
Efficient strategies for screening large-scale genetic 
interaction networks 
Raamesh Deshpande1, Justin Nelson2, Scott W. Simpkins2, Michael Costanzo3, Jeff S. 
Piotrowski4,5, Sheena C. Li4, Charles Boone3,4, Chad L. Myers1,2§ 

 

1. University of Minnesota-Twin Cities, Department of Computer Science and 
Engineering, Minneapolis, Minnesota, USA 

2. University of Minnesota-Twin Cities, Graduate Program in Bioinformatics and 
Computational Biology, Minneapolis, Minnesota, USA 

3. University of Toronto, Terrence Donnelly Centre for Cellular and Biomolecular 
Research, Toronto, Ontario, Canada 

4. RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan 

5. Yumanity Therapeutics, Cambridge, MA, USA 

 

§ Correspondence to cmyers@cs.umn.edu 

 

Large-scale genetic interaction screening is a powerful approach for unbiased 
characterization of gene function and understanding systems-level cellular organization. 
While genome-wide screens are desirable as they provide the most comprehensive 
interaction profiles, they are resource and time-intensive and sometimes infeasible, 
depending on the species and experimental platform. For these scenarios, optimal 
methods for more efficient screening while still producing the maximal amount of 
information from the resulting profiles are of interest. 

To address this problem, we developed an optimal algorithm, called 
COMPRESS-GI, which selects a small but informative set of genes that captures most of 
the functional information contained within genome-wide genetic interaction profiles. The 
utility of this algorithm is demonstrated through an application of the approach to define 
a diagnostic mutant set for large-scale chemical genetic screens, where more than 
13,000 compound screens were achieved through the increased throughput enabled by 
the approach. COMPRESS-GI can be broadly applied for directing genetic interaction 
screens in other contexts, including in species with little or no prior genetic-interaction 
data. 
 

Introduction 
Systematic mapping and analysis of genetic interaction networks is a powerful means of 
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characterizing gene function and provides a valuable resource for exploring the 
relationship between genotype and phenotype. A genetic interaction occurs when 
mutations combine to generate an unexpected phenotype [1]. A negative interaction 
(e.g. synthetic lethality) results when different mutations, neither lethal individually, 
combine to cause cell death [2]. Conversely, positive interactions occur when mutations 
produce a phenotype that is less severe than expected [1]. Several organisms have 
been systematically screened for genetic interactions, including the budding yeast, 
Saccharomyces cerevisiae, where analysis of almost all possible 18 million double 
mutant combinations led to an extensive genetic interaction network consisting of 
~550,000 negative and ~350,000 positive interactions and representing over 90% of all 
yeast genes [3]. This near-complete network in S. cerevisiae provides a powerful basis 
for understanding the basic principles of genetic interactions and developing more 
efficient strategies for screening them in other contexts. 

Genome-wide analyses in yeast highlighted key properties of genetic 
interactions. For example, genes that function as part of the same biological pathway or 
protein complex tend to share similar patterns of negative and positive genetic 
interactions [3, 4]. Thus, the set of genetic interactions for a given gene, termed a 
genetic interaction profile, provides a rich and quantitative phenotypic signature 
indicative of gene function [3, 4]. These quantitative genetic interaction profiles can be 
assembled into a network in which genes with similar interaction patterns are located 
next to one another while genes sharing less similar interaction profiles are further apart 
in the network. The resulting global network based on genetic interaction profile similarity 
revealed a hierarchy of modules reflecting the functional architecture of a cell and 
provided a powerful resource for predicting gene function [3]. 

The global map of digenic interactions amongst loss-of-function mutations in 
haploid yeast is but one representation of the complex multi-dimensional genetic 
landscape. It is also important to understand the general principles associated with 
genetic interactions involving gain-of-function alleles and more complex genetic 
interactions that can occur in diploid and polyploid organisms [5-7], across a variety of 
different cell types of metazoans and within whole animals [8-10], or between hosts and 
their symbiotic organisms [11] [12]. Furthermore, while it is clear that genetic interactions 
can be conserved from yeast to humans [13, 14], we still lack an understanding of how 
global networks evolve and how a specific network is modulated in response to 
environmental or genetic background effects [15, 16]. Importantly, genome-scale 
application of CRISPR-Cas9 genome editing approaches offer the potential to map 
analogous genetic interaction networks in human cells [17-19]. However, mapping near 
complete genetic networks, analogous to the one constructed for S. cerevisiae, under 
diverse temporal and environmental conditions is resource intensive and often 
technically infeasible, particularly for higher eukaryotic cells and organisms with more 
complex genomes. Thus, development of rational and scalable strategies is required to 
optimize screening that can be generally applied to efficiently map genetic interaction 
networks for different organisms under a variety of experimental contexts. 

