of neuronal nuclei derived from adult forebrain tissue was confirmed by 
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flow cytometry analysis using staining against the post-mitotic neuron marker NeuN18 

(Extended Data Fig. 6b). Of note, the proportion of NeuN positive nuclei was lower than 

the total neuronal proportion derived from snATAC-seq (Extended Data Fig. 6b, e; Fig. 

2e).   

 

To further delineate the cis-regulatory landscape in each cell population of the adult 

forebrain, we plotted the frequency a cis regulatory element was accessible in a nucleus 

against the cell type specificity index of the element measured by the Shannon entropy 

of normalized read counts (Extended Data Fig. 8). Overall, proximal promoter elements 

were accessible in more cell types (Median value of 4.2 % for proximal elements vs. 0.4 

% for distal elements) while the distal enhancer elements showed significantly higher cell 

type-specificity (Extended Data Fig. 8a, b, d).  Next, to identify accessible chromatin 

regions that distinguish different cell populations, we developed a feature selection 

method (Methods), and used it to identify a total of 4,980 genomic elements that could 

separate the 8 nuclei populations in adult mouse forebrain (Fig. 2e, Extended Data Fig. 

8c, d).  We next performed k-means clustering against the 4,980 genomic regions and 

conducted motif enrichment analysis of each cluster of elements (Fig. 2e, f, Extended 

Data Fig. 8d, Supplementary Table 1). As expected, we observed enrichment of known 

transcription factor motifs in open chromatin in each cell population, including ETS-factor 

PU.1 for microglia23, SOX family of proteins for oligodendrocytes24, bHLH factors for 

excitatory neurons and DLX homeodomain factors for inhibitory neurons (Fig. 2f)25. Our 

analysis also revealed that MEIS binding motif was enriched in a subset of elements 

specific to IN2. Previous reports showed that MEIS2 plays a major role in generation of 

medium spiny neurons, the main GABAergic neurons in the striatum26. Accordingly, we 

identified gene loci of Ppp1r1b and Drd1, markers of medium spiny neurons, to be highly 

accessible in IN2 but not IN1 (Extended Data Fig. 9)26. Next, we asked if we could further 

separate the excitatory neurons to classes that reflect different anatomical areas. 

Hierarchical clustering with published bulk ATAC-seq data from different cortical layers 

and from dentate gyrus9,27 showed that clusters EX1-3 might resemble different 

anatomical regions (Extended Data Fig. 10a). EX1 and EX3 represented upper and lower 
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cortical layers, respectively, whereas EX2 showed properties of dentate gyrus neurons 

(Extended Data Fig. 10a, b). Regions specific for EX1 and 3 were enriched for motifs from 

the Forkhead family and EX3 was enriched for motifs recognized by MEF2C (Extended 

Data Fig. 10c, Supplementary Table 1), which has been shown to play an important role 

in hippocampus mediated memory28. 

 

We next examined the snATAC-seq profiles derived from foetal mouse forebrains from 

seven developmental stages (Fig. 1b) that include key events from the onset of 

neurogenesis to gliogenesis29. From 12,733 high-quality single nuclei ATAC-seq profiles 

we identified 12 distinct sub-populations (Fig. 3a) that exhibit dynamic abundance through 

development (Fig. 3a-c). Based on accessibility profiles at gene loci of known marker 

genes, we assigned these cell populations to radial glia, excitatory neurons, inhibitory 

neurons, astrocytes and erythromyeloid progenitors (EMP) (Fig. 3b)23,30. Interestingly, the 

EMP cluster was restricted to E11.5, whereas the astrocyte cluster was present after 

E16.5 and expanded dramatically around birth (Fig. 3b, c)23,29 , highlighting two 

developmental processes: invasion of myeloid cells into the brain prior to neurogenesis, 

and gliogenesis succeeding neurogenesis after E16.529. Mature excitatory neurons 

(eEX2) were indicated by increased accessibility at the post-mitotic neuron marker gene 

Neurod6 and absence of signal at the Notch effector Hes5, a marker gene for neuronal 

progenitors (Fig. 3b, c)29,30. This cell type expanded in abundance between E12.5 and 

E13.5 and followed the emergence of early differentiating neurons (eEX1, Fig. 3b, c). 

Remarkably, inhibitory-neuron-like cells were already present at E11.5 (Fig. 3b).  

 

To identify the transcriptional regulatory sequences in each sub-population, we identified 

16,364 genomic elements that show cell-population-specific chromatin accessibility and 

can best separate the sub-cell populations (Fig. 4a, Supplementary Table 2). We 

clustered these elements using k-means and performed gene ontology analysis of each 

cluster using the GREAT31.  We also conducted de novo motif search for each group of 

elements to uncover transcription factor motifs enriched in cell type-specific open 

chromatin regions (Fig. 4b, c). Our analysis showed that genomic elements that were 
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mostly associated with radial glia like cell groups (Fig. 4a, RG1-4) fell into regulatory 

regions of genes involved in early forebrain developmental processes including 

“Forebrain regionalization” (Fig. 4b, K1), “Central nervous system development” (Fig. 4b, 

K3) or “Forebrain development” (Fig. 4b, K5). These elements were enriched for 

homeobox motifs corresponding to LHX-transcription factors including LHX2 (Fig. 4c, K1, 

3, 5), which is critical for generating the correct neuron number by regulating proliferation 

of neural progenitors32 and for temporal promoting of neurogenesis over 

astrogliagenesis33. Remarkably, one of these cluster was also enriched for both the 

proneural bHLH transcription factor ASCL1 (Mash1) and its co-regulator POU3F3 (Brn1) 

(Fig. 4c, K5)34. ASCL1 has been described to be required for normal proliferation of neural 

progenitor cells35 and implicated in a DLX1/2 associated network that promotes 

GABAergic neurogenesis36. In line with this, associated genomic elements were also 

accessible in one inhibitory neuron cluster (eIN2, Fig. 4c, K5).      

