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Deep convolutional neural networks allow analysis
of cell motility during stem cell differentiation and
neoplastic transformation

Jacob C Kimmel, Andrew S Brack, and Wallace F Marshall

Abstract—Cells in culture display diverse motility behaviors. In
multiple contexts, motility behaviors reflect broader cell function,
providing motivation to discriminate between different motility
behaviors. Current methods to do so rely upon manual feature en-
gineering. However, the types of features necessary to distinguish
between motility behaviors can vary greatly depending on the bi-
ological context, and it is not always clear which features may be
most predictive in each setting for distinguishing particular cell
types or disease states. Convolutional neural networks (CNNs) are
a class of machine learning models ideally suited to the analysis
of spatial data, allowing for relevant spatial features to be learned
as parameters of a model. Given that motility data is inherently
spatial, CNNs are a promising approach to learn relevant features
for motility analysis from data, rather than requiring a domain
expert to engineer features by hand. Here, we apply CNNs to
classify different motility behaviors by representing motility as
a 3D space with markers denoting a cell’s location at each
time point. 3D CNNs provide accurate classification of several
simulated motility behaviors, the motility behaviors of multiple
cell types, and characteristic motility behaviors of commitment
states in myogenic cells. Autoencoders were trained effectively
to learn representations of these 3D motility spaces in an
unsupervised manner. We show that this approach can achieve
reliable detection of differentiation state for muscle stem cells
and better-than-chance detection of neoplastic transformation in
a cancer cell model. The variety of cell type differences we can
detect suggests that the algorithm is generally applicable to novel
cell types. While we have applied these methods to the analysis
of cell motility, our scheme for representing motion spatially for
analysis by CNNs is generalizable to other motion classification
problems.

Index Terms—convolutional neural network, cell motility, cell
classification.

I. INTRODUCTION

ELL Cell motility is a diverse cellular behavior involving
C a complex regulatory network and dynamic reorganiza-
tion of the cell’s geometry [1], [2]. These motility behaviors
can provide a useful window for inference of a cell’s broader
functionality. Neoplastic transformation has long been appre-
ciated to alter cell motility behaviors, increasing the migration
rate of various models in culture and serving as a mechanism
for metastasis [3], [4], [5], [6], [7]. The motility behaviors of
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cancer cells in culture can even be predictive of broader tumor
progression[8].

Likewise, the migration of progenitor cells is critical in early
development and tissue regeneration [9]. Skeletal muscle stem
cells (MuSCs) provide an accessible platform to study stem
cell motility phenotypes in vitro by timelapse imaging. During
embryonic development, MuSC precursors must migrate from
early stage developmental structures (somites) to their adult
location along the edge of muscle fibers in the trunk and limbs
[10], [11]. In the adult, motility continues to play a critical
role, as MuSCs migrate along muscle fibers in vivo to sites of
injury to initiate tissue repair [12], [13]. Motility behaviors are
heterogeneous between MuSCs and change during stem cell
activation [14]. Heterogenous fitness for regeneration within
the MuSC pool is well appreciated [15], and analysis of
heterogeneous motility behaviors may provide an additional
lens through which to decompose different MuSC phenotypes.

Given the biological importance of motility phenotypes,
classification of cells based on motility behaviors has useful
applications in research and diagnostics. Similarly, exploration
of heterogeneity within the motility behaviors of a cell popu-
lation may provide biological insights. However, it is often
difficult to determine a priori which features of motility
behavior will be predictive of a phenotype of interest, or allow
for discrimination of heterogeneous behavior. Additionally,
different phenotype classification tasks and cell populations
may require distinct feature sets to extract valuable biological
information. A method to algorithmically determine relevant
features of cell motility for a given classification or discrimi-
nation task is therefore advantageous.

