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Summary 22 

1. The quantification of complex morphological patterns typically involves comprehensive shape 23 

and size analyses, usually obtained by gathering morphological data from all the structures 24 

that capture the phenotypic diversity in an organism or object. Articulated structures are a 25 

critical component of overall phenotypic diversity, but data gathered from these structures is 26 

difficult to incorporate in to modern analyses because of the complexities associated with 27 

jointly quantifying 3D shape in multiple structures.  28 

2. While there are existing methods for analysing shape variation in articulated structures in 29 

Two-Dimensional (2D) space, these methods do not work in 3D, a rapidly growing area of 30 

capability and research.   31 

3. Here we describe a simple geometric rigid rotation approach that removes the effect of 32 

random translation and rotations, enabling the morphological analysis of 3D articulated 33 

structures. Our method is based on Cartesian coordinates in 3D space so it can be applied to 34 

any morphometric problem that also uses 3D coordinates (e.g. spherical harmonics). We 35 

demonstrate the method by applying it to a landmark-based data set for analysing shape 36 

variation using geometric morphometrics.  37 

4. We have developed an R package (ShapeRotator) so that the method can be easily 38 

implemented in the commonly used software programs geomorph and MorphoJ.  This method 39 

will be a valuable tool for 3D morphological analyses in articulated structures by allowing an 40 

exhaustive examination of shape and size diversity.  41 
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Background 44 

 Data on shape and size variation is essential in many fields, including evolutionary biology 45 

and ecology, engineering, medical science, and anthropology (Loncaric 1998; McIntyre & Mossey 46 

2003; Slice 2006). For most of these studies, one of the most widely used tools for analysing 47 

morphological variation within or between a group of organisms or objects are based on Cartesian 48 

coordinates of landmarks (Bookstein 1997). 49 

Of the wide array of methods using Cartesian coordinates, geometric morphometrics (GM) is the 50 

most common, especially when analysing shape and size variation and covariation (Mitteroecker & 51 

Gunz 2009; Adams et al. 2013). The first two steps of this GM procedure consist of a landmark 52 

approach that: (1) gathers (two- or three-dimensional) coordinates of anatomically defined and 53 

homologous loci, followed by (2) a generalised Procrustes analysis (GPA) that superimposes 54 

configurations of each set of landmarks in all specimens, by removing all effects of size, translation 55 

and rotation, in order to only obtain shape information (Klingenberg 2008; Adams et al. 2013). 56 

Geometric morphometrics, therefore, allows accurate quantitative analyses of shape and size, in either 57 

Two-Dimensional (2D) or Three-Dimensional (3D) space.  58 

3D morphological analyses are the most accurate, as objects and organisms exist in 3D space. The 59 

recent growth in x-ray micro CT scanning and surface scanning has seen a rapid increase in the 60 

application of 3D geometric morphometric techniques, but progress has been hampered by the lack of a 61 

simple method to incorporate data from complex articulated structures.  62 

In evolutionary biology, identifying morphological differences among different groups or taxa is 63 

crucial in order to understand evolutionary processes and their relationship to the environment (Losos 64 

1990; Ricklefs & Miles 1994; Pagel 1999). This can be difficult, especially if traits have co-evolved, or 65 

if morphological diversification has been hindered by phylogenetic legacy or trade-offs imposed by the 66 

organism’s functional habitat (Ghalambor et al. 2007). Complex body shape patterns require more 67 

detailed analyses of shape, obtained by collecting data from several structures that capture the whole 68 

gamut of morphological variation in an organism. One example of this is the extraction and assembly 69 

of data from articulated structures, such as skeletons, for 3D analyses with geometric morphometric 70 

techniques. This is especially important in functional morphological studies, as they usually involve 71 

analysing more than one structure due to mechanical correlations or morphological integration. For 72 

example, jointly analysing skull and mandible could be crucial to disentangle the relationship between 73 
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diet and head shape evolution (Cornette et al. 2013). Similarly, collectively evaluating different 74 

modules in the limbs, especially when correlated to locomotion, or considering several structures 75 

across the whole body, could improve our understanding of the effect of environmental conditions on 76 

morphological evolution (Vidal-Garcia & Keogh, unpublished).  77 

Unfortunately, non-rigid structures, such as articulated structures, will inevitably suffer the effects 78 

of natural or free rotation or translation events and be different in each individual and structure 79 