 

We identified transcriptional regulators that were specifically associated either with 

neurogenesis or gliogenesis during forebrain development. For example, the early 

astrocyte (eAC)-specific elements were located in open chromatin regions near genes 

involved in “glia cell fate commitment” and the top enriched transcription factor motif was 

NF1-halfsite (Fig.4a-c, K2). Previous studies showed that NF1 transcription factor NF1A 

alone is capable for specifying glia cells to the astrocyte lineage24. NFIX is another NF1 

family member with proneural function37. This motif is enriched together with the bHLH 

transcription factor NEUROD1 binding sites mainly in open chromatin regions found in 

the excitatory neuron cell population (Fig4c, K4, 12, 13)30. Based on chromatin 

accessibility profiles at marker gene loci, we have previously assigned two cell clusters 

to excitatory neuron lineage (eEX1, eEX2, Fig.3b). Compared to cluster eEX2, eEX1 

showed increased accessibility at both radial glia associated open chromatin (Fig.4a, K4; 

Fig.3b) and chromatin regions associated with “CNS neuron differentiation” (Fig.4a, K12).  

In addition, eEX1 nuclei preceded the emergence of eEX2 nuclei during development 

(Fig.3c). These findings indicate that eEX1 might represent a transitional state during 

excitatory neuron differentiation.  
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The bHLH transcription factor family consists of several subfamilies that recognize 

different DNA motifs38. NEUROD1 is part of a subfamily that binds to a central CAT motif 

whereas other factors such as TCF12 preferentially bind to a CAG motif38. Our snATAC-

seq data revealed an enrichment of the TCF12-binding motif in regions associated with 

“Cortex GABAergic interneuron differentiation” in contrast to the excitatory neuron 

associated enrichment for NEUROD1 (Fig.4a-c, K4, 11, 12, 13)25,30,39. 

 

Analysis of inhibitory neuron cluster eIN3 specific genomic elements showed a 

remarkable enrichment for genes associated with “Skeletal muscle organ development” 

(Fig4a, b, K8). More detailed analysis revealed that the underlying genes were 

transcriptional regulators Mef2c/d and Foxp1/2 as well as the dopamine receptors Drd2/3 

indicating differentiating striatal medium spiny neurons40,41. This finding was consistent 

with the enrichment for MEIS-homeodomain factors in these regions (Fig.4c, K8) 

comparable to the medium spiny neuron cluster in adult forebrain (Fig.2e, f, K8; Extended 

Data Fig.9). 

 

Lastly, genomic elements specific to the EMP cluster were associated with genes 

involved in “Myeloid cell development” (Fig.4a-c, K14) and enriched for motifs of the 

ubiquitous AP-1 transcription factor complexes that have been described to play a role in 

shaping the enhancer landscape of macrophages42.  

   

Next, we attempted to identify dynamic elements within a given cell clusters (Extended 

Data Fig.11). Our analysis revealed between 41 and 2,114 dynamic genomic elements 

for each cell type (Extended Data Fig.11c-g). Regions that are more accessible after birth 

(P0) compared to early time points were enriched for the RFX1 motif in the GABAergic 

neuron including the cluster eIN1 as well as in the excitatory neuron cluster eEX2 

(Extended Data Fig.11d, e) indicating a general role of the evolutionary conserved RFX 

factors in perinatal adaptation of brain cells. Several family members including RFX1 are 

expressed in the brain and have been implicated to regulate cilia e.g. in sensory 
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neurons43. 

 

While assessment of open chromatin plays an important role in predicting regulatory 

elements in the genome1,3, it does not provide direct information of functional activity. To 

address this point, we asked if cell-type specific transposase accessible chromatin in the 

embryonic forebrain overlaps with known enhancers validated by transgenic mouse 

assays44. We focused our analysis on all genomic elements with validated functional 

activity in the forebrain and a subset shown to be active only in the subpallium45,46. The 

subpallium is a brain region that gives rise to GABAergic and cholinergic neurons45. In 

total, 63.1 % (275/436) of all forebrain enhancer and 64.8% (59/91) of subpallial enhancer 

were represented in our subset of genomic elements, respectively, indicating a high 

degree of sensitivity. Next, we calculated the relative enrichment of subpallial enhancers 

over total forebrain enhancers for each cluster. Remarkably, subpallial enhancers were 

only enriched in clusters K9-11, which were assigned to the GABAergic neuron lineage 

(Fig.4d, e). This analysis confirms a high specificity and sensitivity of snATAC-seq 

experiments in identifying sub-cell populations and their underlying regulatory elements. 

 

Taken together, we demonstrate here that snATAC-seq can be used to dissect 

heterogeneity and delineate gene regulatory sequences in complex tissues such as 

forebrain. Using this strategy, we were able to resolve the heterogeneity of primary tissue 

samples, and uncover both the cell types and the regulatory elements in each cell type 

without prior knowledge. The snATAC-seq approach will be a valuable tool for analysis 

of tissue biopsies and will help to pave the way to a better understanding of gene 

regulation in mammals.   
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FIGURES 

 

Figure 1: Experimental overview and computational analysis strategy for snATAC-

seq. a Following nuclei isolation from frozen forebrain tissue biopsies, tagmentation of 

4,500 permeabilized nuclei was carried out using barcoded Tn5 in 96 wells. After pooling, 

25 nuclei were sorted in 384 wells and PCR-amplified to introduce second barcodes. 

FANS: Fluorescence assisted nuclei sorting. b Overview of investigated time points 

during mouse development.  E: embryonic day; P: postnatal day; c Chromatin 

accessibility profiles of aggregate snATAC-seq (black tracks) agree with bulk ATAC-seq 

(grey, top track) and are consistent between biological replicates. d Framework of 

computational analysis of snATAC-seq data.   
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Figure 2: Deconvolution of p56 forebrain and identification of potential master 

regulators. a Clustering of single nuclei of both replicates revealed 8 different cell groups 

in adult forebrain. b Aggregate chromatin accessibility profiles for each cell cluster and 

bulk ATAC-seq for sorted cell populations or whole forebrain at marker gene loci (Bulk 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 4, 2017. ; https://doi.org/10.1101/159137doi: bioRxiv preprint 

https://doi.org/10.1101/159137


14 
 

data are grey shaded). c Hierarchical clustering of aggregate single cell data and sorted 

bulk data sets. d Cellular composition of adult forebrain derived from snATAC-seq data. 

e K-means clustering of 4,980 genomic elements based on chromatin accessibility and f 

enrichment analysis for transcription factor motifs. 
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Figure 3: SnATAC-seq analysis reveals cellular heterogeneity during embryonic 

forebrain development. a Clustering of single nuclei from both replicates revealed 12 

different cell groups with changing relative abundance. b Aggregate chromatin 

accessibility profiles for cell clusters and at marker gene loci used to assign cell types. 

