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 36 

Abstract 37 

Global climate change is transforming life on earth, causing widespread effects on all 38 

ecosystems. Among marine ecosystems, estuaries are considered as nursery grounds for marine 39 

and fresh water species. M. rosenbergii, a euryhaline species, migrate to the estuaries for 40 

breeding and spawning. The subsequent larval rearing takes place by experiencing variations in 41 

temperature and salinity conditions. The present study examines the effect of different 42 

temperature and salinity on the larval development and survival by observations on stored yolk 43 

utilization, cardiac performance, as well as changes in the rate of growth in body appendages and 44 

larval activity. The larvae showed 100% mortality at higher temperature (33.5 ± 0.5 °C) in all the 45 

salinity conditions (12 PPT, 15 PPT, and 20 PPT). The survival rate varied between 76- 96 % on 46 

exposure to lesser temperature conditions. Likewise, the post-embryonic yolk lasted for 4 days at 47 

ambient temperature (29 °C); whereas, at 33.5 ± 0.5 °C, it lasted only for 2-3 days. There was an 48 

increase in total length of larvae, when exposed to higher temperature and salinity, independently 49 

or in combination, but at 33.5 ± 0.5 °C under all salinity conditions the larvae died on the 5th day. 50 

For the cardiac performance, larval heart beat (fH) significantly increased for higher temperature 51 

and salinity conditions (20 PPT; 33.5 °C) and lowered at ambient condition 12 PPT; 29°C. 52 

Larval stroke volume Vs, Cardiac output Q� were higher in ambient conditions and lowest in 53 

higher temperature and salinity conditions. However, temperature and salinity together did not 54 

show any significant effect on cardiac performance.  On the other hand, the larval activity 55 

decreased significantly at higher temperature and salinity conditions, compared to ambient 56 

conditions but the interactive effect did not show any change. Thus, the physiological responses 57 

to temperature and salinity by the early life stages of M. rosenbergii could restrain the tolerance 58 
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capability of the organism, thereby interfering in the successful completion of the larval 59 

development under the altered climatic conditions.  60 

 61 

Key words: Prawns, Climate change, Early life history stages, Cardiac performance, Yolk 62 

consumption, larval activity 63 

 64 

INTRODUCTION 65 

Earth’s climate is changing at a rapid pace, mainly because of the increased carbon 66 

dioxide emission caused due to anthropogenic activities (Solomon et al., 2009). Though climate 67 

change is a global phenomenon, its effects on living organisms manifest at very local levels 68 

(Helmuth, 2009), and the magnitudes of these changes/effects could considerably fluctuate from 69 

location to location. Estuaries are one such ecosystem that is influenced by a variety of 70 

anthropogenic stressors (Donders et al., 2008). Estuaries act as a natural shelter for all myriad 71 

forms of aquatic life on earth where the spawning and feeding of early life forms of fish and 72 

shellfish happen (Beck et al., 2001). The diversity, distribution and biological functions of the 73 

organisms living in estuaries are influenced by climate change stressors (Kinne, 1971; Pörtner, 74 

2008; Pörtner, 2005; Portner and Knust, 2007; Widdicombe and Spicer, 2008). Climate change 75 

stressors including, rise in temperature, precipitation, salinity changes, sea level rise and ocean 76 

acidification pose deleterious impact on marine organisms and ecosystems (Brierley and 77 

Kingsford, 2009) 78 

 The giant fresh water prawn, Macrobrachium rosenbergii, is an indigenous species to 79 

south and south-east Asia (Holthuis, 1980). Lately, this prawn has been introduced to several 80 

other countries as commercially important aquaculture species (New, 2002). In their natural 81 

environment, M. rosenbergii is inhabited in various environments including fresh water streams, 82 

estuarine waters and canals connected to the sea (Jalihal et al., 1993; Shokita, 1979; Tiwari, 83 