(Adams, 1999). These events could obstruct the correct quantification of shape variation by adding 80 

rotation artifacts to GM analyses (Adams et al. 2004). Thus, orientation of these structures needs to be 81 

corrected and standardised prior to performing shape analyses. Methods for shape analysis of landmark 82 

data in articulated structures already have been described but the solution to this problem has been 83 

implemented only in two-dimensional (2D) space (Adams, 1999). 84 

Here we present the R package ShapeRotator: a simple geometric rigid rotation approach to study 85 

3-Dimensional (3D) shape of articulated structures, or independent structures, within an organism. We 86 

describe a method that removes shape variation due to the effect of translation between independent 87 

structures and rotation generated by movement in an articulation, among others. Thus, our approach 88 

translates and rotates articulated (or even independent) structures in order to obtain a comparable shape 89 

data set once all effects of random movement and rotations have been removed (Fig. 1a).  90 

We apply this method to a landmark-based data set for analysing shape variation using geometric 91 

morphometrics, and provide the example data set used in ShapeRotator (to be available in CRAN) to 92 

execute this rigid rotation. This rigid rotation then allows geometric morphometric analyses to be 93 

performed in the two best well-known 3D GM analytical software packages: geomorph (Adams & 94 

Otárola-Castillo 2013), and MorphoJ  (Klingenberg 2011).  This method also will allow exporting the 95 

rotated coordinates for posterior analyses in other software platforms, even outside of the field of 96 

geometric morphometrics. Since the basis of this method lies upon rigidly spinning any structure 97 

defined by 3D coordinates, it could be used in any other shape analyses that use coordinate data, such 98 

as continuous surface meshes used in spherical harmonics (Shen et al. 2009). Our method is a 99 

convenient addition to the rapidly evolving tool kit of geometric morphometrics because it allows a 100 

more comprehensive exploration of morphological diversity through the gathering of shape data from 101 

complex 3D structures. 102 

 103 
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Methodology 104 

We begin with a set of points P̃  = {p̃0, … , p̃M} ∁ ℝ3 which represents a 3D object, and are 105 

ordered so that p̃0 represents the base point and p̃𝑀  represents the end point, by which we mean that 106 

this object has an axis starting from p̃0 and ending at p̃𝑀. Our goal is to rotate these points via a rigid 107 

motion so that the axis on which these two points sit is either on the 𝑋, 𝑌 or 𝑍-axis in ℝ3. Rotation of 108 

vectors in ℝ3 is a well-known and easily resolved problem, and various formalisms exist in geometry. 109 

Thus, we translate our set of points P̃ so that p̃0 maps to the origin (0, 0, 0). This is a simple 110 

transformation 𝑇 defined by: 111 

(1)                                                             𝑝𝑖  = 𝑇p̃𝑖  =  p̃𝑖  − p̃0 112 

Note that the axis 𝑋 =  span {(1, 0, 0)}, 𝑌 =  span {(0, 1, 0)}, 𝑍 =  span {(0, 0, 1)}, where 113 

each of the generating vectors are unit. Let us fix our desired axis to which we rotate the object to be 114 

𝐴 =  span {𝑎} where 𝑎 = (1, 0, 0), or 𝑎 = (0, 1, 0), or 𝑎 = (0, 0, 1). Since we have translated points 115 

{pi} and vectors correspond to positions, we are simply looking to rotate the vector 𝑝𝑀 to 𝐴, and each 116 

other vector as a rigid motion with respect to this rotation. There are a number of ways to do this, but 117 

the simplest way is to consider the plane spanned by 𝑝𝑀 and 𝐴, and then to rotate by the angle between 118 