For better visualization, Hes5 gene locus is grey shaded. c Quantification of cellular 

composition during forebrain development.  
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Figure 4: SnATAC-seq revealed genomic elements and transcriptional regulators 

of lineage specification in the developing forebrain. a K-means clustering of 16,364 

genomic elements based on chromatin accessibility. b Gene ontology analysis using 

GREAT and c transcription factor enrichment. d Enrichment of enhancers that were 

functionally validated as part of the VISTA database. e Representative pictures of 

transgenic mouse embryos showing LacZ reporter gene expression under control of the 

indicated subpallial enhancers. Pictures were downloaded from the VISTA database44. 
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EXTENDED DATA FIGURES 

 

Extended Data Figure 1: SnATAC-seq protocol optimization. a Overview of critical 

steps for the snATAC-seq procedure for nuclei from frozen tissues. b IGEPAL-CA630 but 

not Triton-X100 was sufficient for tagmentation of frozen tissues. c Tagmentation was 

facilitated by high salt concentrations in reaction buffer47,48. d Maximum amount of 

fragments per nucleus could be recovered when quenching Tn5 by EDTA prior to FACS 

and denaturation of Tn5 after FACS by SDS. Finally, SDS was quenched by Triton-X100 

to allow efficient PCR amplification. e Increasing tagmentation time from 30 min to 60 min 

can result in more DNA fragments per nucleus. f Number of sorted nuclei was highly 

correlated with the final library concentration. Tn5 loaded with barcoded adapters showed 

less efficient tagmentation as compared to Tn5 without barcodes. Wells were amplified 

for 13 cycles, purified and libraries quantified by qPCR using standards with known 

molarity. g Tagmentation with barcoded Tn5 was less efficient and resulted in larger 
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fragments than Tn5 (550 bp vs. 300 bp). Ratio for barcoded Tn5 was based on 

concentration of regular Tn5. h Doubling the concentration of barcoded Tn5 significantly 

increased the number of fragments per nucleus by 3 fold. Further increase resulted only 

in minor improvements. i Generated amount of library from 25 nuclei per well was 

reproducible between single wells. Each well was amplified for 11 cycles and quantified 

by qPCR. This output was used to calculate the number of required PCR cycles for 

snATAC-seq libraries to prevent overamplification (n = 28 wells, average ± SEM).   j Size 

distribution of a successful snATAC-seq library from a mixture of E15.5 forebrain and 

GM12878 cells shows a nucleosomal pattern. SnATAC-seq was performed including all 

the optimization steps described above with barcoded Tn5 in 96 well format. 
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Extended Data Figure 2: Sorting of single nuclei after tagmentation. a-d Density 

plots illustrating the gating strategy for single nuclei. First, big particles were identified (a), 

then duplicates were removed (b, c) and finally, nuclei were sorted based on high DRAQ7 

signal (d), which stains DNA in nuclei. e Verification of single cell suspension after FACS 

was done with Trypan Blue staining under a microscope. 
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Extended Data Figure 3: Overview of sequencing data and quality filtering for 

single cells. 

a Distribution of insert sizes between reads pairs derived from sequencing of snATAC-

seq libraries indicates nucleosomal patterning. b Individual barcode representation in the 

final library shows variability between barcodes. c To assess the probability of two cells 

sharing the same cell barcode, single cell ATAC-seq was performed on a 1:1 mixture of 

human GM12878 cells and mouse E15.5 forebrain nuclei. A collision was indicated by < 
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90% of all reads mapping to either the mouse genome (mm9) or the human genome 

(hg19). We identified 8.2% of these barcode collision events. d Read coverage per 

barcode combination after removal of potential barcodes with less than 1,000 reads. e 

Constitutive promoter coverage for each single cell. The red line indicates the constitutive 

promoter coverage in corresponding bulk ATAC-seq data sets from the same biological 

sample. Cells with less coverage than the bulk ATAC-seq data set were discarded. f 

Fraction of reads falling into peaks for each single cell. The red line indicates fraction of 

reads in peak regions in corresponding bulk ATAC-seq data sets from the same biological 

sample. Cells with lower reads in peak ratios coverage than the bulk ATAC-seq data set 

were discarded from downstream analysis. Bulk ATAC-seq data for E11.5-P0 were 

reanalysed (Zhao et al. manuscript in preparation)  
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Extended Data Figure 4: Pearson correlation plots of bulk and aggregate single-

nuclei ATAC-seq data sets. Pearson correlation of chromatin accessibility profiles from 

two biological replicates derived from bulk ATAC-seq (left column) and from aggregate 

snATAC-seq after aggregating single cell profiles (middle column). In the right column the 

correlation between bulk ATAC-seq and aggregate snATAC-seq are displayed for 

biological replicate 1. Data are displayed from forebrain tissues from following time points: 

a E11.5, b E12.5 c E13.5 d E14.5 e E15.5 f E16.5 g P0 h P56. Bulk ATAC-seq data for 