1955). The life history of M. rosenbergii is amphidromous in nature. The adults spend their life 84 

in the fresh water; after spawning, brooders migrate to estuarine waters for hatching. The larval 85 

development takes place in estuarine water, and after settling down, it returns to the fresh water 86 

(Nandlal and Pickering, 2005; New, 2002). However, fresh water prawn culture in India 87 

increased steadily since 1999 reaching a peak output of 42,780 t in 2005, but then declined to 88 

6,568 t in 2009–2010 due to poor seed and brood stock quality (Nair and Salin, 2012). 89 
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In general, elevated temperature and salinity variations affect the metabolic rate, calorific 90 

intake and energy budget of decapods (Anger, 2003). Temperature and salinity are the important 91 

abiotic factors that control the growth and development of decapod crustaceans (Anger, 2003; 92 

Kinne, 1964; Kinne, 1971; Chand et al., 2015; Habashy and Hassan, 2010). Salinity around 12-93 

15 PPT and temperature range from 28 to 30 °C appeared to be optimal for the adults and larvae 94 

(Ling, 1978). Salinity plays a critical role on egg, embryo and larval development during the life 95 

cycle of M. rosenbergii. Yen and Bart (2008) studied the negative effects of elevated salinity on 96 

the reproduction and growth of female M. rosenbergii. Salinity influences all aspects of larval 97 

biology including survival, development, morphology, the moulting cycle, growth, feeding, 98 

metabolism, energy partitioning, and behavior (Anger, 2003). Likewise, Guest and Durocher 99 

(1979) reported the necessity of brackish water for the completion of larval development in M. 100 

amazonicum.  101 

Temperature, the other major factor, influences the species distribution, range of thermal 102 

tolerance and acclimatization of ectotherm organisms (Schmidt-Nielsen, 1997). In tropical 103 

environment, ectotherms have narrow range of thermal tolerance due to lack of seasonality in 104 

this region and most of them are living at the verge of their maximum thermal limit, making 105 

them vulnerable under global warming scenarios (Sunday et al., 2012). In crayfish, significant 106 

difference on the gonad development and spawning were observed at different temperatures 107 

(Carmona-Osalde et al., 2004). Similarly, the effect of high temperature showed irregular 108 

patterns of egg development in M. americanum (Sainz-Hernández et al., 2016). The growth 109 

pattern of the M. rosenbergii adults also changed, as temperature increased from low to 110 

normal/optimum, with the growth declining at the higher temperature (Habashy and Hassan, 111 

2010). Furthermore, synergistic effects in combination with one or more environmental variables 112 

(e.g., temperature and salinity) also play a key role in the ecological and geographical 113 

distribution of a species. Nelson et al. (1977) reported interactive effects of salinity and 114 

temperature on the metabolic rate of juveniles of M. rosenbergii.  115 

The persistence or the failure of a population is determined by the successful completion 116 

of all larval stages (Byrne, 2011). Even though the impact of varying salinities and temperature 117 

have been extensively studied in adult and juveniles of M. rosenbergii, we have poor 118 

understanding on the physiological consequences of individual as well as interactive impacts of 119 

salinity and temperature on the early life stages of this species. Under the predicted climate 120 
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change scenario, understanding the physiological constrains and energy cost for the completion 121 

of larva stages are vital to know the adaptive capability of successive population. Hence, in the 122 

present study, we used yolk utilization, cardiac performance, larval activity, growth as proxy to 123 

know the physiological fitness of the organism under future climate change condition. These data 124 

may give insight on the impact of climate change stress on early life history stages of this 125 

important aquaculture species.  126 

 127 

MATERIALS AND METHODS 128 

Animal collection and maintenance 129 

The adult male and female of M. rosenbergii were procured from a fisherman based at 130 

Cuddalore, Tamil Nadu. The shrimps were transported to the demonstration hatchery at the 131 