𝑝𝑀  and 𝐴 within this plane (Fig. 1b). Such a rotation is done via rotating on the axis to the plane, which 119 

is determined by a normal vector to this plane. 120 

Let us describe this set-up slightly more generally. For two vectors 𝑢, 𝑣 ∈ ℝ3, the axis to the plane 121 

spanned by these two vectors is determined by a unit normal to the plane (there are two choices due to 122 

orientation), which we denote by 𝑁(𝑢, 𝑣): 123 

(2)                                                              𝑁(𝑢, 𝑣)  =
𝑢 ×  𝑣 

|𝑢 ×  𝑣|
 124 

where × is the cross product. The angle between these vectors is then given by ∠(𝑢, 𝑣): 125 

(3)                                                         ∠(𝑢, 𝑣)  = arccos (
𝑢 ∙  𝑣 

|𝑢||𝑣|
) 126 

where ∙ is the dot (scalar) product between vectors. The rotation matrix about an axis 𝑤 ∈ ℝ3, where 127 

𝑤 = (𝑤1, 𝑤2, 𝑤3) is a unit vector, of angle 𝜃 radians is given by the well known matrix: 128 

(4)    𝑅′(𝑤, 𝜃) = 129 

(

cos 𝜃 + 𝑤1
2(1 − cos 𝜃) 𝑤1𝑤2(1 − cos 𝜃) − 𝑤3 sin 𝜃 𝑤1𝑤3(1 − cos 𝜃) + 𝑤2 sin 𝜃

𝑤2𝑤1(1 − cos 𝜃) + 𝑤3 sin 𝜃 cos 𝜃 + 𝑤2
2(1 − cos 𝜃) 𝑤2𝑤3(1 − cos 𝜃) − 𝑤1 sin 𝜃

𝑤3𝑤1(1 − cos 𝜃) − 𝑤2 sin 𝜃 𝑤3𝑤2(1 − cos 𝜃) + 𝑤1 sin 𝜃 cos 𝜃 + 𝑤3
2(1 − cos 𝜃)

) 130 

 131 
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Thus, to obtain a rotation matrix which is the rigid motion rotating the vector 𝑢 to 132 

𝑣 in the plane spanned by 𝑢 and 𝑣, we obtain the expression: 133 

(5)                                                       𝑅(𝑢, 𝑣)  =  𝑅′(𝑁(𝑢, 𝑣), ∠(𝑢, 𝑣)) 134 

Getting back to our original problem, we set 𝑣 =  𝑝𝑀  and 𝑢 = 𝑎, and then we have the rotated points: 135 

(6)                                           𝑟𝑖  =  𝑅(𝑝𝑀, 𝑎)𝑝𝑖  =  𝑅′(𝑁(𝑝𝑀 , 𝑎), ∠(𝑝𝑀, 𝑎, ))𝑝𝑖 136 

where 𝑅(𝑝𝑀 , 𝑎)𝑝𝑖 is the action of the matrix 𝑅(𝑝𝑀, 𝑎) on the vector 𝑝𝑖. 137 

It may be necessary to introduce a further constraint in the rotation. For instance, suppose 𝑎 = (0, 1, 0) 138 

and there is a point 𝑝𝐼 , now rotated to 𝑟𝐼 via the method we describe, which should lie in the 𝑌-axis. 139 

That is, we need to further rotate 𝑟𝐼 to a point 𝑟𝐼
′  = (∗,∗, 0). To do this, we simply rotate in the axis 𝑎, 140 

by an angle 𝜃𝑌(𝑟𝐼)  =  arctan((𝑟𝐼)3 (𝑟𝐼)1⁄ ), where 𝑟𝐼  =  ((𝑟𝐼)1, (𝑟𝐼)2, (𝑟𝐼)3). That is, 141 

(7)                                                               𝑟𝑖
′  =  𝑅′(𝑎, 𝜃𝑌(𝑟𝐼))𝑟𝑖 142 