E11.5-P0 were reanalysed (Zhao et al. manuscript in preparation).     
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Extended Data Figure 5: Clustering strategies, quality control of clusters and 

clustering result for individual replicates in adult forebrain. a, b T-SNE visualization 

of clustering using a distal elements (regions outside 2 kb of refSeq transcriptional start 

sites) or b promoter regions (KL: Kullback-Leibler divergence reported by t-SNE).c Box 

plot of read coverage for each cluster. d Box plot of similarity analysis between two any 

two given cells in a cluster. Cluster C2 was discarded before downstream analysis due to 

low its intra-group similarity (median < 10). As a negative control, randomly shuffled cells 

were included in the analysis displaying exceptionally low in-group similarity. e, f T-SNE 
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visualization of single cells from e replicate 1 and f replicate 2. The projection and color 

coding is the same as in Fig. 2d.   
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Extended Data Figure 6: Flow cytometric analysis of adult mouse forebrain and 

comparison to single cell RNA-seq data from different brain regions a-c Dot blots 

illustrating nuclei from adult forebrain stained for flow cytometry with Alexa488 conjugated 

secondary antibodies. a Displayed are representative blots for experiments without 

antigen specific primary antibody and b with antibodies recognizing the post-mitotic 

neuron marker NeuN18 (n=3, average ± SEM). c NeuN negative nuclei were sorted for 

ATAC-seq experiments and purity ( > 98%) was confirmed by flow cytometry of the sorted 

population. d Relative composition of different forebrain regions derived from single cell 

RNA-seq shows region specific differences19. e Relative composition derived from 

snATAC-seq (compare to Fig.2c) of adult forebrain shows values in between. 
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Extended Data Figure 7: Ranking of gene loci (TSS ± 10kb) compared to other 

clusters in adult forebrain. Negative binomial test shows enrichment for a excitatory 

neuron markers b inhibitory neuron markers c astrocyte markers d oligodendrocyte 

markers and e microglia markers extending the examples shown in Fig. 2b. Please note 

for general assignment accessibility profiles for Ex1-3 and IN1/2 were merged, 

respectively. 
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Extended Data Figure 8: Cell-type specificity of genomic elements and per cell 

coverage of elements. a-c Graphs illustrate cell-type specificity of genomic elements as 

measured by Shannon entropy based on normalized read counts for each cell-type and 

percentage of cells in which a genomic element was called accessible as indicated by 

presence of at least 1 read overlapping with the element a peak. Analysis was performed 

for the adult forebrain (P56) against a TSS-proximal genomic elements (TSS - 2kb), b 

distal elements and c the subset of genomic elements that separated two cell clusters. d 

Violin plots illustrate higher cell-type specificity for distal elements compared to proximal 

elements indicated by significantly lower Shannon entropy value (p < 2.2e-16). In addition, 

distribution of all genomic elements that separate two clusters as well as subsets 

representing subsets identified from k-means clustering of genomic elements depending 

on chromatin accessibility in adult forebrain (related to Fig. 2e). TSS: transcriptional start 

site. 
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Extended Data Figure 9: Distinct chromatin accessibility profiles of two GABAergic 

neuron clusters. IN2 is depleted for Pax6 and Dlx1 (a) but enriched for markers of 

medium spiny neurons as compared to IN1 cluster (b). 
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Extended Data Figure 10: Sub-classification of excitatory neurons into 

hippocampal and cortical neuron types. a Hierarchical clustering of aggregate single 

cell data for excitatory neuron cluster and sorted bulk data sets corresponding to different 

anatomical regions (grey shaded). b Chromatin accessibility at marker gene loci. c K-

means clustering of promoter distal genomic elements and enrichment analysis for 

transcription factor motifs. 

  

 

 

 

 

 

 

 

 

 

 

 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 4, 2017. ; https://doi.org/10.1101/159137doi: bioRxiv preprint 

https://doi.org/10.1101/159137


31 
 

Extended Data Figure 11: Dynamics of chromatin accessibility within distinct cell 

groups. a Number of reads in peaks per developmental time point for a specific nuclei 

cluster. b Number of nuclei per time point for a specific nuclei cluster. For analysis of 

dynamics only cell clusters with > 3 stages with > 50 nuclei and > 250,000 reads in peaks 

were considered. c Overview of dynamic elements identified per cell cluster (see 

methods) d-g K-means clustering and motif enrichment analysis for nuclei clusters with 

> 200 dynamic genomic elements.    
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EXTENDED DATA TABLES 

 

Extended Data Table 1: Sequencing statistics for single nuclei ATAC-seq libraries. 

General overview of sequencing for single cell ATAC-seq libraries including PCR 

duplication rates and fraction of mitochondrial reads. Please note that paired end reads 

were treated as separate reads. Replicate 1 and 2 were sequenced together and single 

cell datasets were assigned based on replicate specific barcode combinations (Set_1 or 

Set_2). One exception was E13.5 where replicate 1 and 2 were sequenced on separate 

lanes. Please note that for E11.5 7 out of 8 bp were detected for the p5 barcode. M: 

million 
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Extended Data Table 2: Overview of single nuclei ATAC-seq data after filtering out 

low quality cells. Overview of cells that pass quality control and general properties of 

data sets including promoter coverage and fraction of reads in peaks. 
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Extended Data Table 3: Comparison of single nuclei ATAC-seq with previously 

published initial single cell/nuclei ATAC-seq studies. Table illustrating several 

characteristics of single nuclei/cell ATAC_seq library. n.r. not reported 
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METHODS 

 

Mouse tissues 

All animal experiments were approved by the Lawrence Berkeley National Laboratory 

Animal Welfare and Research Committee or the University of California, San Diego, 

Institutional Animal Care and Use Committee. Forebrains from embryonic mice (E11.5-

E16.5) and early postnatal mice (P0) were dissected from one pregnant female or one 

litter at a time and combined. For breeding, animals were purchased from Charles River 

Laboratories (C57BL/6NCrl strain) or Taconic Biosciences (C57BL/6NTac strain) for 

E14.5 and P0.  Breeding animals for other time points were received from Charles River 

Laboratories (C57BL/6NCrl).  Dissected tissues were flash frozen in a dry ice ethanol 

bath. For the adult time point (P56), the forebrain from 8-week old male C57BL/6NCrl 

mice (Charles River Laboratories) were dissected and flash frozen in liquid nitrogen 

separately. Tissues were pulverized in liquid nitrogen using pestle and mortar. For each 

time point two biological replicates were processed (n = 2 per time point).  

 

Transposome generation 

To generate A/B transposomes, A and B oligos were annealed to common pMENTs 

oligos (95°C 2 min, 14°C ∞ (cooling rate: 0.1°C/s)) separately (Supplementary Table 2). 