A. Related Work

To date, a number of tools have been proposed that rely
upon a set of handcrafted features to quantify cell motility
behaviors, providing some remarkable results [16], [17], [18],
[19], [20]. Neural progenitor cells were discriminated by
motility behavior alone [20], and genes that effect motility
have been identified solely from timelapse imaging data [16].
These dramatic results demonstrate the potential insights that
may be gathered from more extensive analysis of cell motility.
However, these methods rely upon a priori generation of a
feature set, and have thus far focused largely on features of
speed and directional persistence. It is possible that more
complex features may allow for improved discrimination of
cell motility phenotypes, but it is difficult to predict what these
features may be in each context.
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Convolutional neural networks provide an approach to learn
relevant features from data, rather than handcrafting features
a priori. In the field of computer vision, convolutional neural
networks (CNNs) have recently made rapid advancements,
demonstrating state-of-the-art performance on a variety of
image classification tasks [21], [22], [23], [24]. CNNs uti-
lize a set of parametrized kernels to extract image features,
allowing distinct feature kernels to be learned for a given
classification task [25]. In this way, CNNs are able to learn a
“representation” of the problem’s feature space. Feature space
representations may also be learned in an unsupervised manner
by training CNN autoencoder architecture to encode and
decode [26], [27]. This approach may be useful for learning
relevant motility features where an explicit classification task
is not present.

While CNNs are most commonly applied to tasks involving
analysis of shape in two-dimensional images at a single
time-point, convolution is a natural analytical tool for any
input information with spatial dimensions. CNNs have been
successfully applied to a diverse set of non-imaging domains,
including natural language processing [28], bird song segmen-
tation [29], and EEG recordings [30]. Perhaps most clearly
mirroring our challenge of motion classification, CNNs have
performed well in the classification of hand-gestures from
video recordings [31], [32]. These successful implementations
have simply extended CNNs to consider three-dimensional
images as inputs, where one axis is time. This approach
has also allowed for successful classification of videos using
CNNs [33], [34]. We wanted to determine if CNNs could
similarly be applied to the problem of cell motility phenotype
classification. Cell motility is inherently 3D spatial data, where
one dimension is time. If the spatial nature of cell motility
data is represented explicitly as a 3D image, in the same
manner used for gesture classification, CNNs may allow for
motility phenotype classification without a priori definition of
handcrafted features.

Here, we present Lanternfish, a tool to represent motility
paths as 3D images, classify different motility behaviors, and
learn motility features in an unsupervised fashion using CNNs.
Lanternfish represents cell motility using a set of positional
markers in a 3D volume, with the depth axis representing time.
We demonstrate that standard CNN architectures are sufficient
to accurately distinguish experimentally observed cell motility
phenotypes represented in this way. Additionally, we show that
autoencoder architectures can be trained successfully on these
3D motility representations for use as unsupervised feature
extractors.

II. SPATIAL REPRESENTATIONS OF MOTILITY PATHS

Motion data in a two-dimensional plane is inherently three
dimensional, with two dimensions in physical space (x and
y) and a single time dimension ¢. Each of these dimensions
has relevant spatial meaning, and spatial relationships are
required to fully represent the motion of an object. This spatial
nature makes motion an ideal candidate for the application of
convolutional neural networks, which specialize in learning
representations of spatial data.

Fig. 1. Representative motility traces using different markers of location. (A)
Disk structuring element markers, (B) Gaussian distribution markers.

In order to apply CNNs to the analysis of motion, motion
must be represented as a static 3D image. Cell motility is
typically recorded as the position of the cell centroid at each
time point. To represent this time series of positions as a
3D image, we first produce a simple 3D representation of an
(z,y) path by placing a 1 pixel (px) binary marker on the
location of the object at each time point ¢ in a single slice
of a cube with dimensions (X,Y,T), leaving all other values
at 0, where x € X, y € Y, and t € T. Viewed one plane
at a time along the ¢ dimension, this cube is simply a video
of the 2D path representing the object’s location with a 1
px marker. However, this trivial representation presents a very
sparse feature space, and intuitively may not allow for efficient
learning of convolutional kernels.

In expectation of this sparsity problem, we produced tools
to build representations that mark an object’s location in each
(X,Y,T) plane with a binary disk of arbitrary size or Gaussian
distribution of arbitrary variance, instead of a single 1 px point.
Gaussian distributions are scaled [0, 1] for each o value. The
resulting representation resembles a “stack of dinner plates”
(Fig. 1). These representations contain information about the
objects location at more (z,y) coordinates within a plane than
the 1 px representations, so we reasoned that they may aide
learning of 3D convolutional kernels.

Further information can be encoded by setting the amplitude
of the disk or distribution in each t plane based on some
real valued measurement. For instance, instantaneous speed
or object size could be encoded as amplitudes. Compression
of motion paths may be necessary due to GPU memory
constraints. For all experiments performed here, motion paths
were compressed 4- or 6-fold in the (z,y) dimensions by
simple integer division of (X,Y") coordinates.