While optimization strategies have been reported for mapping protein-protein 
interactions, these methods do not readily apply to genetic interaction networks [20]. The 
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unique properties of genetic interaction networks warrant a systematic study of different 
approaches and the development of new methods. Previous studies identified several 
functional, physiological and evolutionary properties associated with genetic interaction 
frequency in yeast [3, 4, 21] . For example, perturbation of genes that result in 
increasingly severe fitness defects participate in more negative and positive interactions 
in the global yeast genetic network [3, 4]. Indeed, a model based on gene-specific 
properties derived from the S. cerevisiae genetic network successfully identified highly 
connected genes (i.e. genetic interaction network hubs) in a distantly related yeast 
species [21] . Another method prioritized genes based on minimum uncertainty in cluster 
membership based on a clustering of genetic interaction data [22]. Although these 
approaches can identify genes that display many genetic interactions, it is not clear if the 
genetic interaction screens based on subsets of genes identified by these methods are 
able to capture the structure, topology and functional spectrum of a complete, genome-
wide genetic interaction network   

In this paper, we present novel and generalizable methods for identifying 
prioritized subsets of genes with genetic interaction profiles that can recapitulate a global 
genetic interaction network. To demonstrate the impact of screen prioritization, we apply 
one of our approaches to the problem of optimal selection of screens for functional 
profiling to support a large-scale chemical genetic screen. Optimization in this context 
enabled us to achieve a nearly 10-fold speed-up in the rate at which chemicals were 
profiled against a optimally selected mutant collection while retaining, and even 
improving, the amount of information extracted from the screen.  

Results  
Defining an objective for optimizing genetic interaction screens 
There are several possible objectives one might have in screening genetic interactions, 
and the optimal strategy depends on the goal of the screen. Perhaps the simplest 
objective is to discover new individual genetic interactions at the fastest rate. More 
specifically, in the context of digenic genetic interactions, one objective could be to 
select pairs for screening in each round that maximize the number of previously 
undiscovered genetic interactions. For this simple objective, an understanding of the 
hubs in the network, i.e. the highly-connected nodes, provides an efficient strategy for 
this objective. For example, in the two different yeast species in which the largest GI 
screens have been completed, S. cerevisiae and S. pombe, it has been reported that 
one of the primary correlates of the number of genetic interactions for a given gene is 
the extent of the phenotype (for example: fitness defect) associated with the individual 
allele [4, 21]. In fitness-based screens, single mutants with stronger fitness defects 
tended to be strongly associated with larger number of genetic interactions (r = 0.73), 
even after accounting for the expected multiplicative effect of the single mutant [4]. This 
strong correlation with the strength of the single mutant phenotype suggests the simple 
but effective strategy of selecting mutants for screening in order of the severity of their 
single mutant phenotypes. We measured the effectiveness of this approach on the 
comprehensive version of the S. cerevisiae genetic interaction network, consisting of ~5 
million screened pairs [4]. Indeed, prioritizing mutants for screening based on the 
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strength of the single mutant phenotype produces new genetic interactions at a rate 
substantially faster than a baseline approach of random selection of genes for screening 
(S1a Fig), and only slightly below the maximum possible rate of detection (S1a Fig). For 
example, screening 25% of the genome based on low-fitness uncovers 60% of the 
interactions (S1a Fig). This strategy could be refined even further if one leverages more 
complex predictive models for the degree of genetic interactions associated with a given 
gene. For example, Koch et al. report a collection of physiological and evolutionary 
properties, in addition to the strength of the single mutant phenotype that are predictive 
of genetic interactions, and notably, this model appears to work in multiple distantly 
related species [21]. This simple strategy of predicting hubs based on readily accessible 
features provides a reasonable basis for optimizing screens when the goal is simply to 
recover new interactions as quickly as possible. 

A more specific objective than simply detecting new genetic interactions is 
generating genetic interaction profiles that enable the characterization of gene function. 
Several previous studies have demonstrated that a primary strength of genetic 
interactions is that a gene’s profile, i.e. its signature of interactions across a collection of 
mutants, can be compared with other genes’ profiles to identify genes that function in the 
same specific bioprocess, pathway, or even protein complex. Thus, an important 
objective in screening genetic interactions is to select a set of mutants for screening that 
will produce an interaction profile that most efficiently characterizes gene function. The 
remainder of our study is focused on optimizing this objective. 

