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Abstract

Linear mixed e�ects models are frequently used for estimating quantitative genetic parame-
ters, including the heritability, of traits of interest. Heritability is an important metric, because it
acts as a �lter that determines how e�ciently phenotypic selection translates into evolutionary
change. As a quantity of biological interest, it is important that the denominator, the pheno-
typic variance, actually re�ects the amount of phenotypic variance in the relevant ecological
ste�ing. �e current practice of quantifying heritability from mixed e�ects models frequently
deprives the heritability of variance explained by �xed e�ects (o�en leading to upward-bias) and
it has been suggested to omit �xed e�ects when estimating heritabilities. We advocate an alter-
native option of ��ing complex models incorporating all relevant e�ects, while including the
variance explained by �xed e�ects into the estimation of heritabilities. �e approach is easily
implemented (an example is provided) and allows corrections for the estimation of heritability,
such as the exclusion of variance arising from experimental design e�ects while still including
all biologically relevant sources of variation. We explore the complications arising depending
on the nature of the covariates included as �xed e�ects (e.g. biological or experimental origin,
characteristics of biological covariates). Furthermore, we discuss �xed e�ects in non-linear and
generalized linear models when �xed e�ects. In these cases, the variance parameters depend on
the location of the intercept and hence on the scaling of the �xed e�ects. Integration over the
biologically relevant range of �xed e�ects o�ers a preferred solution in those situations.

Introduction
Additive genetic variance, phenotypic variance and their ratio, the heritability of a trait, are key
parameters in evolutionary quantitative genetics, because they allow the assessment of whether
a phenotypic trait can evolve through natural and arti�cial selection (Falconer and Mackay, 1996;
Lynch and Walsh, 1998). �e heritability, h2, of a trait corresponds to the fraction of the selection
di�erential that can cause genetic change in the o�spring generation. �e heritability thus acts as a
�lter that determines how e�ciently a population can respond to phenoytpic selection. Heritability
is thus especially of interest to measure the adaptive potential of e.g. species threatened by global
change (Ho�mann and Sgrò, 2011; Alberto et al., 2013), as well as to investigate fundamental issues
in evolutionary biology (Mousseau and Ro�, 1987; Merilä and Sheldon, 2000; Kruuk et al., 2000;
Had�eld et al., 2006).

Mathematically, the heritability h2 of a trait is de�ned as the ratio of its additive genetic variance
VA to its total phenotypic variance VP:

h2 =
VA

VP
. (1)

As a measure of biological interest, the heritability should be estimated with the ecologically rele-
vant phenotypic variance in the denominator, just as VA should be estimated accounting for vari-
ous confounding e�ects (Wilson et al., 2010) and in the relevant environment, since genotype-by-
environment interactions are common (Falconer, 1952; Kawecki and Ebert, 2004; Stinchcombe, 2014).
�e phenotypic variance VP should ideally be quanti�ed by random sampling from the base popu-
lation in a biologically relevant se�ing. But studies are o�en designed, for good reasons, primarily
for estimating the additive genetic varianceVA without bias and with the highest possible precision.
Optimal sampling for the estimation ofVA can sometimes con�ict between the precise estimation of
the numerator and the denominator of Eq. 1. To cope with these design choices, as well as to model
experimentally and naturally arising confounding e�ects, quantitative genetic models have to be as
thorough as possible. �is thoroughness inevitably leads to much complexity in the types and forms
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of e�ects included in the model, which in turns might render the computation of some parameters,
especially VP, more di�cult than usually appreciated.

�e most popular methods for estimating quantitative genetic parameters make use of the linear
mixed models (LMM) framework. In particular the so-called animal model (�ompson, 1976), a
special case of a mixed e�ects model, is widely used in plant and animal breeding (Gianola and
Rosa, 2015) and has been increasingly used in wild population studies over the past decade (Postma,
2014). One of the greatest advantages of mixed models is that they allow accounting for various
confounding e�ects (Kruuk, 2004; Wilson et al., 2010). A LMM ��ed to explain a phenotype y can
contain both �xed and random e�ects, which is conventionally wri�en as:

y = µ + Xb + Zaa + Zu + e, (2)