ITIT. CNN ARCHITECTURE
A. Classification architecture

For classification of different types of motion, we apply
a standard CNN architecture utilizing 3D convolutional and
max pooling layers, diagrammed in (Fig. 2). 3D Convolutional
layers convolve the 3D motion cube inputs with a set of
parametrized kernels, passing the convolutional outputs to
the layers above. The max pooling layers perform a max
operation for voxels in an 3D-window, reducing the input
size, and returns the resulting output to the layer above.
This architecture is similar to well known 2D classification
architectures [21], [35]. All convolutional layers are paired
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Fig. 2. Motility analysis CNN classification and autoencoder architectures. All convolutional layers are three dimensional and paired with a rectified linear
unit activation. Pooling and upsampling layers operate with kernels of size (2, 2, 2) and stride of 2. Zero padding is performed as needed in the autoencoder
model to match input size. Here, k is the number of kernels learned by each convolutional layer, n is the number of units in a fully connected layer, and p

is the proportion of neurons dropped in a Dropout layer.

with a rectified linear unit (ReLU) activation (max(0, x)) [36],
utilize unit strides s = 1, and convolve with (3, 3, 3) kernels.
Convolutional layers pad input images by 1 px by reflecting
edge values to avoid reduction of input size by convolution.
Max pooling layers operate with (2,2,t) kernels and stride
s = 2, where t € {0,2} at different points in the network.
This allows for less pooling in the time dimension, which
may be smaller than the z and y dimensions, as in our case.

Fully connected layers are the same as in a traditional neural
network, in which each perceptron unit considers input from
all units in the previous layer, and outputs to all units in the
next layer [37]. Dropout layers eliminate a random proportion
p of fully connected units from a fully connected layer during
each forward pass, reducing reliance upon individual units
and preventing overfitting [38]. Two fully connected layers
with dropout (p = 0.3, where p is the proportion of neurons
dropped per epoch) and ReLU activations are utilized at the
bottom of the network. Final class outputs are returned by
a fully connected layer with a number of neurons equal to
the number of classes and a softmax activation. Notably, we
find that stacking multiple convolutional layers is necessary
for effective training, possibly due to the increased receptive
field size of deeper layers in stack.

Classification networks were trained using stochastic gradi-
ent descent with momentum (¢ = 0.5). Categorical crossen-
tropy was used as a loss function. We find that training is
sensitive to the learning rate ¢, and thus utilize a low initial
learning rate ¢y = 0.005 with a rapid decay function

€i+1 = €¢dl+1

where ¢ € [0,N] is the training epoch, €y is the initial
learning rate, and d is a decay coefficient, set to d = 0.8
for our experiments. We find that the Adadelta algorithm [39]
performs poorly for training of our classification networks
(data not shown).

B. Autoencoder architecture

We utilize a similar autoencoder architecture, employing
stacked 3D convolutional and max pooling layers at the bottom
of the network to encode the input, followed by stacked 3D
convolutions and upsampling layers to decode the input (Fig.
2). As in the classification architecture, all convolutional layers
are paired with a ReLU activation. Autoencoder networks were
trained with the Adadelta optimization algorithm [39], utilizing
crossentropy or mean-squared error as the loss function for
binary and Gaussian representations respectively. This archi-
tecture resembles others in the literature [25], [26].

IV. EXPERIMENTAL RESULTS
A. CNNs accurately classify simulated motility behaviors

To determine if CNNs could discriminate between different
types of motion under ideal conditions, we first trained classifi-
cation networks on simulated data from 3 distinct biologically
relevant models of motion, namely random walking, Levy
flights, and fractional Brownian motion. Random walking
is motion with normally distributed random step sizes and
directionality. Random walking is observed in freely diffus-
ing biomolecules [40]. Levy flights similarly display random
directionality, but step sizes are instead chosen from a long-
tailed Levy distribution. Levy flights are observed in multiple
biological systems and optimize path finding [41], [42], [43],
[44]. Fractal Brownian motion models a random walk with
long term dependence, similarly relevant as a representation
of regulated motion in biology [45], [46]. By starting with
simulated data we can optimize parameters using large sample
sizes that would be difficult to obtain with living cells.