Before designing a method to tackle this problem, we first evaluated the potential 
feasibility of compressing genetic interaction profiles. More specifically, we measured the 
extent to which screening genes against an increasing, randomly selected, subset of the 
genome could capture the information contained in a complete genetic interaction 
profile. The functional information captured by a genetic interaction profile was 
measured by the ability genetic interaction profile similarity (i.e. pairs of genes exhibiting 
highly similar genetic interaction signatures) to predict functionally related gene pairs as 
measured by co-annotation to Gene Ontology (GO) terms. Encouragingly, we observed 
that the performance of genetic interaction profiles in predicting functionally related 
genes increased dramatically with profile length and that even a randomly selected 
subset of genes of could achieve relatively strong performance (S1b Fig). For example, 
in S. cerevisiae screening 500-1000 genes produces near saturation level of 
performance (S1b Fig). This dramatic increase in performance with only a small, 
randomly selected subset of the genome is likely the result of the fact that genetic 
interactions are highly structured, connecting between and within functional modules 
rather than at the level of individual genes [3, 4, 23], and thus there is a high degree of 
redundancy in the information captured by any single screen. This conclusion that 
genetic interaction profiles can be significantly compressed is also supported by a 
standard PCA analysis, which confirms ~80% of the variance in the GI network can be 
explained by 500 principal components (S2 Fig). Given the encouraging performance of 
a randomly selected, small subset of genes in capturing functional information in GI 
profiles, we reasoned that an intelligent approach to screen selection could further 
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improve the amount functional information captured in screened profiles. We discuss 
algorithms that specifically address this problem in the sections that follow. 

COMPRESS-GI: A novel gene selection method for optimizing genetic interaction 
profile similarity 
Towards the goal of selecting a small set of informative genes optimized for measuring 
functional relationships based on genetic interaction profile similarity, we developed a 
novel algorithm, COMPRESS-GI (COMpress Profiles Related to Epistasis by Selecting 
Informative Genes). We developed two different versions of algorithm, batch 
(COMPRESS-GI) and iterative (iCOMRESS-GI), to address two different scenarios. The 
batch version is designed for instances in which one already has access to a large 
collection of genome-wide genetic interaction screens and wishes to use this collection 
to select a small set of mutants that captures most of the information contained within 
the already collected profiles (e.g. to perform increased throughput screens with a 
reduced set). The iterative version is designed for the scenario in which few or no 
genetic interaction screens have been completed and provides a iterative strategy for 
query selection.  
 
COMPRESS-GI 
The batch version of COMPRESS-GI leverages existing genetic interaction data 
consisting of genome-wide interaction profiles for at least a few hundred genes across 
the genome and known gene relations from the Gene Ontology (GO) to define an 
informative set of diagnostic genes that is informative for discovering functional 
relationships. Given several hundred genome-wide genetic interaction profiles, the goal 
of this algorithm is to recapitulate genetic interaction profile similarity using a minimal 
number of mutants selected from the genome-wide profiles. More specifically, 
COMPRESS-GI will select a subset of the genes such that the similarity network 
generated using only profile derived from interactions with the selected genes can be 
used to effectively predict functionally related pairs. The performance of the GI profile 
similarity network derived from a subset of genes can be quantified using precision-recall 
characteristics based on a standard of co-annotation to the Gene Ontology (Fig 2a; see 
Methods) [24]. Based on this objective, we use a step-wise exhaustive greedy approach, 
where we select the most informative gene as measured by precision-recall performance 
of the similarity network generated based on profiles defined by interactions with each 
single gene. We continue iteratively maximizing the precision-recall performance of the 
resulting profile similarity networks by adding genes that maximally increase the 
performance when added to the already selected set (Step 2, Fig 2b; see Method for 
details). However, this process is potentially biased by the starting gene, so we repeat 
the process with several different starting genes, each taken from the top 50 most 
informative based on the single gene’s profile (Step 1). In addition, we know from 
previous experience that precision-recall performance measured based on a global GO 
standard can be dominated by genes belonging to one or few functional categories [24]. 
Thus, we repeated the process described above independently for each of 13 major 
functional categories, each time focusing the GO co-annotation standard to retain 
positive co-annotations belonging only to the broad functional category of interest while 
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removing other positive co-annotations (Step 3; see Methods for details). Each one of 
these runs, focused on a different functional neighborhood of interest, resulted in a 
ranked list of genes that optimized recovery of functionally related gene pairs based on 
compressed GI profiles. We combined these lists of informative sets of genes to obtain a 
single, global list of around 200 genes (Step 4). 

Evaluation of the COMPRESS-GI algorithm 
The set of genes selected by the COMPRESS-GI algorithm provides a substantial 
improvement in performance as compared to a random selection of screens. The 
precision-recall characteristics of the top 100 selected genes is significantly better than 
even the 75th percentile from several random runs where an equivalent number of 
mutants was selected randomly (Fig 2c). To further understand the performance of the 
selected set, we evaluated the COMPRESS-GI genes for ability to predict gene-relations 
within specific functional categories. When we compare the aggregated precision at 25% 
recall across 13 functional categories and across different number of selected genes, we 
see that the COMPRESS-GI selected genes consistently perform better than the random 
baseline (Fig 2d). The performance improvement over randomly selected genes is even 
more striking for smaller sets of genes, suggesting that our method of intelligent 
selection of informative genes with little redundancy cannot be easily achieved through 
random sampling. Beyond the random selection baseline, we also compared our 
approach to a reasonable strategy of selecting high-degree (hub) genes and observed 
that our selected set of genes also performed better than an equal number of hubs (Fig 
2c,d). More interestingly, by the chosen precision-recall metric, the selected genes 
perform better than the complete set of genes based on a global GO evaluation standard 
(Fig 2c), and comparably to the complete dataset on the function-specific evaluation (Fig 
2d). We note that precision-recall performance does not monotonically increase with the 
number of genes selected. The better performance of the selected genes over the 
complete dataset likely suggests that there are non-informative or potentially low-signal 
genes in the complete dataset that detract from functional information in the genetic 
interaction data and thus, bring the precision-recall performance down relative to a 
smaller, intelligently chosen, set of informative genes. 