where y is the vector of phenotypes y, µ is the global intercept and e is a vector of residual errors.
�e Xb part stands for �xed e�ects (although not the intercept in the notation that we use here
and in the following), whereas Zu refers to the random e�ects. Random e�ects, unlike �xed e�ects,
are modelled as stemming from a Normal distribution with a mean of zero and a variance to be
estimated from the data. Because of the quantitative genetic context discussed here, we isolate the
random e�ect Zaa corresponding to the additive genetic value of the individuals from other random
e�ect components. �e matrices X and Z are referred to as the design and incidence matrices for the
�xed and random e�ects, respectively. Especially, the X matrix contains the values of the co-factors
included in the analysis. �e vectors b and u contain the ��ed �xed and potential random e�ect
estimates, respectively.

When no �xed e�ects (apart from the intercept µ) are included in the analysis, the heritability is
simply calculated as:

h2 =
VA

VA +VRE +VR
, (3)

where VA stands for the variance in additive genetic values a, VRE for (the sum of) any additional
random e�ect variance(s) andVR for the residual variance. Since variance decomposition using LMM
separates the phenotypic variance into additive components, Eq. 3 will generally give an unbiased
estimate of Eq. 1. Fixed e�ects, however, can be problematic for multiple reasons and they are the
focus of this paper.

Substantial progress has been made in highlighting issues pertaining to �xed e�ects in quantitive
genetic inferences (Wilson et al., 2010; Wolak et al., 2015), generating solutions for mixed model
analysis in general (Nakagawa and Schielzeth, 2013), and in data-scale quantitative genetic inference
using generalised mixed models (de Villemereuil et al., 2016). Ideas in these works have resulted in
substantial progress concerning the ��ing and evolutionary quantitative genetic interpretation of
mixed models with �xed e�ects. �e purpose of this paper is to synthesise the ideas in these previous
works so as to provide an accessible guidance to about what issues arise, and how to handle them,
in a number of circumstances that are likely to occur in empirical evolutionary quantitative genetic
studies.

Heritability estimation in the presence of �xed e�ects
Fixed e�ects are o�en ��ed with the intention to account for confounding e�ects and improve the
goodness-of-�t of the models by accounting for complex pa�erns in the data. As illustrated in Fig.
1, the variance of the random e�ects, as well as the residual variance are estimated around the
predicted values. Because of this, the sum of random e�ect and residual variances represents an
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Figure 1: Schematic description of an analysis using a continuous �xed-e�ect predictor to model a phenotypic
trait, possibly with random e�ects. �e graph shows the relationship between the �xed-e�ect predictor and
the phenotypic trait (individual data points in black circles, values predicted by the model as black thick line).
�e total phenotypic variation (black double-arrow on the right) is decomposed into the fraction explained by
�xed-e�ect variation (i.e. the phenotypic variation “along” the predicted model, in green) on one hand, and
random variation (i.e. variation from random e�ects and residual error arising “around” the predicted model,
in red) on the other hand.

underestimate of VP, as it does not re�ect the total phenotypic variance of the trait, but rather the
variance a�er the �xed e�ects have been accounted for (i.e. related to the red part in Fig. 1).

As a consequence, �xed e�ects a�ect the size of the phenotypic pie that is decomposed in dif-
ferent components, if the denominator is calculated as in Eq. 3. Wilson (2008) hence recommended
particular care when ��ing �xed e�ects in animal models and argued for a supplementary analysis
without �xed e�ects. However, a cursory literature survey demonstrates that the use of �xed e�ects
in quantitative genetics of wild populations is an almost universal practice (Table. 1). Note that
the issues tackled here and by Wilson (2008) about reduction of the denominator variance when
accounting for �xed e�ects also apply to the practice of two-step analyses by �rst ��ing a linear
model to account for confounding e�ects and then analysing the heritability of the residuals (Gar-
land, 1988).

Since it will typically not be possible to get a benchmark for VP from an independent dataset,
we need solutions that allow a reconstruction of VP. A simple solution would be to replace the
denominator VA +VRE +VR by the phenotypic variance in the original dataset VPo, such that:

h2 =
VA

VPo
. (4)

VPo will however be a�ected by various aspects of the experimental design and may not be repre-
sentative of the phenotypic variance in the base population (even if biases may be small in some
cases of well-balanced experimental designs).