Random walks, Levy flights, and fractal Brownian motion
were simulated for classification, each with a mean displace-
ment of 5 (z,y) units per time step. Simulations were carried
out for 101 time steps and restricted to a (2048, 2048) pixel
plane, representing the field-of-view that might be expected
using a standard 4 megapixel microscopy camera. Compressed
tracks traveling more than 156 px from the origin in any
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Fig. 3. CNNs can discriminate between different types of motion represented as 3D images. Training plots of three class discrimination between simulated
random walks, Levy flights, and fractal Brownian motion using (A) large binary disk markers and (B) large Gaussian markers. (C) Summary of classification

accuracies for different representations.

direction were removed from analysis, to prevent dilution of
the representation space by a few outlier tracks. Remaining
tracks were represented in (156,156,101) vx cubes. 4-fold
compression and cropping were performed to meet GPU
memory constraints. nVidia GTX 1080 (Pascal) GPUs were
used for all experiments.

Experiments with 3,000 samples per class were performed
using binary disks of three diameters d € {1,5,25} and broad
Gaussian distributions of different variance o € {3,10,20}
as place markers. Training was ceased in all models after the
validation loss failed to improve for 3 consecutive epochs. The
largest binary disk representations achieved "84% validation
accuracy after 30 epochs, and the largest Gaussian representa-
tions of the same data yielded “81% validation after 30 epochs
of training (Fig. 3A). Both binary and Gaussian representations
appear to overfit in later epochs, as evidenced by the diver-
gence of the training performance from validation performance
(Fig. 3A). We find that dynamic data augmentation in the form
of horizontal and vertical flipping (i.e. rotating about the ¢ axis)
reduces this overfitting in both representation types (Fig. 3B).
In both representation schemes, training was accelerated by
increases in the marker size (Fig. 3C, binary representations
shown). While the sparse 1 px binary representation eventually
achieved comparable accuracy to the largest binary represen-
tation (d = 25), training was much slower in initial epochs
(Fig. 3C). This suggests that feature learning is accelerated by
increases in the size of representation markers.

Subsequent experiments were performed with 13,500 sam-
ples per class, again using both binary disk and Gaussian

distribution representations. The largest binary disk represen-
tations reach "96% validation accuracy, while Gaussian distri-
butions reached "92% accuracy (Fig. 3D). At all scales, binary
representations achieved a higher peak validation accuracy
than Gaussian distribution representations (Fig. 3E). These
results suggest that 3D CNNs are sufficient to distinguish
different classes of motion represented as 3D images, and
that multiple representation schemes can be effective. Large
binary representation schemes appear to be the most effective
representation scheme we tested. Therefore, we utilize large
binary representations for all further experiments with live cell
data.

B. CNNs accurately discriminate cell types by motility behav-
ior

After validating that CNNs were sufficient to distinguish
simulated classes of motion, we applied the same classification
networks to distinguish different types of cell motility. Cell
motility was tracked in three different cell types by timelapse
imaging for 10 hours, followed by segmentation and tracking
by standard methods. Mouse embryonic fibroblasts (MEFs)
are commonly used for in vitro cell culture assays, and
neoplastic transformation of these cells has been demonstrated
to alter their motility behaviors. We tracked both wild-type
and neoplastic (c-Myc overexpression, HRas-VI2) MEFs to
compare their motility behaviors. Muscle stem cells (MuSCs)
are the obligate stem cell of the skeletal muscle, and their
motility is known to be effected by their activation state.
Activated MuSCs commit to become myoblasts, a transit
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Fig. 4. CNNs can discriminate between different cell types and cell states based on motility. (A) Training accuracy of classification between MEFs and
MuSCs with and without transfer learning. (B) Training performance of classification between MuSCs and myoblasts during training with transfer learning from
classification of simulated motion models. (C) Training performance of classification between wild-type and neoplastic MEFs. (D) Representative myoblast
motion cube representation. (E) Training performance of classification between mimetic simulations of MuSCs and myoblasts. (F) Training performance of
classification between real cell data of MuSCs and myoblasts using cell mimetic simulations as pre-training.

amplifying myogenic progenitor cell. We tracked both MuSCs
and myoblasts to compare motility between these states of
myogenic commitment (see Methods for culture details).