Given our use of the GO functional standard during gene selection, to ensure 
that the COMPRESS-GI algorithm was not overfitting, we conducted two separate cross-
validation experiments. First, we identified informative genes by applying COMPRESS-
GI to only 50% of the existing genetic interaction screens (randomly selected) and then 
tested the ability of these selected genes to provide profile information for the held out 
50% of the genetic interactions screens. In a second cross-validation experiment, we 
held out 50% of the GO annotations when selecting an informative gene set, and then 
benchmarked the selected set for its ability to recover held-out pairwise GO co-
annotations. In both cross-validation experiments, the COMPRESS-GI selected genes 
were equally informative on held-out data and/or annotations (Fig 3a,b), suggesting that 
the approach is not overfitting.  

In a final evaluation, we explored the effect of the asymmetry of the genetic 
interaction screening platform on the performance of our algorithm. Synthetic Genetic 
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Array (SGA) analysis, the technology that was used to produce the global genetic 
interaction map for yeast requires that in a given screen, a single query strain be 
crossed into an ordered array of second mutant strains [25, 26]. To verify that the 
performance of the genes we selected with COMPRESS-GI was not dependent on the 
configuration in which they were screened (e.g. as a query strain or an array strain), we 
limited our analysis to the subset of genes in the yeast genetic interaction network that 
appeared on both the query and array sides of the interaction matrix [4]. We then 
discovered informative sets of genes by running the COMPRESS-GI on the array side 
checked the information content of the same set genes on the query side, and vice 
versa. Indeed, we confirmed that the selected genes were informative in both cases, 
suggesting that our approach is able to select truly informative genes and is not sensitive 
to the assymetry of the screening platform (Fig 3c).  

iCOMPRESS-GI:  an iterative approach for screening genetic interactions  
The iCOMPRESS-GI is a variation of the batch version where the method does not 
require a large set of pre-existing genetic interaction data to begin, and therefore, is 
more appropriate when limited or no genetic interaction data have been produced. The 
iCOMPRESS-GI was developed to address the limitation of the batch COMPRESS-GI 
method in that it requires a sizeable genetic interaction matrix as an input. The algorithm 
will be useful for prioritizing genes for genetic interaction screening in new organisms or 
for new conditions for species with already established genetic interaction networks. The 
iCOMPRESS-GI can be started with as few as 10 initial genome-wide genetic interaction 
screens, after which the algorithm will iteratively discover the next informative gene to be 
screened. This iterative process can be repeated after each additional gene is screened 
to obtain the next gene to be screened (Fig 4a).   

The iCOMPRESS-GI approach approximates the batch COMPRESS-GI 
approach but is orders of magnitude faster (see Methods). Briefly, iCOMPRESS-GI 
optimizes the sum of products of similarities between genes and the known GO co-
annotations between them (0, 1, or -1), which can be summarized as a Hadamard’s 
product or element-wise matrix multiplication. Using properties of the trace on a 
Hadamard’s product along with the cyclic property of the trace product of matrices, the 
problem can be reduced to a simple 0-1 knap-sack problem, giving each gene a score 
that is related to the gene’s informativeness (see Methods for derivation). The genes can 
be ranked by their scores and top genes can be selected and screened. 

Given its computational efficiency, the iCOMPRESS-GI approach is suited for the 
iterative genetic interaction screening scenario where screens are selected in an online 
fashion after each additional screen. For comparison, we have also implemented a 
baseline approach, called “iterative hubs”, which is based on screening the highest-
degree previously unselected hub after each screen. Both iCOMPRESS-GI and the 
iterative hub method are initialized based on genome-wide interaction screens of 10 
randomly selected genes.  

We simulated and evaluated the scenario of iterative genetic interaction screens 
on the Costanzo et al. 2010 genetic interaction data [4]. We selected a submatrix of the 
complete genetic interaction network such that genes on the array side were also on the 
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query side, ensuring that we had screens for any genes selected from among the set of 
arrays, which resulted in a square matrix of 1141 query genes x 1141 array genes. As 
mentioned above, 10 genes were randomly screened first, followed by 90 iteratively 
selected genes, for a total of 100 query gene screens. To measure the performance of 
each approach, a profile similarity network was constructed by measuring similarity 
between all pairs of array genes based on the 100 selected query genes, and evaluated 
with the Gene Ontology co-annotation standard using precision-recall analysis. Similar 
simulations were conducted to select 100 genes using the baseline iterative hubs 
approach.  