A more proper solution is to account for the amount of variance that has been transferred from
the random components toward the �xed e�ects. In the context of computing the coe�cient of
determination (R2), Nakagawa and Schielzeth (2013) proposed to construct a �xed e�ect variance
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Table 1: Re-analysis of the Unicorn dataset from Wilson (2008), using models 1a, 1b and 1c from this reference.
We computed VF and provide VP and h2 with or without accounting for this component. Discrepancies in
values from h2 compared to Wilson (2008) are due a typological error in this reference (A.J. Wilson, personal
communication).

Fixed e�ect VF VA VR VP h2

No VF With VF No VF With VF

None 0.00
[0.00-0.00]

0.34
[0.08-0.60]

3.14
[2.85-3.44]

3.49
[3.24-3.71]

3.49
[3.24-3.71]

0.098
[0.025-0.17]

0.098
[0.025-0.17]

Age + Sex 2.49
[2.36-2.62]

0.36
[0.27-0.47]

0.65
[0.58-0.73]

1.02
[0.94-1.08]

3.51
[3.35-3.65]

0.36
[0.28-0.45]

0.10
[0.08-0.13]

Age + Sex +
Age:Sex

2.56
[2.42-2.68]

0.35
[0.26-0.46]

0.60
[0.52-0.67]

0.95
[0.88-1.03]

3.51
[3.36-3.66]

0.37
[0.28-0.46]

0.1
[0.072-0.13]

component as the variance of the linear predictor of the model ŷ = Xb̂ (where b̂ are the parameter
estimates for the �xed e�ects). In other words, ŷ is the black thick line in Fig. 1 and its corresponding
variance VF (i.e. related to the green part in the �gure) can be computed as:

VF = Var(ŷ) = Var(Xb̂). (5)

When including this variance component in the heritability calculation, the denominator is no more
sensitive to the presence and number of �xed e�ects, because the variance transferred from random
components to the �xed e�ects is now accounted for in the new componentVF (again, see Fig. 1 for
a graphical illustration that VP includes VF):

h2 =
VA

VA +VF +VRE +VR
. (6)

�is is a straightforward calculation that can be done for any analysis, and using most so�ware, since
it needs only the values of the co-factors (i.e. the design matrices) and the parameter estimates. �e
former is an aspect of the sampling and/or experimental design and the la�er is part of the output
of any statistical so�ware.

�e inclusion of thisVF variance component in the computation of the total phenotypic variance
VP should be the norm when LMM are used to infer quantitative genetic parameters and when
�xed e�ects are included in the analysis. It will be useful to provide estimates of this component in
publications, in order to re�ect how much variance was depleted because of the presence of �xed
e�ects. �e same kind of solution could be applied if the heritability was measured on the residuals of
a regression (sometimes referred to as “corrected phenotypic values”): the variance of the regression
model (VF, following the exact same de�nition as in Eq. 5) could be computed and included in VP,
though a be�er practice anyway would be to run everything within a single LMM.

As an illustration, we re-analysed the Unicorn example data from Wilson (2008). �is analysis
(Table 1) shows that accounting for theVF (note that values ofVF can be relatively high and certainly
not negligible in general) component allow to recover the correct value for VP and hence for h2,
whichever the structure of the �xed e�ect component. Hence, because this practice would answer
the concerns raised by Wilson (2008), we encourage researchers to include �xed e�ects in their
analyses. A decision not to �t in�uential �xed e�ects, despite their bene�cial e�ect on the goodness-
of-�t or for accounting for confounding e�ects, would likely harm model �t, parameter estimation
and the behaviour of the test statistics. Improving the �t of the model would most likely improve
the precision of the estimates, which, for any particular dataset, would improve the precision of
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Table 2: Fixed e�ects literature survey. �is literature survey does not claim completeness, but should include
the vast majority of heritability estimates in wild population using the animal model.