Centre for Climate Change Studies, Sathyabama University, Chennai in an oxygen filled poly-132 

ethylene bags. After transfer, the shrimps were acclimatized for 2-4 hours to the laboratory 133 

condition and shifted to 4×500 l fiber tank filled with the fresh water and fitted with biological 134 

filters. The water temperature was maintained at 29 °C and salinity at 0 PPT. The animals were 135 

fed three times a day with grated potatoes and commercial prawn feeds. Ten to 30% of the water 136 

was exchanged once in 3 days to maintain the quality.  137 

 138 

Experimental set up 139 

Twenty spawned brooders were kept in 4×300 liter fiber tank at 29 °C and salinity 12 PPT, and 140 

observed for the embryonic stages until hatching took place. Organogenesis and developmental 141 

changes were recorded under a light microscope equipped with computer aided software (Nikon 142 

Eclipse E600). On 19th day, most of the brooders released embryos which were pooled together 143 

in 20 liter fiber tank. Equal numbers of larvae were distributed among tanks with different 144 

experimental conditions (fig. 1). We chose following combinations of temperature and salinity: 145 

T*S [29°C/12 PPT] ,T1*S [31°C/12 PPT], T2*S [33.5°C/12 PPT ], T*S1 [29°C/15 PPT], T1*S1 146 

[31°C/15 PPT], T2*S1 [33.5°C/15 PPT], T*S2 [29°C/20 PPT], T1*S2 [31°C/20 PPT] and 147 

T2*S2[33.5°C/20 PPT]. The desired temperature in the tank was maintained using aquarium 148 

thermostat (Aqua Zonic, Singapore). The desired salinity was achieved by mixing fresh water 149 

with seawater of 35 PPT. The experimental tank consisted of 12 PPT sea water in glass aquaria 150 

with stock of 3540±82.76 larvae in it. During the experiment, larvae were fed with live Artemia. 151 
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The experiment lasted for 5 days from the day of hatching when most of the larvae were at 4th 152 

stage. The yolk utilization were measured everyday till fully consumed. Following 5th day, larval 153 

survival rate, growth rate, activity, and cardiac performance were measured.  154 

 155 

Yolk utilization  156 

Depletion of yolk in larvae was determined by staining the live larvae with Nile Red. To quantify 157 

the yolk, 10 larvae from each treatment condition were stained with Nile Red (10 mg/ml) for 15 158 

minutes, followed by washing using distilled water. The images were captured using the         159 

Epifluorescence microscope (Nikon Eclipse E600, excitation filter BP 490; barrier filter O515) 160 

equipped with digital camera and computer aided software (NIS-Elements). The images were 161 

analyzed by color threshold function in the image processing software Image J (Abràmoff et al., 162 

2004). The total area and total intensity were calculated and represented in mm and pixels 163 

respectively. The representative image to show how we measured the area and intensity is shown 164 

in figure 2.  165 

 166 

Larval survival rate 167 

Larval survival rate was estimated after 5 days of incubation at different conditions using the 168 

formulae:  169 

Larval survival rate (%) = {initial number - (initial number - final number)/initial number}*100.  170 

 171 

Morphometrics of larvae 172 

Morphometric analyses were conducted on the images taken by stereomicroscope equipped 173 

(Motic (Xiamen) Electric Group Co., Ltd, China) with digital camera and computer aided 174 

software (Motic image plus 3.0). Total length was estimated after 5 days of incubation by 175 

subtracting initial length from final length and represented in millimeter (mm). The 176 

representative image for the total length is shown in figure 3. 177 

Larval activity 178 

Larval activity, defined as the rate of maxilliped movement, was determined in the video taken 179 

using stereomicroscope (Ceballos-Osuna et al., 2013). Larva was trapped in a drop of water on 180 

cavity slide and covered with a cover slip. The water drop was taken from the respective 181 

experimental tank, and video was recorded at 5X magnification using stereomicroscope (Motic 182 
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(Xiamen) Electric Group Co., Ltd, China) for 2 minutes. Videos were parsed into 10s segments 183 