Next, barcoded transposons were mixed in a 1:1 molar ratio with unloaded transposase 

Tn5 which was generated at Illumina. Mixture was incubated for 30 min at room 

temperature. Finally, A and B transposomes were mixed. For combinatorial barcoding we 

used 8 different A transposons and 12 distinct B transposons which eventually resulted 

in 96 barcode combinations (Supplementary Table 2)49. 

   

Combinatorial barcoding assisted single nuclei ATAC-seq 

Combinatorial ATAC-seq was performed as described previously with modifications5. 5-

10 mg frozen tissue was transferred to a 1.5 ml Lobind tube (Eppendorf) in 1 ml NPB (5 

% BSA (Sigma), 0.2 % IGEPAL-CA630 (Sigma), cOmplete (Roche), 1 mM DTT in PBS) 

and incubated for 15 min at 4 °C. Nuclei suspension was filtered over a 30 µm Cell-Tric 
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(Sysmex) and centrifuged for 5 min with 500 x g. Nuclei pellet was resuspended in 500 µl 

of 1.1x DMF buffer (36.3 mM Tris-acetate (pH = 7.8), 72.6 mM K-acetate, 11 mM Mg-

acetate, 17.6 % DMF) and nuclei were counted using a hemocytometer. Concentration 

was adjusted to 500 /µl and 4500 nuclei were dispensed into each well of a 96 well plate. 

For tagmentation, 1 µl barcoded Tn5 transposome (0.25 µM, Supplementary Table 2)49 

was added to each well, mixed 5 times and incubated for 60 min at 37°C with shaking 

(500 rpm). To quench the reaction 10 µl 40 mM EDTA were added to each well and plate 

was incubated at 37°C for 15 min with shaking (500 rpm). 20 µl sort buffer (2 % BSA, 2 

mM EDTA in PBS) were added to each well and all wells combined afterwards. Nuclei 

suspension was filtered using a 30 µm CellTric (Sysmex) into a FACS tube and 3 µM 

Draq7 (Cell Signalling) was added. Using a SH800 sorter (Sony) 25 nuclei were sorted 

per well into 4 96-well plates (total of 384 wells) containing 18.5 µl EB (50 pM Primer i7 

(Supplementary Table 2), 200 ng BSA (Sigma)). Sort plates were shortly spun down. After 

addition of 2 µl 0.2 % BSA samples were incubated at 55°C for 7 min with shaking (500 

rpm). 2.5 µl 10% Triton-X was added to each well to quench SDS. Finally, 2 µl 25 µM 

Primer i5 (Supplementary Table 2) and 25 µl NEBNext® High-Fidelity 2X PCR Master 

Mix (NEB) and samples were PCR amplified for 11 cycles (72°C 5 min, 98°C 30 s,[ 98°C 

10 s, 63°C 30 s, 72°C 60 s] x 11, 72°C ∞). Following PCR, all wells were combined 

(around 15.5 mL) and mixed with 80 ml PB including pH-indicator (1:2500, Qiagen) and 

4 ml Na-Acetate (3 M, pH = 5.2). Purification was carried out on 4 columns following the 

MinElute® PCR Purification Kit manual (Qiagen). DNA was eluted with 15 µl EB and 

eluate from all four columns was combined in a LoBind Tube (Eppendorf). For Ampure 

XP Bead (Beckmann Coulter) cleanup 170 µl EB buffer and 110 µl Ampure XP Beads 

(0.55x) were added to 30 µl eluate. After incubation at room temperature for 5 min and 

magnetic separation supernatant was transferred to a new tube and another 190 µl 

Ampure XP Beads (1.5x) were added. After incubation beads were washed twice on the 

magnet using 500 µl 80 % EtOH. After drying the beads for 7 min at room temperature 

library was eluted with 20 µl EB (Qiagen). Libraries were quantified using Qubit 

fluoromoeter (Life technologies) and nucleosomal pattern was verified using Tapestation 

(High Sensitivity D1000, Agilent). 25 pM library was loaded per lane of a HiSeq2500 
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sequencer (Illumina) using custom sequencing primers (Supplementary Table 2)49 and 

following read lengths:  50 + 43 + 37 + 50 (Read1 + Index1 + Index2 + Read2). The first 

8 bp of Index1 correspond to the p7 barcode and the last 8 bp to the i7 barcode. The first 

8 bp of Index2 correspond to the i5 barcode and the last 8 bp to the p5 barcode. Since 

Index1 and 2 each contain 2 barcodes separated by a common linker sequence, we 

generated a spike-in library using different transposon and PCR primer sequences to 

balance the bases within each detection cycle (Supplementary Table 2). For the human-

mouse mixture experiment, E15.5 forebrain and GM12878 nuclei were mixed in a 1:1 

ratio prior to tagmentation. Samples were processed as above with the exceptions that 

just 96 wells were used after nuclei sorting and PCR amplification was performed for 13 

cycles. The final library was loaded at 15 pM and sequenced using a MiSeq (Illumina) 

with following read lengths: PE 44 + 43 + 37 +44 (Read1 + Index1 + Index2 + Read2). 

 

Cell culture 

GM12878 (Coriell Institute for Medical Research) cells were cultured in RPMI1640 

medium (Thermo Fisher Scientific) containing  2 mM L-glutamine (Thermo Fisher 

Scientific), 15% foetal bovine serum (Gemini Bioproducts) and 1 % Penicillin-Streptomicin 

(Thermo Fisher Scientific) in T25 Flasks (Corning) at 37°C under 5% carbon dioxide. For 

the snATAC-seq mixture experiment, cells were harvested by centrifugation, washed with 

PBS (Thermo Fisher Scientific) and resuspended in NPB (5 % BSA (Sigma), 0.2 % 

IGEPAL-CA630 (Sigma), cOmplete (Roche), 1 mM DTT in PBS). Samples were 

incubated 5 min at 4 °C and finally nuclei were pelleted by centrifugation (500g, 5min, 4 

°C).  Nuclei pellet was resuspended in 500 µl of 1.1x DMF buffer (36.3 mM Tris-acetate 

(pH = 7.8), 72.6 mM K-acetate, 11 mM Mg-acetate, 17.6 % DMF) and nuclei were counted 

using a hemocytometer. 