 143 

Implementation 144 

Overview of the ShapeRotator package 145 

Here we illustrate the functions available within the ShapeRotator package and the basic steps 146 

required in order to successfully implement the rotation on a data set of 3D coordinates.  ShapeRotator 147 

allows the rigid rotation of sets of both landmarks and semi-landmarks used in geometric 148 

morphometric analyses, enabling morphometric analyses of complex objects, articulated structures, or 149 

multiple parts within an object or specimen. The main steps required are: (1) importing the data and 150 

fixating the rotation axes, (2) translating the whole data set of coordinates or points so that the main 151 

selected point p̃0 = (0, 0, 0), and (3) rotating the two structures to the desired angle (as outlined on Fig. 152 

2). This tutorial uses the example data set, which is included in this package. 153 

 154 

Importing a data set 155 

In the example data set we use two geometric morphometric data sets containing both 156 

landmarks and semi-landmarks for two neighbouring and articulated bones (humerus and radioulna) 157 

from a group of several species of frogs (details in Appendix S1), in tps format. We first import the 158 

data sets using the R package geomorph (Adams & Otárola-Castillo 2013): 159 

library(ShapeRotator) 160 

library(geomorph) 161 
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radioulna <- readland.tps("radioulna.tps", specID = "ID", readcurves = F) 162 

humerus <- readland.tps("humerus.tps", specID = "ID", readcurves = F) 163 

 164 

These two GM data sets (radioulna and humerus) will be rotated on different rotation axes in 165 

order to conform the aimed angle between them. This process is not exclusive to two neighbouring 166 

structures, and thus, it could be performed for as many independent subunits as desired by choosing the 167 

different angles among different rotation axes and all the translation processes.  For more help on 168 

importing the GM data sets please see Adams et al. (2014), and the associated help files. Please note 169 

that this method also works for semi-landmarks as long as they have been equally-distance positioned 170 

prior to the translation and the rigid rotation. 171 

 172 

Translating 173 

During this step each structure will be translated to the point of origin so that p̃0 = (0, 0, 0), 174 

thus the distance from the coordinates of landmark_a (𝐴𝑥 ,  𝐴𝑦 , 𝐴𝑧) is substracted from all the 175 

landmarks in all specimens, e.g. (𝑁𝑥 − 𝐴𝑥 ,   𝑁𝑦 − 𝐴𝑦 , 𝑁𝑧 − 𝐴𝑧) for landmark N. This translation is 176 

made with the function translate(), as it follows: 177 

translated_radioulna <- translate (radioulna[RU_landmark_a, , 1], radioulna) 178 

translated_humerus <- translate (humerus[H_landmark_a, , 1], humerus) 179 

 180 

Fixing the rotation axis 181 

In order to fix a rotation axis in a structure we first need to select in our data set two suitable 182 

landmarks for each structure which the axis will go through: landmarks A and B (for the first 183 

structure), and landmarks D and E (for the other structure). In the radioulna example data set, landmark 184 

A is the landmark in the 1st position and landmark B is in the 10th position. Similarly, for the humerus 185 

data set, landmark D would be the landmark on the 52th position, and landmark E would be in the 19th 186 

position. Finally, we also need to select an extra landmark that shares the same value for at least one of 187 

its coordinates (two coordinates, ideally) with landmark b. This is needed for the simple reason that 188 

there is not information about the orientation of the structure with only two landmarks per structure, so 189 

even though the rigid rotation will work properly, it could position this structure in the wrong 190 

(‘mirroring’) orientation. Thus, this orientation issue is corrected through landmark C. In this example, 191 
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landmark C is the 17th landmark, while landmark F is the 107th landmark in the humerus data set. We 192 

need to know which landmarks will be selected in both structures prior to the rotation process.  193 

 194 

 195 

Rotating 196 

 In the rotation step, we will use the function rotation() in order to rigidly rotate the two 197 

structures to the desired angle, as it follows: 198 

joined_dataset <- rotation(data.1 = translated_radioulna, data.2 = translated_humerus, land.a = 199 