(free video cutter v 10.4), and slowed to 25% from original speed (VLC media player V. 2.4.4) 184 

for counting maxilliped movements (first three feeding legs) for at least 3 individuals. The 185 

results were represented in beats per minute (bpm).   186 

 187 

Cardiac performance 188 

Heart rate (ƒH) and stroke volumes (VS) were determined from the same video recorded for the 189 

larval activity. The videos were slowed down to 25% from original speed (VLC media player V. 190 

2.4.4) and zoomed to count accurate ƒH. A representative video showing the heart beat and 191 

maxilliped movements can be seen in supplementary file video 1. Screen marker (Epic pen V. 192 

3.0) was used to mark end-diastolic and end-systolic perimeter. VS were determined by 193 

calculating the difference between the end-diastolic volume (EDV) and end-systolic volume 194 

(ESV), assessed using Image J.  195 

VS = EDV-ESV 196 

EDV and ESV were assumed as prolate spheroids (Harper and Reiber, 2004; Storch et al., 2009), 197 

so following equation was used to calculate volume.  198 

Volume = 4/3π ab2 199 

 Where, a is the radius of major diameter and b is the radius of minor diameter (from image 200 

analysis). 201 

Individual cardiac output (Q) was determined as a product of VS and ƒH. 202 

The representative images showing EDV and ESV and VS are given in figure- 4.  203 

 204 

Statistical analysis 205 

Data were tested for normality and homogeneity using Shapiro–Wilk and variance test. After 206 

successful completion of these parameters, we performed two way ANOVA and post hoc tukey’s 207 

tests on the mean values for finding the independent and dependant effect of temperature and 208 

salinity. All the statistical analyses were performed using SPSS v. 22 (Corp, 2013). 209 

Results 210 

Larval survival rate 211 

Immediately after hatching, we collected the larvae and concentrated in 12 PPT seawater with a 212 

density of 71±3.7 individuals ml-1. Soon after, equal volume of water assuming equal numbers of 213 
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larvae (approx. 3500 ± 82.76 individuals) were distributed among all the experimental 214 

conditions. On day 5th, we observed 100% mortality at the higher temperature conditions (33.5 ± 215 

0.5 °C) in all the salinity conditions (12 PPT, 15 PPT, and 20 PPT). However, among other 216 

experimental conditions, the survival rate varied between 76-96 % (Table 1). Unfortunately, due 217 

to technical faults, we lost all the larvae in tank with 20 PPT and 31°C on day 1st. At the ambient 218 

temperature of 29 °C and different salinity, larvae survival rates were 96 %, while at 31°C; 12 219 

PPT and 31°C; 15 PPT showed 86% and 76% survival rate respectively.  220 

 221 

Yolk consumption  222 

Post-embryonic yolk was depleted at different rates under varying experimental conditions. In 223 

the ambient condition (12 PPT; 29 °C), yolk lasted till day 4th. Moderate increase in temperature 224 

(31 °C) and salinity alone did not show any effect on the rate of yolk consumption, whereas 225 

higher temperature (33.5 °C), alone and in combination with increased salinity caused faster 226 

depletion of yolk. In these cases, the yolk was almost depleted either on day 2nd or day 3rd (fig. 227 

5). The utilization of the yolk under different conditions in terms of total area and intensity has 228 

been shown in figure 6.  229 

 230 

Morphometrics of larvae  231 

Larval morphometrics were analyzed by measuring total length after 4th day (fig. 7). In general, 232 

we observed an increase in the total length of larvae upon exposure to higher temperature and 233 

salinity independently or in combination up to 4th day (p<0.001(temperature); p<0.01(salinity); 234 

p<0.05(temperature*salinity)), however the larvae in the higher temperature (33.5 °C) in all 235 

three salinity (12, 15, and 20 PPT) conditions died on 5th day.  236 

 237 

Larval activity  238 

Larval activity was measured in terms of maxilliped movement which ranged from 90 to 250  239 

bpm across different conditions (fig. 8). Mean maxilliped frequency decreased significantly at 240 

higher temperature and salinity conditions than the ambient conditions (p<0.05(temperature); 241 

p<0.001(salinity), however, the interaction of temperature and salinity did not show any effect 242 

on them (p= 0.760).  243 

 244 
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Cardiac performance of larvae  245 