Référence Nb. e�ects Fixed e�ects
Natural variation Experimental variation

Réale et al. (1999) 2 Sex, Years —
Kruuk et al. (2000) 2 Age, Area —

Milner et al. (2000) 8

Age, Parasite burden, Birth
Year, Year of measurement,
Birth type, Coat color, Horn
type

Catch date

Kruuk et al. (2001) 1 — Brood size manipulation
Merilä et al. (2001) 1 — Brood size manipulation
Kruuk et al. (2002) 1 Age —

MacColl and Hatchwell (2003) 6 Year, Sex, Helper, Hatch date,
Area, A�empt —

Sheldon et al. (2003) 1 Year —

Had�eld et al. (2006) 5 Sex, Year, Hatch date Carotenoid treatment,
Immune treatment

�ériault et al. (2007) 4 Age, Year Day of capture
Nilsson et al. (2009) 3 Age, Dyad Brood size manipulation
Morales et al. (2010) 3 Eggmass, Age Treatment
Charmantier et al. (2011) 2 Sex, Natal colony —
Doligez et al. (2011) 2 Sex, Age —
Lane et al. (2011) 2 Age-class, Year —
Reid et al. (2011b) 1 Year —
Reid et al. (2011a) 2 Year, Age-class —
Evans and Sheldon (2012) 3 Sex, Age Measurement day
Bérénos et al. (2014) 3 Sex, Li�er size Age at capture

Lane et al. (2015) 4 Age, Cone availability, Li�er
size, Year —

the heritability estimate (the point estimate would be more probably close to its true value and the
con�dence interval will be smaller). Furthermore, the inclusion of co-factors that account for non-
genetic e�ects that are partly confounded with the additive genetic component VA (e.g. common
environment e�ects) are likely to reduce upward bias in the heritability estimate and will tend to
result in lower, but more accurate point estimates of heritabilities.

Removing the in�uence of experimental design on VP

In the context of estimating the phenotypic variance of a trait, �xed e�ects (as well as random e�ects)
may be of two kinds. �ey can either re�ect natural sources of variation that we are interested in,
or variance arising from experimental and/or design e�ects. Since the la�er category arti�cially
in�ates the variance in the data, we would, most of the time, like to exclude this source of variance
from the heritability calculation. For example, if we want to study the amplitude of insect songs
in the �eld, we might want to improve our model �t by including e�ects accounting for natural
sources of variation, such as the age of the individual (if the amplitude is age-dependent) and e�ects
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accounting for sampling design, such as the distances between the animal and the microphone. Yet,
in the computation of the phenotypic varianceVP, we might want to include the biological variance
arising from age, but not the experimental variance arising from the distance.

We have categorised �xed e�ects in the literature survey (Table 2) into sources of natural or
experimental variation for illustration. Most of the �xed e�ects included in these analyses originate
from natural variation (e.g. sex, year, age, area, li�er size) and most likely should be included in VP.
Others are of experimental origin either being an experimental treatment or of design origin (e.g.
due to variation in the time of measurement) and should be excluded ofVP. Of course, this separation
between natural and experimental sources of variation can be quite di�cult (e.g. year of sampling
may represent error measurement or relevant natural variation depending on context). Furthermore
it can sometimes be interesting to also exclude natural sources of variation. For example, “age” or
“sex” could be excluded from the denominator to get heritabilities conditional on those factors. �is
would allow to perform evolutionary prediction for a particular age-class or sex.

To exclude some particular factor(s), the predictor(s) (i.e. the respective columns in the design
matrix) and the related inferred parameters can simply be le� out of a new linear predictor ŷ? in the
calculation of VF such that:

VF = V (ŷ?). (7)

Note, however, that this computation is unfortunately not general and is based on the assumptions
that the measured variance of the natural predictors is not “caused” (in the statistical sense of the
term) by any of the experimental predictors. A more general solution relies on path analysis and
the assumption of a causal pathway between variables (see Box 1).

In some rather special situations, it might be even advisable to replace the design matrix X
by a modi�ed design matrix X′, which implies using predicted values ŷ′ = X′b̂ rather than ��ed
values in Eq. 5. For example, the insects that we are studying with respect to song amplitude might
occur in distinct morphotypes (and these morphotypes might in�uence thermoregulation and thus
song amplitude) that are not equally common. For statistical reasons it is advisable to oversample
the rare morphs if we want to estimate the e�ect of morph on song amplitude. Such a sampling
design will equalize morph frequencies in the sample and will thus tend to in�ate VF if calculated
as Xb̂. Since we argue that the denominator when calculating the heritability should represent the
natural variation, we are be�er o� with replacing X by X′ that represents the natural frequencies
of morphs in the population. Statistical requirements (balanced sampling) and biological realism
(natural morph ratios) di�er in this case and the calculation should account for this di�erence. Note
that, while constructing X′, one should take into account potential correlations between co-factors.
For example if the rare morph is preferentially present in warm environments and temperature is
included in the model, then X′ should re�ect that correlation.