We observed that the iCOMPRESS-GI method performs better than both the 
iterative hubs approach and random screen selection in terms of the ability of the 
resulting profile similarity network to capture known functional relationships between 
genes (Fig 4b). We performed a side-by-side comparison with the batch COMPRESS-GI 
method with an equal number of genes, which serves as an upper bound for the 
iCOMPRESS-GI algorithm as the complete genetic interaction matrix is available at the 
outset of the batch algorithm.  Gene selection was continued beyond 100 genes to the 
completion of the square matrix, and performance was evaluated across different 
functional contexts using precision-recall statistics as with the batch COMPRESS-GI. 
Again, the precision at 25% recall performance, averaged over the 13 functional 
contexts, is higher for the iterative COMPRESS-GI approach compared to iterative hubs 
and random (Fig 4c). The iCOMPRESS-GI performs exceptionally well relative to the 
baseline methods for selection of small sets of genes, making it especially useful for 
small studies in which less than ~100 screens are feasible. 

To test if our approach generalizes to species beyond S. cerevisiae, we carried 
out a similar simulation on the S. pombe genetic interaction network [27] (Fig 4d,e). As in 
our S. cerevisiae evaluation, we observed that the genes selected by the iCOMPRESS-
GI approach perform better than both random and iterative hub baseline approaches. 
These positive results in both species suggest that the algorithm will be useful in other 
contexts as well.  

 
Application of COMPRESS-GI to enable large-scale chemical genetic screens 
To demonstrate the utility of our COMPRESS-GI approach for optimizing genetic 
interaction screens, we applied it to facilitate a large chemical genetic screening effort. 
Chemical genetic screens involve screening a compound of interest against a collection 
of mutant strains with defined genetic perturbations [28-32]. Depending on the 
compound’s effect on a cell, individual mutants can be differentially sensitive and this 
profile of sensitivity measured across the mutant collection acts as a “fingerprint” that is 
indicative of a compound’s mode of action [32, 33]. This is a powerful unbiased 
approach that can be used to gain insight about the mechanism of action of 
uncharacterized compounds. Large-scale chemical genetic screening methods were 
pioneered in yeast [30-33] where much of the focus has been on screening chemicals 
against genome-wide mutant libraries. 

Genetic interaction networks provide a key to deciphering chemical genetic 
profiles to identify specific molecular targets. Specifically, molecular targets of small 
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molecules can be predicted using the idea that a compound’s behavior in a chemical 
genetic screen should mimic the behavior of a mutation in the corresponding target 
protein across the same mutant collection [33]. Chemical genetic profiles across a 
complete, genome-wide collection of mutant strains are ideal as they measure sensitivity 
or resistance with each gene mutant represented in the collection. However, if the major 
aim in collecting chemical genetic profiles is to measure profile correlation of candidate 
compounds’ profiles with genetic profiles or even profiles of other compounds, then 
chemical genetic screens against an intelligently selected subset of mutant should 
perform well at this task. 

This is an ideal scenario for the batch version of the COMPRESS-GI algorithm. 
Given the near-complete genetic interaction network, our task is to select a small subset 
of single mutants against which candidate compounds should be screened to identify 
chemical-genetic interactions. These compressed genetic interaction profiles can then 
be compared to the complete database of genetic queries screened against the same 
subset of mutants to identify genes that have a similar profile of genetic interactions as 
the compound(s) of interest (Fig 5a). Given the fact that the interpretation of the 
chemical genetic interactions is being derived from profile similarities, our earlier 
analysis of the COMPRESS-GI algorithm suggests we could do this successfully with 
only a small fraction of the entire collection of mutants. For example, our application of 
the batch version of COMPRESS-GI resulted in the selection of ~160 highly informative 
genes, comprising less than 5% of the non-essential deletion collection, but which 
recapitulated a profile similarity network capable of predicting known functional 
relationships as well as complete genetic interaction profiles. Importantly, reducing the 
number of mutants screened for chemical-genetic interactions could lead to significant 
resource savings. Fewer unique mutant strains require less growth media, and thus 
smaller volume of compounds is required, which is important when compound quantities 
are limiting. Furthermore, for next-generation sequencing based read-outs, as we use 
here [34], the throughput of the chemical genetic screening system is directly 
proportional to the number of unique mutants:  reducing the number of mutants by 20-
fold can result in a 20-fold increase in the number of compounds screened per lane of 
sequencing. Thus, conducting chemical genetic screens using a diagnostic mutant pool 
selected with COMPRESS-GI could substantially reduce the compound volume and 
overall cost. 
 