 

NeuN negative sorting 

10 mg adult forebrain tissue (P56) were resuspend in 500 µl lysis buffer (0.5% BSA, 0.1% 

Triton-X, cOmplete (Roche), 1 mM DTT in PBS) and incubated for 10 min at 4°C. After 

spinning down (5 min, 500 x g) sample was resuspended in 500 µl staining buffer (0.5% 
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BSA in PBS). Nuclei suspension was incubated with anti-NeuN antibody (1:5000, 

MAB377, Lot 2806074, EMD Millipore) for 30 min at 4°C. After centrifugation nuclei were 

resuspend in 500 µl staining buffer (0.5% BSA in PBS) containing anti-mouse Alexa488-

antibody (1:1000, A11001, Lot 1696425, Thermo Fisher Scientific). After incubate for 30 

min at 4°C, nuclei were pelleted (5 min 500 x g) and resupended in 700 ul sort buffer (1% 

BSA, 1mM EDTA in PBS). After filtration into a FACS tube 5 ul DRAQ7 (Cell Signalling 

Technologies) was added and NeuN-negative nuclei were sorted using a SH800 sorter 

(Sony) into 5% BSA (Sigma) in PBS. 

 

ATAC-seq 

ATAC-seq was performed on 20,000 sorted nuclei as described previously with minor 

modifications50. After adding IGEPAL-CA630 (Sigma) in a final concentration of 0.1 % 

nuclei were pelleted for 15 min at 1000 x g. Pellet was resupended in 19 µl 1.1x DMF 

buffer (36.3 mM Tris-acetate (pH = 7.8), 72.6 mM K-acetate, 11 mM Mg-acetate, 17.6 % 

DMF). After addition of 1 µl Tn5 transposomes (0.5 µM) tagmentation was performed at 

37°C for 60 min with shaking (500 rpm). Next, samples were purified using MinElute 

columns (Qiagen), PCR-amplified for 8-10 cycles with NEBNext® High-Fidelity 2X PCR 

Master Mix (NEB, 72°C 5 min, 98°C 30 s,[ 98°C 10 s, 63°C 30 s, 72°C 60 s] x cycles, 

72°C ∞). Amplified libraries were purified using MinElute columns (Qiagen) and Ampure 

XP Bead (Beckmann Coulter). Sequencing was carried out on a HiSeq2500 or 4000 (50 

bp PE, Illumina). 
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DATA ANALYSIS 

 

Single nuclei ATAC-seq data processing pipeline: 

1. Alignment:  

Paired-end sequencing reads were aligned to mm10 reference genome using Bowtie2 

in paired-end mode with following parameters “bowtie2 -p 5 -t -X2000 --no-mixed --

no-discordant”51. 

2. Alignment filtration:  

Non-uniquely mapped (MAPQ < 30) and improperly paired (flag = 1804) alignments 

were filtered. 

3. Barcode error correction:  

Each full barcode consists of four separate 8 bp long indexes (i5, i7, p5, p7). Reads 

with barcode combinations containing more than 1 mismatch for any index were 

removed. Barcodes with ≤ 1 mismatch were changed to its closest barcode.  

4. Reads separation:  

Reads were separated into individual cells based on the barcode combination 

(Extended Data Table 1, Supplementary Table 2). 

5. Mark and remove PCR duplicates:  

For individual cells, we sorted reads based on the genomic coordinates using 

“samtools sort”52, then marked and removed PCR duplicates using Picard tools 

(MarkDuplicates, https://broadinstitute.github.io/picard/). 

6. Mitochondrial reads removal:  

Reads mapped to the mitochondrial genome were filtered.  

7. Adjusting position of Tn5 insertion:  

All reads aligning to the + strand were offset by +4 bp, and all reads aligning to the - 

strand were offset -5 bp53. 

8. Quality assessment of each single cell: 

Calculate coverage of constitutively accessible promoters (promoters that are 

accessible across all tissues/cell line from ENCODE DHS), number of reads and 

signal-over-noise ratio estimated by “reads in peaks” ratio for each cell. 
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9. Cell selection:  

We only kept cells that pass our threshold (1) coverage of constitutively accessible 

promoter > 10%; 2) number of reads > 1,000; 3) reads in peak ratio greater than 

estimation from corresponding bulk ATAC-seq level (Zhao et al. manuscript in 

preparation).  

10. Replicates separation:  

Selected cells were separated into two replicates based on the predefined barcode 

combination. 

 

Single nuclei ATAC-seq cluster analysis: 

Cluster analysis partitions cells into groups such that cells from the same group have 

higher similarity than cells from different groups. Here, we developed a pipeline to obtain 

cell clusters. We first generated a catalogue of accessible chromatin regions using bulk 

ATAC-seq data (Zhao et al. manuscript in preparation) and created a binary accessible 

matrix. Chromatin sites were 1 for a given cell if there was a read detected within the peak 

region. Next, we calculated pair-wise Jaccard index between every two cells on the basis 

of overlapping open chromatin regions. Next, we applied a non-linear dimensionality 

reduction method (t-SNE) to map the high-dimensional structure to a 3-D space14. This 

transforms high-dimensional structures to dense data clouds in a low-dimensional space, 

allowing partitioning of cells using a density-based clustering method15. We then identified 

the optimal number of cell clusters using the Dunn index54. Finally, we compared our 

cluster results to those of “shuffled” to further verify our cluster result is not driven by 

library complexity or other confounding factors.  

 

1. Determining accessible chromatin sites in single cells 

To catalogue accessible chromatin sites in individual cells, we first created a reference 

map of open chromatin sites determined by bulk ATAC-seq (Zhao et al. manuscript in 

preparation). The chromatin accessibility maps from different time points (from E11.5 

to P56) were merged into a single reference file using BEDtools55. For clustering of 
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single cells, we have tested clustering performance using accessible promoters (2kb 

upstream of TSS) and distal elements, respectively, and found that clusters by distal 

elements outperformed promoters with lower Kullback-Leibler divergence (Extended 

Fig. 5). Therefore, we decided to only focus on distal genomic elements as features 

to perform clustering. Reads in individual cells overlapping with accessible sites were 

identified. We generated an accessible matrix of the reads counts overlapping each 

individual accessible sites (columns) in each cell (row). 