Implicit assumptions about genetic covariances and �tting of
genetic covariates
When ��ing �xed e�ects in LMM, we are assuming stable residual and random-e�ect variances
across the range of the covariates. If some covariates are of biological origin, we also implicitly as-
sume a perfect genetic correlation along the range of those covariates. �is assumption is frequently
violated. In the special case of sex, for example, it has been shown that ��ing sex as a �xed e�ect
in a LMM leads to (downward) biased estimates unless the cross-sex genetic correlation is perfect
(Wolak et al., 2015). But more generally, this applies to any factor or covariate that is added as a
�xed e�ect.
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A further consideration is whether �xed e�ects should cover only non-genetic sources of vari-
ation. Morphs in our example might be environmentally or genetically determined and it is usu-
ally advisable to model such discrete e�ects with potentially oligocausal control as �xed e�ects, no
ma�er whether they are ultimately genetic or environmental in origin. With purely monogenic in-
heritance of morphs, morph phenotype is essentially a genetic marker for a (potential) quantitative
trait locus (QTL) and thus represents the local heritability in linkage with the morph-determining
locus (see e.g. Payne, 1918; Sax, 1923, for early QTL studies using Medelian phenotypes as markers),
while the polygenic contribution of the background is captured by VA. Whether or not covariates
cover genetic or non-genetic e�ects ma�ers for the interpretation, since the estimate of VA (and
consequently h2) might represent the totalVA or the backgroundVA other than the local heritability
at the QTL.

Some potential covariates might also be (heritable) polygenic traits themselves. In many cases,
relationships between a focal trait and some other relevant trait are best handled with multi-response
models (see Had�eld, 2010; Wolak et al., 2015), wherein the potential covariate is treated as a re-
sponse along with the focal trait. Such a model estimates the genetic variances of, and genetic co-
variances (and others, e.g. residual) among the various traits treated as responses. �is is not the case
when the potential covariate is included as a �xed e�ect in the model: the �xed e�ect will explain
the whole in�uence of the covariate on the focal trait but not explicitly distinguish between (nor dif-
ferentially estimate) di�erent sources of covariances. �ere are situations where it does make sense
to include polygenic traits as �xed covariates, particularly when studying questions where causal
e�ects of traits on one another are relevant. Further discussions of such scenarios are presented in
Gianola and Sorensen (2004) and Morrissey (2014, 2015).

Non-linear models and non-Gaussian traits
�e in�uence of �xed e�ects might become more problematic when non-linearity is introduced
in the model, in which case the approach proposed here will be ine�cient. Such non-linearity
arise obviously for non-linear mixed models (NLMMs), but also for generalised linear mixed models
(GLMMs), through the non-linearity of their link functions. In GLMMs, there are indeed di�erences
between the latent scale and the data scale (Morrissey et al., 2014): on the former, we assume linear-
ity, normality and perform most of the inferences, whereas the la�er is a non-linear transformation
from the latent scale (e.g. through the link function). Hence, the above framework could be used on
the linear, normally distributed, latent scale, but not with methods transforming estimates from the
latent scale to the data scale like those reviewed in Nakagawa and Schielzeth (2010).