Mean cardiac performance in larval stage was significantly affected under the treated conditions. 246 

We found larval heart beat (fH) in the range of 200-300 beats min-1, with maximum beating in 247 

higher temperature and salinity conditions (20 ppt; 33.5 °C) and minimum in ambient condition 248 

12 ppt; 29°C. Temperature, salinity, and their interactions showed significant effect on fH 249 

(p<0.001(temperature); p<0.01(salinity); p<0.05(temperature*salinity)). Larval stroke volumes 250 

(Vs) across different conditions were in the range of 0.005-0.020 nl beats-1, higher in ambient 251 

conditions and lowest in higher temperature and salinity conditions (fig. 9). Temperature, 252 

salinity, and their interactions showed significant effect on Vs (p<0.001(temperature); 253 

p<0.001(salinity); p<0.05(temperature*salinity)). Cardiac output (Q�) which is the product of 254 

Vs * fH was in the range of 2-5 nl min-1, with higher in the ambient condition and lowest in the 255 

higher temperature and salinity conditions. Temperature and salinity independently showed 256 

significant effect on Q� (p<0.05(temperature); p<0.001(salinity)), while their interaction 257 

seemed not to have any impact on Q� (p=0.099). Vs and Q� were following similar patterns in 258 

wave manner; both of them were inversely related to fH across different treatment conditions 259 

(figure 9). 260 

 261 

Discussion 262 

In this study, we assessed physiological performance of M. rosenbergii early life stages 263 

following exposure to varying temperature and salinity to understand their response to climate 264 

change stress conditions. Physiological performances are discussed in two broad categories: 1) 265 

survival and growth; 2) larval activity and metabolic performance. Overall, we find a small rise 266 

in temperature and salinity may result in sub lethal physiological rate reductions in M. 267 

rosenbergii early life stages, but the substantial increase in temperature and salinity may be 268 

detrimental.  269 

 270 

Survival and growth 271 

Salinity and temperature are the important environmental factors affecting survival, growth and 272 

distribution of many aquatic organisms (Habashy and Hassan 2010; Kumlu et al. 2000). In the 273 

adult M. rosenbergii the survival rate varied between 91% (at 0 PPT) and 78% (at 20 PPT), and 274 

the prawn exhibited lowest final average weight at 20 ppt seawater and higher at 10 PPT salinity 275 
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(Chand et al., 2015). Similarly, Habashy et al (2010) reared the juvenile prawns for eight months 276 

in different salinity and temperature conditions revealing that growth of the prawn increased as 277 

temperature increased from 24 to 29 ºC, but declined at the higher temperature (34 ºC). Also, 278 

with increase in salinity from 0 to 16 PPT, growth of female prawn decreased at all temperatures 279 

tested (Habashy and Hassan, 2010). Recently, Mohanty et al. (2016), conducted survival 280 

experiments on zoeae and post larvae of M. rosenbergii for combined effects of salinity and 281 

temperature, in which, post larvae showed maximum survival at 31 oC which declined both at 282 

lower and higher temperature of 25 oC and 35 oC, respectively. In the line of these previous 283 

results on adults and post larvae, we also found that larval survival rates were higher at optimum 284 

temperature of 29 °C in 12 PPT, 15 PPT, and 20 PPT. However, survival rate decreased with 285 

increase in temperature at all tested salinity conditions. For the higher temperature conditions 286 

(33.5 ± 0.5 °C) with all salinity conditions (12 PPT, 15 PPT and 20 PPT) no survival was 287 

recorded. Similar to our results, Mohanty et al. (2016) reported lower survival rate for M. 288 

rosenbergii zoeae (Z1-Z5) at 35 oC and 15-18 PPT salinity.  289 

For larval growth, there was an increase in total length of larvae up to 4th day for salinity 290 