 

2. Binary Accessible Matrix 

We next converted the chromatin accessibility matrix to a binary matrix ܯேൈ஽ in which 

  .݆ ௜௝ is 1 if any read in cell ݅ mapped to regionܯ

 

3. Jaccard Index Matrix 

Jaccard index matrix ܬேൈே were calculated between every two cells in which ܬ௜௝ 

measures the commonly shared open chromatin regions between cell	ܥ௜ and ܥ௝ as 

following: 

௜௝ܬ ൌ
௜ܯ| ∩ |௝ܯ
௜ܯ| ∪ |௝ܯ

 

Diagonal elements of ܬேൈே are set to be 0 as required by t-SNE analysis.  

 

4. Dimensionality reduction using t-SNE 

Using Jaccard index matrix ܬேൈே as input, we next applied t-SNE to map the N-

dimensional data to a 3-D space14. Since t-SNE has a non-convex objective function, 

it is possible that different runs yield different solutions14. Thus, we ran t-SNE several 

times with different initiations and used the result with the lowest Kullback-Leibler 

divergence and best visualization. In a previous study sequencing depth was a 

confounding factor and highly correlated with the first principle component of PCA 

analysis (Pearson correlation >0.95)5. However, we did not observe correlation 

between sequencing depth and any of the t-SNE dimension. We expected that the 
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coherent structure of the open chromatin landscape of cells with high similarity would 

rely on a continuous and smooth 3-D structure and cells for different groups would 

locate to distinct parts of the plot. We used t-SNE to transform the high-dimensional 

structures to dense data clouds in the 3-D space14. Finally, we applied a density-based 

clustering method to identify different cell populations within the embedded 3-D 

space15. 

 

5. Density-based clustering 

We applied a density-based clustering method to partition cells into groups in the 

embedded 3-D space15. The method identifies cluster centres that are characterized 

by two properties: 1) high local density ߩ௜ and 2) large distance ߜ௜ from points of higher 

density, which are centers of the clusters15. Any cells that showed values above 

defined thresholds (ߩ଴,  ଴) were considered as centers of cluster. Next, the rest of cellsߜ

were assigned to the center as described here15. Clearly, different thresholds (ߩ଴,  (଴ߜ

will generate different number of clusters. To find the optimal number of clusters, we 

adopted the method developed by Habib et al to evaluate the quality of different cluster 

results54. 

 

6. Number of clusters 

In detail, Habib’s method applied the Dunn index (Algorithm 2) to quantify the quality 

of cluster result as following48: 

 

ܤܦ ൌ
݉݅݊ଵஸ௜ழ௝ஸ௡∆ሺܥ௜, ௝ሻܥ
௞ሻܥଵஸ௞ஸ௡∆ሺݔܽ݉

 

 

in which ∆ሺܥ௜,  ௞ሻܥ௝, ∆ሺܥ ௜ andܥ ௝ሻ represents the inter-cluster distance between clusterܥ

represents the intra-cluster distance of cluster ܥ௞. We used the “MaxStep” distance 

(Algorithm 1) also developed by Habib et al to calculate the distance for Dunn index54. 

Finally, we iterated all possible (ߩ଴,  ଴) combinations that yield different clusters andߜ
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calculated its Dunn index. The clustering result with the highest Dunn index was 

chosen as final cluster (Algorithm 3).  
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7. “Shuffled” cells 

Due to the limited genome coverage of each single cell, cells may cluster based on their 

sequencing depth rather than ‘true’ co-variation5. To verify that our cluster results are not 

driven by such artefacts, we compared our results to a simulated data set. For this data 

set in which binary accessible sites within each cell were randomly shuffled across all 

accessible sites. In other words, we shuffled the data and removed the biological 

clustering, but maintained the distribution of sequencing depth across cells. “Shuffled” 

cells were uniformly distributed as a “ball” in the embedded 3-D space without clear 

partition of cells. However, we did observe that one of the directions becomes correlated 

with sequencing depth (Pearson correlation 0.55 for t-SNE3) and there is a small portion 

of cells that tend to form a cluster but did not pass the cut-off (ߩ଴,  ଴) used for the P56ߜ

forebrain data set.  

 

Identification of cluster-specific features 

We next developed a computational method which combines stability selection with 
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LASSO56 to identify genomic elements (features) that potentially distinguish cells 

belonging to different clusters. LASSO regression enables sparse feature selections 

through the use of L1 penalty. However, LASSO regression often does not result in a 

robust set of selected features and is sensitive to data perturbation. This is especially true 

when features are correlated as the case here. To overcome these limitations, we 

adopted stable lasso to robustly identify features that distinguish every two cell clusters 

(Algorithm 4)56. Finally, we combined all identified features that distinguish different cell 

types.  

Algorithm 4: Cluster specific features selection 
Input: ܺ	߳	ܴሺ௡,௣ሻሺܾ݅݊ܽݕݎ	ݔ݅ݎݐܽ݉ሻ, ܻ ߳ ሼ0,1ሽ௡ሺ݈ܿݎ݁ݐݏݑ ݈ܾ݈ܽ݁ሻ, 
݊݋݅ݐܾܽݎݑݐݎ݁݌ሺߚ	,ሻ݁ݐܽݎ	݈݃݊݅݌݉ܽݏܾݑݏሺߙ  ሻ݊݋݅ݐܽݎ݁ݐሻ, ܶሺ݅݁ݐܽݎ
Output: importance score for each feature 
for ݐ ൌ 1 to	ܶ do 
         Randomly perturb the data: 
                Draw a subset (ܺ௧, ௧ܻ) of ߙ of (ܺ, ܻ) 
                Draw a vector ݓ~ܷሺሾߚ, 1ሿ௣ሻ 
                Re-weight the features: ܺ௧ᇱ ൌ ܺ௧ ∙  ݓ
         Compute the LASSO path of length ߙ ∙ ݊ 
         Keep the selection matrix  St ∈ 3p,α·n where ix  
 