As a proof-of-principle, we trained a classification CNN to
discriminate between MEF and MuSC motility, represented
using large binary disks (diameter = 25 px) in 3D space as
described above. The classification network was trained for
30 epochs on MuSC motility traces and MEF motility traces
(n = 165 per class). n = 50 motility traces from each class
were used for validation.

The network required roughly 10 epochs with this small
data set to begin decreasing the training loss, but proceeded
to train effectively thereafter. Validation accuracy reached a
peak at 90% (Fig. 4A). These results indicate that even with
a very small data set such as this, CNNs can be effectively
trained to discriminate different types of cell motility de novo
(Fig. 4A).

We next wanted to investigate if transfer learning with
weights transferred from classifiers trained on simulated data
could improve performance, as has been demonstrated broadly
with CNNs in 2D image analysis tasks [47]. The same
experiment was repeated transferring weights from the trained
simulated motion classifier network referenced above to ini-
tialize the model. This network trained much more rapidly,
as might be expected. The network reached 85% validation
accuracy in a single epoch on this small data set, and peaked at
92% validation accuracy (Fig. 4A). These results indicate that
training on simulated motion data is an effective pre-training
initialization for classification of real cell motility phenotypes.

C. CNNs provide discriminative power between cell activation
states

To determine if CNNs can distinguish between more nu-
anced differences in cell state, classifiers were trained to
discriminate between MuSCs and myoblasts (n = 225 per
class) to determine if CNNs could be used to identify different
states of myogenic commitment. A representative example of
a myoblast motion cube representation is shown in (Fig. 4D).
Dynamic data augmentation was utilized due to the small
available sample size. Motion cubes were horizontally and
vertically flipped to increase training set diversity without
perturbing the representation of motility.

Transfer learning was utilized as above, taking advantage of
weights learned from simulated data classification. Classifica-
tion reached a peak of 93% validation accuracy discriminating
MuSCs and myoblasts (Fig. 4C), indicating that CNN classi-
fication of motility alone is sufficient to discriminate states of
myogenic commitment.

Similarly, classifiers were trained to discriminate between
wild-type and neoplastic MEFs (n 146 per class) with
transfer learning from the simulated motion classifier. Classi-
fication failed to achieve validation accuracy >70% (Fig. 4C).
The more nuanced phenotypic difference between wild-type
and neoplastic MEFs may be an inherently more challenging
classification problem. The small available sample size likely
compounds this difficulty and exacerbates the classifier’s poor
performance.
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D. Cell mimetic simulations allow for effective pre-training
from small sample sizes

Given the success of pre-training by classification of sim-
ulated models of motion, we next attempted to generate
simulated data that more accurately reflected real cell motility
to enhance pre-training efficacy. For a set of real cell motility
data, we measure the displacements and turning behavior of
each cell. Displacements are measured simply as the Euclidean
distance between each set of sequential timepoints. The turning
direction at a point ¢; is determined as the angle between the
vectors that connect points ¢;_1 to ¢; and ¢; to ;1.

Cells are decomposed into a set of k clusters by k-means
clustering on a set of parameters measured from these dis-
placement and turn angle distributions. The number of clusters
k = 5 was chosen empirically to capture the diversity of the
cell phenotypes while still leaving non-trivial numbers of cells
in each cluster. For each cluster, a bounded Johnson distribu-
tion is fit to the aggregate distribution of displacements and
the aggregate distribution of turn angles. Simulated samples
are generated by randomly sampling displacement magnitudes
and turn angles from the fitted Johnson distributions for T’
time steps. To represent a population of cells, the proportion
of simulations generated from each cluster is proportional to
the cluster’s prevalence in the original cell data. This approach
may be conceptually likened to the bag-of-words model [48],
in which k-means clustering is used to decompose features
into a representative “vocabulary.” By sampling from each
of k clusters proportionally, we aim to capture and simulate
heterogeneous phenotypes within a cell population, rather than
simply reproducing a single averaged phenotype that may not
be representative of any true cell phenotype.

We generated “cell mimetic” simulations for MuSCs and
myoblasts by the above method, with n = 15,000 simulated
samples for each of the two activation states. A classifica-
tion network was pretrained by classifying between the two
simulated data sets, reaching 97% validation accuracy (Fig.
4E). The weights from this pretrained network were used
to initialize a classifier trained on real MuSC and myoblast
motility traces (n = 225 per class), as performed above. This
classifier reached 97% peak validation accuracy, as compared
to 94% validation accuracy utilizing a simulated motion model
classification for pretraining (Fig. 4F). These results indicate
that classification of simulated data that mimics a real cell data
set is a more effective pretraining regimen than classification
of generic simulated motion models.