In silico evaluation of compressed mutant pool for chemical genetic application 
Before investing substantial experimental resources in chemical genetic screens using 
the diagnostic pool of mutant constructed with our COMPRESS-GI algorithm, we 
performed simulation studies with previously published chemical genetic interaction data 
to estimate the performance of the selected set of genes for chemical genetic 
applications. We leveraged data from a previous chemical-genetic study in which 82 
compounds were screened for chemical genetic interactions against the entire collection 
of ~4000 non-essential deletion mutants [33]. We compared the compound-target 
prediction capability of the compound profiles restricted to the 150 genes selected by 
COMPRESS-GI to the performance of compound profiles restricted to an equal number 
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of randomly selected genes. As described earlier, compound-target prediction was 
conducted by finding genes with the most highly correlated genetic interaction profile to 
the chemical genetic profile for the compound of interest based on the assumption that 
the compound’s behavior will mimic the knock-out of the target gene [33]. We compared 
the enrichment of the top predicted targets using the diagnostic set of 157 strains with 
multiple runs of top predicted targets using a randomly selected set of strains of the 
same size. We found that the targets were more likely to be enriched for Gene Ontology 
(GO) terms when they were discovered from our COMPRESS-GI-selected set of 
mutants as compared to the same-sized randomly selected sets of genes (Fig 5b; p-
value < 0.01). Significant enrichment of the top predicted gene targets indicates that the 
compound’s chemical genetic profile is consistent with a functionally coherent set of 
genes, which is most likely indicative of the bioprocessed affected by the compound. 
These results suggest that target predictions based on chemical genetic profiles against 
the diagnostic set of genes is more effective than equally sized sets of randomly chosen 
genes. Interestingly, chemical genetic profiles restricted to the diagnostic set of genes 
also performed better than the entire chemical genetic profile (59 vs. 42 of the 82 
compounds showed GO process enrichment among the top predicted gene targets). 
These analyses suggest that the COMPRESS-GI-selected set of mutants indeed does 
perform well at capturing information in chemical-genetic profiles despite the fact that it 
was selected entirely based on genetic interaction screens.  
 
COMPRESS-GI enables chemical genetic screening of more than 13,000 compounds 
Based on the encouraging results from our in silico evaluation, we designed a 
compressed mutant pool based on the COMPRESS-GI selection and used this as a 
basis for a large-scale chemical genetic screening effort (Fig 6a). The details of this 
effort and specific findings related to the screened compounds are described in our 
companion paper [35], but we briefly highlight the impact of the mutant selection here. 
Our chemical-genetic screening platform utilizes barcode sequencing technology, which 
leverages the fact that each mutant strain is barcoded with a unique 20bp identifier 
adjacent to a common priming site [34]. This design allows the selected set of mutants to 
be grown in a single pool for each compound interrogated [34]. Furthermore, depending 
on the number of unique strains being tracked, several different compound conditions 
can be multiplexed in a single sequencing lane, which can dramatically increase the 
throughput of the approach (Fig 6a). In our application, we constructed a mutant pool 
consisting of 157 genes selected by the COMPRESS-GI algorithm along with 
approximately 200 genes that were manually selected to complement the diagnostic set. 
This design enabled us to screen compounds at 200 uL and multiple 768 unique 
compound conditions per lane of Illumina sequencing. Using our diagnostic mutant pool, 
we achieved a similar per-strain read depth as genome-wide chemical-genetic screens 
at ~15X higher throughput, saving significant resources (Fig 6b) in addition to smaller 
compound volumes.  

To validate the utility of our diagnostic mutant pool, we rescreened 24 
compounds using our diagnostic mutant collection that were originally screened in the 
previous genome-wide study [31], which provided a direct opportunity to compare 
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genome-wide profiles with compressed mutant profiles. For each of these compounds, 
we compared the top 20 most similar gene targets generated either from the diagnostic 
gene set or the genome-wide mutant collection. Indeed, we found the top predicted 
targets significantly overlapping between these two sets for 18 of the 24 compounds (Fig 
6e), suggesting we are able to recapitulate predictions of mechanism of action using our 
compressed diagnostic pool. 

In total, we screened more than 13,000 compounds across 5 different compound 
collections using this optimized screening approach enabled by COMPRESS-GI [35]. 
We were able to make high-confidence mode-of-action predictions for the targeted 
bioprocess through comparison to genetic interaction profiles for a total of more than 
1500 compounds [35, 36], supporting the utility of compressed mutant profiles for 
functional characterization. The predicted modes of action spanned a diverse set of 
functional categories (Fig 6d), and we collected additional phenotypic data supporting 
our predictions for novel compounds in several different classes including tubulin 
inhibitors, cell cycle, and cell wall targeting compounds [35]. 