�e non-linearity indeed breaks the assumption of independence between �xed e�ects and ran-
dom e�ects, with the direct consequences that quantitative genetic parameters can no longer be
computed without accounting for the whole distribution of �xed e�ects. Hence VA and VP on the
data scale become complex functions of all the other parameters, rendering the computation of VF
essentially meaningless for this scale (see Fig. 2). De Villemereuil et al. (2016) showed that �xed ef-
fects must instead be integrated over to accurately compute quantitative genetic parameters using a
GLMM. Integration over �xed e�ects is the solution to marginalize over the �xed e�ects and thereby
accounts for their shape and distribution (for details see de Villemereuil et al., 2016). �is approach
assumes that the distribution of �xed e�ects in the sample is representative for the base popula-
tion of interest. Otherwise, the design matrices might need to be adjusted accordingly as described
above, or a distribution for the predictors must be assumed. �e same logic applies when working
with non-linear models or with data that was non-linearly transformed, unless we are speci�cally
interested in the heritability of the transformed data.
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Figure 2: �e �gure illustrates the case of a binary trait with 20 observations per record that is modelled
using a Binomial GLMM with logit link. Plain arrows illustrate deterministic relationships and do�ed arrows
stochastic relationships. On the latent scale, a �xed e�ect is assumed, accounting for the presence of two
di�erent groups (possibly males and females). �e latent scale values for individuals of these two groups
are clearly separated. According to the canonical assumptions of linear modelling, the groups only di�er
in their mean, not in their distribution or variance. Because the link function is not linear, initially equally
apart values for each groups are more spread for Group 1 than for Group 2 (solid arrows). A further e�ect
is the e�ect of the binomial, yielding more variance for medium probabilities (Group 1, do�ed arrows) than
for high probabilities (Group 2, do�ed arrows). �e end result is that on the data scale, the two groups no
longer satisfy the assumptions on the latent scale: their variance are di�erent (bigger for Group 1), the shapes
of their distributions now di�er (Group 2 is more skewed) and in this case the they two distributions even
overlap. On the data scale, it is not possible to compute the variance arising from the �xed e�ect as simply
the variance arising from di�erences in mean between the two groups.

It is thus important to stress that the approach suggested here can only be applied to phenotypic
traits with a Normal distribution and analysed using linear mixed models (or if the analysis is based
on the latent scale of a GLMM). However, the strategies presented here to remove the in�uence
of experimental design still apply for GLMMs: experimental or sampling design e�ects can (and
most likely should) be le� out during the computation of the linear predictors and can be virtually
“re-sampled” to account for biased sampling unrepresentative of natural populations.

Conclusion & Perspectives
Wilson (2008) identi�ed an issue when �xed e�ects are included a quantitative genetic model: the
inclusion of �xed e�ects in the model has an in�uence on the computation of the phenotypic vari-
ance. Based on recent work from several sources, we provided guidelines to overcome this and
other related issues, in the hope this will facilitate the use and interpretation of mixed models with
�xed e�ects. We also discussed the complications arising from the diverse and complicated nature
of covariates that can be ��ed as �xed e�ects. We think that �xed e�ects are an opportunity to
�nely control confounding e�ects. Yet, when belonging to the phenotypic variance, they need to
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be included in the denominator of the heritability. In order to do so, we here promote the practice
of accounting for the “�xed-e�ect” variance component VF (see Nakagawa and Schielzeth, 2013),
which includes the variance of all or selected �xed e�ects to be added in the denominator of the
heritability calculation. We include an example of analysis using simulated data (see Supplemen-
tary Information) and the R package MCMCglmm (Had�eld, 2016) to show how these calculations
can be implemented and how they can a�ect the output (h2 estimates going from 0.66 when not
including VF in the denominator to 0.15 when including it in our example).

�is approach has several advantages. First, it allows to overcome Wilson (2008) legitimate
reluctance of including �xed e�ects in the model. When includingVF in the denominator, there is no
issue of “lost variance”. Second, since we are now able to include �xed e�ects, we have gained a �ner
control on confounding e�ects on the additive variance. It also requires some careful consideration
of which �xed e�ects represent experimental design e�ects and which are biologically relevant.
�ird, it provides us with the choice of whether or not to include e�ects inVF, depending on whether
or not we deem them part of the natural phenotypic variance of the studied population. Fourth, as
argued above for the case of morphotypes in the context of song amplitude, the calculation of VF
can accommodate some discrepancies between the analysed data and the actual population.