E. Autoencoders allow unsupervised learning of representa-
tions in motion feature space

Results up to this point indicate that supervised classifica-
tion of different cell motility phenotypes using convolutional
neural networks is effective, and that standard dynamic data
augmentation and transfer learning techniques perform well
in this paradigm. However, in the analysis of motility data,
supervised classification data is not always available. For
instance, to explore the heterogeneity of phenotypes in a
given population, there is no obvious method to generate
supervised classification data that may be used to learn relevant

feature kernels by optimization of a standard classification loss
function. This would also be an issue in the identification of
heterogeneous motility behaviors in patient biopsy samples,
in which the distinguishing features are not known a priori.
Training CNNs as autoencoders in an unsupervised fashion
has been used in other contexts to learn relevant feature
kernels where no obvious classification problem is present
[26], [27]. We next attempted to train autoencoders on our
3D representations of cell motility to learn relevant feature
kernels in the absence of a supervised classification problem.

A standard autoencoder architecture utilizing stacked con-
volutions, followed by upsampling and stacked convolutional
layers was trained on 13,500 samples of each class for three
types of simulated motion (random walk, Levy flight, fractal
Brownian motion). This architecture represents a mirroring
of the bottom convolutional layers of our classification ar-
chitecture about an encoded representation (Fig. 2). Binary
crossentropy was used as a loss function when training on
binary disk representations, while mean squared error was
used to as a loss function for Gaussian distribution repre-
sentations. All autoencoders successfully reduced loss over
several training epochs (Fig 5A). When visually inspected,
autoencoder outputs appear to accurately reflect input motility
representations (Fig 5B, C).

To determine if autoencoders trained on 3D motility rep-
resentations could be employed as feature extractors, we
utilized the output of the autoencoder’s central layer (the
encoded representation) as features. In our initial autoencoder
architecture (Fig. 2), this encoded representation was still
fairly high-dimensional (d = 1024), hindering distinction of
simulated data from these features (Supp. Fig. 3). We next
trained a second “bottle-necked” autoencoder architecture with
two fully-connected layers (n = 256) paired with dropout
(p = 0.3) at the center.

Features from the center of this “bottle-necked” autoencoder
appear useful for class separation when the feature space is
visualized (Fig. 6D). A Random Forest classifier (n = 100)
trained to distinguish simulated motility phenotypes using ex-
clusively the “bottle-necked” features achieved "80% accuracy
(5 fold cross-validated). This result indicates that the “bottle-
necked” features contain some discriminative power, albeit less
than a CNN trained to classify in a supervised manner.

Autoencoders are often used for unsupervised pre-training
prior to a classification problem. When classifiers were trained
to discriminate between the three simulated classes of motion,
transfer learning from the top layers of an autoencoder mod-
erately slows training, rather than expediting it (Fig 6E). This
may indicate that the feature kernels necessary to accurately
separate motion classes in this context are distinct from those
that allow for the most efficient autoencoding.

V. CONCLUSION

Convolutional neural networks allow for representative
learning, or learning of features relevant for the description
of a feature space. These experiments show that CNNs may
be applied to the analysis of motion data by representing
motion as a three-dimensional space. We demonstrate that
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Fig. 5. CNN autoencoders can learn representations of motion feature space in an unsupervised manner. (A) Training plots for a motility trace autoencoder,
trained on three simulated classes of motion, (B) sample input and (C) output images. (D) Visualization of autoencoder feature space with tSNE. (E) Training

accuracy of classifiers with transfer learning and de novo.

CNNss are capable of discriminating between simulated models
of motion and multiple types of cell motility. Additionally,
we find that CNN autoencoders can be trained effectively on
these 3D motion representations in an unsupervised fashion. In
our cell data sets, we find that CNNs effectively discriminate
between different cell types, and different states of myogenic
progenitor activation. While we apply the methods described
here to cell biology, there is no conceptual limitation that
prevents application to other fields where discrimination based
on motion recordings is desired. In the field of cell biology,
analysis of motility with CNNs may allow for useful insights
to be gathered in contexts where relevant features are non-
obvious or laborious to construct.
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