(p<0.01), temperature and combined temperature and salinity (p<0.05). Although temperature 291 

was major determining factor for growth (Kumlu et al., 2000), the quality of larvae was 292 

compromised and died in 5th day for the higher temperature (33.5°C) in all salinity conditions. 293 

 294 

Larval activity and metabolic performance 295 

Lipid in yolk acts as energy sources for the early stages of larvae, ensuring the first successful 296 

molt and supporting the survival of early larvae before it started feeding (Yao et al., 2006). The 297 

effects of temperature on metabolic and developmental rates are expressed through changes in 298 

the consumption speed of reserves (García‐Guerrero, 2010). In the present study, larval yolk in 299 

both ambient temperature and 31°C lasted for 4 days, but for the higher temperature, the yolk 300 

depletion was completed either on day 2nd or day 3rd (figure 5, 6). Under the increased 301 

temperature, the rate of metabolic processes hiked, demanding more energy, and causes the early 302 

depletion of energy reserve. The influence of temperature on the utilization of yolk content was 303 

reported in several aquatic species ((Evjemo et al., 2001; García‐Guerrero, 2010; Holland, 1978). 304 

 305 
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 During the stressful condition, organisms try to maintain its homeostasis. The capacity of 306 

controlling cardiovascular function is one such function to maintain the organism’s oxygen 307 

consumption rate and activity of the organism (Ern et al., 2015). Temperature alters cardiac 308 

performance in crustaceans, as has been reported in several other organisms (Goudkamp et al., 309 

2004; Jury and Watson, 2000; Morris and Taylor, 1985). Salinity also affects the sensitivity of 310 

organism; thereby affecting their oxygen consumption (Barton and Barton, 1987). In the present 311 

study, both salinity and temperature are shown to influence stroke volume and cardiac output, 312 

ultimately affecting the oxygen transport capacity of the animal. Larval heart beat (fH) in M. 313 

rosenbergii larvae increased significantly with elevated temperature and salinity, but at the same 314 

time, stroke volume (Vs) decreased, that reduced cardiac output (Q�) as well as oxygen transport 315 

capacity. Ern et al. (2014) showed that heart rates and ventilation rates increased and stroke 316 

volume decreased with increasing temperature in adult M. rosenbergii. They also showed that 317 

the animals retained their 76% of aerobic scope at 30°C. We observed the lower stroke volume 318 

and cardiac output in the present study, which may have affected the oxygen consumption rate of 319 

organism. Hence, the temperature and salinity beyond tolerance level could initiate anaerobic 320 

metabolism with detrimental effects. 321 

Further, the decrease in aerobic scope could affect the function and behavior of larval 322 

activity in order to maintain pejus temperatures for long term survival (Portner and Knust, 2007; 323 

Wang and Overgaard, 2007). For example, the rise of temperature above 15°C in the kelp crab 324 

Taliepus dentatus constrained the aerobic scope and affected the level of maxilliped activity 325 

(Storch et al., 2009). This was observed in the present study as well, in which the mean 326 

maxilliped frequency was significantly lowered in elevated temperature and salinity conditions. 327 

However, under the combined conditions of salinity and temperature, larval activity did not show 328 

significant effect as similar to our cardiac output results.  329 

Corollary, this study shows that substantial increase of temperature and salinity may 330 

result in negative impact on the survival, growth, cardiac performance and activity of the early 331 

life stages of M. rosenbergii.  The effect of climate change stressors thus could restrain the 332 

tolerance capability and physical fitness of the early life stages of this freshwater prawn, thereby 333 

affecting the successful persistence of the population.  334 
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Figure legends 481 

Figure 1: Experimental set up. The different experimental conditions. Where T*S [29°C/12 482 