Overall we advocate for the inclusion of �xed e�ects in linear mixed models to estimate heritabil-
ities when (i) this improves the goodness-of-�t of the model and/or helps to account for confounding
e�ects and (ii) a carefully computedVF component is included in the calculation of the denominator
of the heritability. While this is generally also true for non-linear models and GLMMs, any model
that involves non-linearity in the response to �xed e�ects will require particular a�ention and likely
integration over their biologically relevant range in order to marginalize the in�uence of �xed ef-
fects.
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Box 1: Using path analysis to obtain a partial VF

Path analysis Path analysis is a statistical analysis aiming at evaluating the directed in�uence of
variables onto others. �is directed relationship is referred to as causality (Wright, 1921). �e direction
of the relationship has a strong in�uence in our case, because it allows us to predict if the presence of
one variable would in�ate the variance of another.
�ree examples In the �gure below are three di�erent examples using a phenotypic variable of
interest P in�uenced by a biological variable B and an experimental variable E. �e parameters bXY
stand for the coe�cient of a model of the e�ect of X on Y (e.g. a slope). �e parameters σX is the
exogenous standard-deviation of the variable X , i.e. its standard-deviation due to in�uences outside of
the causal pathway (e.g. stochasticity, unmeasured variables and measurement error). �e parameters
σXY is the exogenous covariance between X and Y , i.e. a undirected covariance arising from common
in�uences outside of the causal pathway or due to physical/logical constraints (e.g. size and volume
are physically covarying).

B
σB

σBE E
σE

P
σP

bBP bEP

1

B
σB

bBE E
σE

P
σP

bBP bEP

2

B
σB

bEB E
σE

P
σP

bBP bEP

3

General principle In all cases, we are only interested in computing the variance arising from the
grey area of the pathway (B and P ), while excluding variance arising from E. Excluding E from the
graph means that we set its exogenous standard-deviation (σE) and possible covariances (e.g. σBE), as
well as all the coe�cients of its e�ect on any variable (e.g. bEP ), to zero. Given that, the “�xed-e�ect
variance” of P in this graph excluding E is simply the variance arising from the e�ect of B:

VF = b
2
BPσ

2
B

We will see that the di�erence between the three examples lies in the computation of σB .

Example 1 In this example, the variables B and E share an undirected covariance σXY . In other
words, we assume that a set of unmeasured variables have an e�ect on both B and E, but not that
a change in E will a�ect B. In that case, the exogenous variance of B is merely its actual variance:
σ 2
B = V (B).

Example 2 In this example, the variable B has a direct e�ect on E (e.g. because an aspect of the
species biology modulate the e�ect of the experimental treatment). In that case, changes of variance
in B will a�ect the variance of E, but this is not a problem for us since we want to exclude E. Once
again, the exogenous variance of B is merely its actual variance: σ 2

B = V (B).

Example 3 In this example however, the variable E has a direct e�ect on the variable B (e.g. be-
cause the experimental treatment has an e�ect over di�erent parts of the biological system). �is
means that, by experimentally introducing E into the biological system, we also experimentally in-
creased the actual variance of B. To compute the exogenous variance of B, we need to remove this
additional variance: σ 2

B = V (B |E). In other words, σ 2
B is here the residual variance of a model of the

e�ect of E on B (e.g. the residual variance of the regression of E on B).
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Kruuk, L. E., Merilä, J., and Sheldon, B. C. (2001). Phenotypic selection on a heritable size trait
revisited. �e American Naturalist, 158(6):557–571.

Kruuk, L. E. B. (2004). Estimating genetic parameters in natural populations using the ‘animal model’.
Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 359(1446):873
–890.

Kruuk, L. E. B., Slate, J., Pemberton, J. M., Brotherstone, S., Guinness, F., and Clu�on-Brock, T. (2002).
Antler size in red deer: heritability and selection but no evolution. Evolution, 56(8):1683–1695.

Lane, J. E., Kruuk, L. E. B., Charmantier, A., Murie, J. O., Coltman, D. W., Buoro, M., Raveh, S., and
Dobson, F. S. (2011). A quantitative genetic analysis of hibernation emergence date in a wild
population of Columbian ground squirrels. Journal of Evolutionary Biology, 24(9):1949–1959.

Lane, J. E., McAdam, A. G., Charmantier, A., Humphries, M. M., Coltman, D. W., Fletcher, Q., Gorrell,
J. C., and Boutin, S. (2015). Post-weaning parental care increases �tness but is not heritable in
North American red squirrels. Journal of Evolutionary Biology, 28(6):1203–1212.

Lynch, M. and Walsh, B. (1998). Genetics and analysis of quantitative traits. Sinauer Associates,
Sunderland, Massachussets (US).

MacColl, A. D. C. and Hatchwell, B. J. (2003). Heritability of parental e�ort in a passerine bird.
Evolution, 57(9):2191–2195.
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