Discussion 
In this study, we demonstrated that genetic interaction screening efforts can be 
optimized. We developed and tested two related algorithms for optimal selection of 
mutants for genetic interaction screens, one addressing the scenario when a substantial 
base of screens already exists, and a second iterative algorithm that starts with no prior 
screen data. These algorithms both focused on the objective of measuring functional 
similarity based on interaction profile comparisons. Indeed, we were able to improve the 
efficiency of screens for this purpose in both scenarios. In general, our results suggest 
that if the goal of genetic interaction screens is to measure functional similarity, a 
relatively small collection of well-selected mutants (< ~10% of the genome) is able to 
achieve much of the utility of larger profiles, which is an encouraging finding for genetic 
interaction screening efforts in other contexts. This compression is inherently tied to the 
modular structure of biological systems. Since most genes function as part of larger 
inter-dependent groups, the high-level structure of genetic networks can be explored 
without exhaustive screening of all mutants. This finding also has substantial utility in a 
variety of settings. For example, in our use of COMPRESS-GI to design an optimized 
chemical genetics platform, we achieved a ~10-fold increase in throughput while 
requiring smaller compound volumes, which enabled systematic chemical genetic 
profiling of several large compound collections that, otherwise, would not have been 
possible. 

 We note that while we have focused our attention on optimizing genetic 
interaction screens for measuring functional similarity, there are other important 
objectives that motivate genetic interaction screening efforts. For example, in the context 
of human cells, detection of specific instances of synthetic lethality is of interest because 
each discovered individual synthetic lethal gene pair represents a potential target for 
personalized cancer therapy or modifier of a disease-associated mutation. If the 
objective is to most efficiently capture all possible cases of synthetic interactions, our 
analysis in yeast suggests this is a much more difficult setting to achieve substantial 
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gains (S1a Fig). The compression achieved with our COMPRESS-GI algorithm for the 
profile similarity use case will not be possible to achieve in that setting, and more 
extensive screening efforts cannot be avoided. Another related objective is the 
exhaustive detection of specific between-pathway or within-pathway interaction 
structures that dominate genetic interaction networks [23]. Our analysis suggests that 
this is a similarly difficult objective that inherently requires substantially more screening 
than the profile similarity case (S1d Fig). 
 It is important to note that our algorithm relies on a supervised approach. We use 
knowledge of functional relationships between genes to guide the selection of mutants 
that enable the detection of functional similarity when interactions are measured with 
them. We have designed our approach to cover diverse functions and demonstrated that 
it works well even in cross-validation scenarios. However, we note that the Gene 
Ontology annotations we used as a basis for the functional relationship standard are 
more complete and of better quality in yeast than in many other settings. We anticipate 
there will be other settings where such a standard is lacking, which could limit the 
application of our approach. However, limitations in annotations may be compensated 
for by rich collections of unbiased genome-scale data. For instance, in the context of the 
human genome, we anticipate that current collections of human genomic data, coupled 
with methods to integrate them to form robust and even tissue-specific functional 
networks (e.g. [37]), could likely substitute for curation-based standards. 
 In general, we anticipate that strategies for efficient, yet systematic, screening of 
genetic interactions will continue to grow in importance. Genome-scale application of 
CRISPR-Cas9 genome editing approaches offer the potential to map large-scale genetic 
networks for a variety of different species, including in human cells. Larger, more 
complex genomes will necessitate rational data-driven strategies for exploring the 
enormous space of possible combinatorial perturbations. Even in yeast, where the first 
complete pairwise genetic interaction network now exists [3], there are new, important 
frontiers to be explored for which exhaustive mapping is simply not feasible. For 
example, moving from double mutants into the space of triple mutant combinations will 
require a more targeted approach, possibly guided by the concepts we describe. Recent 
studies also demonstrate the dynamic nature of genetic interactions across different 
environmental conditions [15, 38], which is an important dimension to be explored as 
well. The methods proposed here lay a foundation for how existing annotations, genomic 
data, and iteratively generated genetic interactions can be integrated to rationally 
explore genetic networks. 
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Methods 

COMPRESS-GI 
Given genetic interaction data (m query genes crossed against n array genes) and a 
Gene Ontology standard for the query genes (size m by m), the COMPRESS-GI method 
discovers an informative subset of array genes. The optimization objective for selecting 
the informative subset of genes is to maximize the match between the gene profile 
similarities based on the selected partial profiles and gene co-annotations in Gene 
Ontology. The matching is quantified using precision-recall statistics by treating gene 
profile similarities as predictions and co-annotations from Gene Ontology as the gold 
standard positive and unrelated genes in the Gene Ontology as gold standard negative. 
The informative set of genes is discovered by exhaustively searching for genes that 
when added to the selected set of genes will best improve the precision-recall statistics. 
For example, for discovering the first gene, we conduct an exhaustive search of all the 
array genes and the gene that gives the best precision-recall statistics is selected. For 
the second gene, we search for all the array genes except for the first selected gene, 
and select the gene that gives best precision-recall statistics along with the first gene. 
This process is continued until the precision-recall statistic saturates and the increase by 
adding any gene does not increase the precision-recall statistic significantly. In practice, 
a maximum of around 20 genes can typically be selected before the precision-recall 
statistic saturates.  