PPT] ,T1*S [31°C/12 PPT], T2*S [33.5°C/12 PPT ], T*S1 [29°C/15 PPT], T1*S1 [31°C/15 PPT], 483 

T2*S1 [33.5°C/15 PPT], T*S2 [29°C/20 PPT], T1*S2 [31°C/20 PPT] and T2*S2[33.5°C/20 PPT] 484 
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Figure 2: Yolk Utilization. Determination of depleted yolk volume in larvae treated under 485 

different conditions. A: Total yolk area marked by using image J; B- Total yolk Intensity 486 

analyzed by color threshold function by using image J 487 

Figure 3: Morphometrics. Total length measured by using stereo dissection microscope. 488 

 489 

Figure 4: Cardiac performance. A marked picture of larval heart showed EDV (maximal area) 490 

and ESV (minimal area). Vs was calculated as the difference between EDV and ESV 491 

 492 

Figure 5: Utilization of yolk. Depletion of yolk in different conditions T*S-29°C/12 PPT; 493 

T1*S-31°C/12 PPT; T2*S-33.5°C/12 PPT; T*S1-29°C/15 PPT; T1*S1-31°C/15 PPT; T2*S1-494 

33.5°C/15 PPT; T*S2-29°C/20 PPT;T2*S2-33.5°C/20 PPT 495 

 496 

Figure 6: Yolk utilization in total area and intensity. A- Total yolk area in mm and B- Total 497 

yolk Intensity in pixel T*S-29°C/12 PPT;T1*S-31°C/12 PPT;T2*S-33.5°C/12 PPT; T*S1-498 

29°C/15 PPT;T1*S1-31°C/15 PPT;T2*S1-33.5°C/15 PPT;T*S2-29°C/20 PPT;T2*S2-33.5°C/20 499 

PPT 500 

Figure 7: Growth rate of larvae. Growth rate of larvae on 4th day was calculated by 501 

subtracting the growth in mm on 1st day from 3rd day. Where T*S-29°C/12 PPT; T1*S-31°C/12 502 

PPT; T2*S-33.5°C/12 PPT; T*S1-29°C/15 PPT; T1*S1-31°C/15 PPT; T2*S1-33.5°C/15 PPT; 503 

T*S2-29°C/20 PPT;T2*S2-33.5°C/20 PPT 504 

Figure 8: Larval activity. Maxilliped activity of larvae on 4th day under different conditions. 505 

Where, T*S-29°C/12 PPT; T1*S-31°C/12 PPT; T2*S-33.5°C/12 PPT; T*S1-29°C/15 PPT; 506 

T1*S1-31°C/15 PPT; T2*S1-33.5°C/15 PPT;T*S2-29°C/20 PPT;T2*S2-33.5°C/20 PPT  507 

 508 

Figure 9: Cardiac performance. Cardiac performance of larvae on 4th day. Where, T*S-509 

29°C/12 PPT; T1*S-31°C/12 PPT; T2*S-33.5°C/12 PPT; T*S1-29°C/15 PPT; T1*S1-31°C/15 510 

PPT; T2*S1-33.5°C/15 PPT;T*S2-29°C/20 PPT;T2*S2-33.5°C/20 PPT  511 

 512 

 513 
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 514 

 515 

 516 

Table 517 

Table 1: Survival rate of larvae exposed under different conditions 518 

Condition Rate of survival 
(in %) 

T*S 95.8 
T1*S 87.6 
T2*S 0 
T*S1 96.8 

T1*S1 76 
T2*S1 0 
T*S2 95.3 

T2*S2 0 
 519 

 520 

 521 

 522 
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Total length d.f. F P

Temperature
Salinity
Temp*Salinity

2
2
3

5.713
10.658
5.024

.005

.000

.003

ANOVA results
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Larval activity d.f. F P

Temperature
Salinity
Temp*Salinity

2
2
3

108.842
3.899
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.000

.031

.760

ANOVA results
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Heart beat d.f. F P
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Salinity
Temp*Salinity
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Stroke volume d.f. F P
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Cardiac output d.f. F P
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ANOVA results
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