10, land.b=1, land.c=17, land.d=52, land.e=19, land.f=107, angle = 90) 200 

 201 

 The input datasets data.1 and data.2 correspond to the two translated datasets (in this case 202 

translated_radioulna and translated_humerus. We then use the selected landmarks as explained in the 203 

previous section. Finally, we include the angle (in degrees) that we would like to use to position the 204 

two structures to one another. One of the options of the function rotation() is to select the desired angle 205 

between the two structures so that we can perform the rigid rotation of each structure positioning them 206 

in the selected angle in relation to each other. n order to do so we use the internal function 207 

vector.angle(), by providing the desired angle in degrees (from 0° to 360°. The function vector.angle() 208 

will return a vector that forms that angle with the vector (1, 0, 0). In the example data set in 209 

ShapeRotator we rotate the coordinates from the two bones so that they form an angle of 90° degrees 210 

within each other: 211 

New_vector <- vector.angle(90) 212 

So that New_vector = c(0, 1, 0). Thus we could check the vector that the function rotator() will 213 

use, based on the input angle. The output from the function rotator() is a 3D array with the two joined 214 

data sets (data.1 and data.2). Please note that the two datasets are joined based on their dimnames. 215 

Thus, the order of the specimens in each dataset is not important, as long as all the cases match 216 

perfectly between the two datasets in the same specimen. If there are extra specimens for one of the 217 

datasets or the names do not match properly, rotator() will not include them in the output rotated joined 218 

dataset. 219 

 220 

Exporting 221 
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After the rotation process we could either use the joined GM array in further analyses or we 222 

could also export it and save it in order to use it in another software, such as MorphoJ (Klingenberg 223 

2011). In this step we will be using the function writeland.tps() in the R package geomorph (Adams & 224 

Otárola-Castillo 2013) in order to save a tps file from the joined GM array: 225 

writeland.tps(A="joined_arm", file = " joined_arm.tps", scale = NULL) 226 

 227 

Other applications 228 

Our method is an important addition to the tool kit of the geometric morphometrics field.  It will 229 

facilitate the analyses of compound 3D morphological datasets in geometric morphometrics analyses 230 

but will also be useful outside of this field as it can be applied to any method that uses 3D coordinates. 231 

The examples of applications are numerous in different fields of study, such as biology, anthropology, 232 

palaeontology, medical sciences, archaeology, and engineering. For example, in evolutionary biology, 233 

ShapeRotator would allow analyses of multiple or articulated hard structures (such as different 234 

segments of an exoskeleton, different articulated bones, or neighbouring plant structures, among 235 

others), different structures from the same object or organism (e.g. different and not adjacent body 236 

parts), or pieces from damaged specimens. In medicine and veterinary science it could be used to 237 

examine shape and size variation in different organisms’ growth due to different nutritional treatments 238 

or to examine how different structures respond to injuries or surgery. It would be useful in 239 

palaeontology or archaeology when trying to quantify shape of different objects or organisms that 240 

might have been preserved in disarticulated pieces.   241 

 242 
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FIGURES 283 

 284 

Fig. 1. (a) Application of the 3D rigid rotation method in three different scenarios, by rotating 285 

articulated structures to a standardised position relative to each other. (b) Rotation method exemplified 286 

by depicting the plane spanned by the already translated point 𝑝𝑀 and 𝐴.  Please note that 𝑝0 depicts 287 

the origin point (0, 0, 0). The rotated resulting point 𝑟𝑀, vectors 𝑢 and 𝑣, and angle 𝜃 are also depicted.   288 
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 289 

Fig. 2. Overview of the steps required in ShapeRotator, in order to rigidly rotate two articulated 290 

subunits. Step 1: importing the data and fixating the rotation axes; Step 2: translating the whole data set 291 

of coordinates or points so that the main selected point p̃0 = (0, 0, 0), with the function translate(); and 292 

Step 3: rotating the two structures to the desired angle (e.g. 90 degrees), with the function rotator(). 293 
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