ܵ௧ሺ݅, ݆ሻ ൌ ሼ1, ,0	݌݁ݐݏ	݄ݐ݆	ݐܽ	݀݁ݐ݈ܿ݁݁ݏ	݁ݎݑݐ݂ܽ݁	݄ݐ݅	݄݁ݐ	݂݅  	݁ݏ݅ݓݎ݄݁ݐ݋
end for 
Compute the feature importance ix  

௜݂ ൌ
1
ܶߙ݊

෍

௡/ଶ

௝ୀଵ

෍

்

௧ୀଵ

ܵ௧ሺ݅, ݆ሻ 

 

Bulk ATAC-seq 

Paired-end sequencing reads were aligned to the mm10 reference genome using Bowtie2 

in paired-end mode with following parameters “bowtie2 -p 5 -t -X2000 --no-mixed --no-

discordant51 and PCR duplicates were removed using SAMtools52 . Next, mitochondrial 

reads were removed and the position of alignments adjusted53. For visualization the 

bamCoverage utility from deepTools2 was used57.  
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Hierarchical clustering of ATAC-seq profiles in adult forebrain 

DeepTools2 was used for correlation analysis and hierarchical clustering of ATAC-seq 

profiles from cell clusters and sorted cell-types in the adult forebrain57. First, we computed 

read coverage for each data set against the merged list of genomic elements that 

separate two cell clusters in the adult forebrain using the multiBamSummary utility. Next 

we used plotCorrelation to generate hierarchical clustering using Spearman correlation 

coefficient between two clusters57.  

  

Accessibility analysis and clustering of genomic elements 

To cluster genomic elements based on their accessibility profile we used these promoter 

distal elements that were capable to distinguish two cell clusters. For each feature we 

extended the summits identified by MACS258 in both directions by 250 bp and generated 

a union set of elements using mergeBED functionality of BEDTools v2.17.055. Next, we 

intersected cluster specific bam files with the peak list using the coverageBED 

functionality of BEDTools v2.17.055. We discarded elements that had less than five reads 

on average. After adding a pseudocount of one we calculated cluster-specific RPM (reads 

per million sequenced reads) values for each genomic element. We divided the RPM 

value for a given cluster by the average value of all clusters (fold over mean) and finally 

log2 transformed the data. The generated matrix was used for k-means clustering of the 

elements using Ward’s method. We performed this analysis for all adult clusters, the 

excitatory neuron clusters and the 12 developmental cell clusters, respectively. A list of 

elements for each analysis can be found in Supplementary Table 1. 

  

Motif enrichment analysis 

To identify potential regulators of chromatin accessibility we performed motif analysis 

using the AME utility of the MEME suite59. A P-Value cut-off of < 10-5 was chosen for 

known motifs from the JASPAR database (JASPAR_CORE_2016_vertebrates.meme)60. 

For identification of de novo motifs HOMER tools was used with default settings61.  
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Annotation of genomic elements 

The GREAT algorithm was used to annotate distal genomic elements using following 

settings to define the regulatory region of a gene: Basal+extension (constitutive 1 kb 

upstream and 0.1 kb downstream, up to 500 kb max extension)31. Gene ontology 

categories “Molecular Function” and “Biological Processes” were used. 

 

Analysis of dynamic chromatin accessibility within a cell cluster 

First, the ATAC-seq reads were counted in all peaks for each stage, cell type and 

replicate. For each cell cluster, only stages with more than 250,000 reads overlapping 

ATAC-seq peaks and more than 50 nuclei were used for dynamic analysis. Peaks with 

greater than 1 read per million reads (RPM) in at least 2 samples were kept. We used 

edgeR62 to assess the significance of difference between adjacent stages for cell clusters 

with at least 4 out of 7 stages passing filtering criteria. P-values were corrected using the 

Bonferroni method. Peaks with a Bonferroni p-value less than 0.05 were called dynamic 

peaks. The total number of dynamic peaks in each cell type are listed in (Extended Data 

Fig. 11c). For each cell type, the read counts in each peak were normalized into a unit 

vector (i.e values were divided by the square root of the sum of the squares of the values). 

K-means was used for clustering of cell clusters with more than 200 dynamic elements 

(K=3). Motif enrichment analysis was performed for each peak cluster using HOMER61.  

  

VISTA analysis 

Genomic locations of 484 VISTA validated elements44 were downloaded from 

https://enhancer.lbl.gov using the search term “forebrain”. Genomic locations were 

converted from mm9 to mm10 using the liftOver tool (minimum rematch ratio of 0.95)63. 

91 of these were showed specific activity in the subpallium45. To identify developmental 

clusters that are enriched for subpallial enhancers we first calculated the ratio of elements 

per k-means cluster overlapping with the total forebrain enhancer list and the subpallial 

subset separately. Finally, we calculated the relative enrichment using the ratio of 

subpallial over the complete forebrain regions. 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 4, 2017. ; https://doi.org/10.1101/159137doi: bioRxiv preprint 

https://doi.org/10.1101/159137


48 
 

External data sets 

Published ATAC-seq data of sorted excitatory neurons (GSM1541964, GSM1541965)8, 

GABAergic neurons (GSM2333635, GSM2333636)9, microglia (GSM2104286)17 , 

neurons of the dentate gyrus (GSM2179990, GSM2179991)27 and distinct cortical layers 

(Layer2/3: GSM2333632, GSM2333633; Layer 4: GSM2333644, GSM2333645; Layer 5: 

GSM2333641, GSM2333642, Layer 6, GSM2333638, GSM2333639)9 were reprocessed. 

In addition, bulk ATAC-seq data for embryonic time points were analysed for comparison 

(https://www.encodeproject.org/search/?searchTerm=atac+forebrain, Zhao et al. 

manuscript in preparation) 

  

Data availability 

Raw and processed data have been deposited to NCBI Gene Expression Omnibus with 

the accession number GSE1000333.  
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