The next set of genes to be discovered by the COMPRESS-GI is influenced by 
genes already selected by the algorithm. For example, different starting genes may 
result in convergence to a different final set. To ensure that the genes selected are 
robust to selection of the starting gene, we ran the COMPRESS-GI algorithm with 
different starting genes. For example, instead of starting with the best gene as the first 
gene, we started with the second best gene and allowed the first gene to occur in the 
COMPRESS-GI selections. We repeated this process with each of the 50 best genes 
ranked high in the precision-recall statistics based on the single gene profile as starting 
gene.  

Further, to make sure that all the major functional categories are represented by 
the selected set of genes, we repeated the COMPRESS-GI algorithm for several 
different functional contexts. The functional context was created by limiting the Gene 
Ontology standard to only genes that are related to the function.  

The different sets of genes obtained by running with different initial genes, and in 
different functional contexts, are combined, and the genes are sorted by their frequency 
of occurrence in these sets. The optimal number of the genes to be selected is 
determined based on the maximal precision at 25% recall averaged across different 
functional categories (see Fig 2e).  

Precision-recall statistic 
The precision-recall statistic is a way to assess both precision as well as recall of 
predictions against a gold standard. In a typical machine learning setting, there is a 
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positive and a negative class which are being predicted. If a positive prediction is found 
correct according to the positive gold standard, then the prediction is called True Positive 
otherwise it is called False Positive. Likewise, if a negative prediction is correct 
according to the negative gold standard it is True Negative otherwise it is False 
Negative. Precision is TP/(TP+FP) and Recall is TP/(TP+FN), where TP, FP, FN are 
number of True Positives, False positives, and False negatives predictions respectively.  

In our case, precision-recall statistics are used to assess the match between the 
gene similarities based on partial profiles with co-annotations in Gene Ontology. To 
evaluate the predictions and compute precision we also need gold standard positive co-
annotations and gold standard negative co-annotations. These gold standard co-
annotation are generated from Gene Ontology using GRIFN[24] (see Creation of GO 
standard). The similarities are thresholded at different points (recall equal to integral 
powers of 2 and the last recall) where precision and recall statistics are calculated and 
the precision-recall curve is plotted. Since the denominator for recall is constant for all 
similarity thresholds (TP + FN = number of 1s in the GO standard matrix), we have 
ignored the denominator and used Recall = TP.  
 
Comparing Precision-recall curves 
For the COMPRESS-GI approach, precision-recall curves are compared to find the best 
gene to select at each iteration. The precisions are compared at recall (TP) at powers of 
2: 2, 4, 8, and so on. The precisions at earlier powers of 2 are compared first. If one of 
the PR curves has higher precision at that recall, that one is considered to be a better 
PR curve. In case of tie, precisions at higher recalls are considered. One problem with 
this approach is that after the PR curve has saturated, even weak profiles can become 
slightly better by chance. To safeguard against this situation, in addition to checking that 
the PR curve improves we also check that the increase is greater than the sum of 
standard error in the two precisions. Given precision p = TP/(TP+FP), where TP, FP are 
number of true positive and false positives, respectively, the standard error on p is 

calculated as �������

���	�
.  

Category specific precision-recall statistics 
The COMPRESS-GI approach is run with several different functional contexts, that is, 
we want to select informative set of genes for the different functional category. To 
compute category specific precision-recall statistics and optimize on that objective, we 
modify the Gene Ontology standard to be specific to the functional category. The GO 
standard, M, is changed as follows: 

(1) Mi,j is unchanged if genes i, j both belong to the functional 
category, 

(2) Mi,j = 0 if originally Mi,j == 1 and only one of the genes i, j belong to 
the functional category.  

(3) Mi,j is unchanged if Mi,j = -1 originally 
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The GO standard for the genes within the functional category remain unchanged 
(1), but co-annotations of gene pairs outside the functional category are set to 0. Even 
though the focus of the optimization is to select genes informative for a particular 
functional context, the -1s in GO standard are never changed so that predicting 
unrelated genes as related is always penalized.  

iCOMPRESS-GI 
Like the COMPRESS-GI, the iterative method is also based on a similar objective of 
optimizing the match between the similarities of the genes with Gene Ontology standard 
(�). The similarities of the genes based on the partial profiles can be written as 
������
 � ���
�
 � ���
 where � is the diagonal matrix with ��� � � if array 
gene i is selected. However, unlike the COMPRESS-GI where precision-recall statistics 
are used to assess the match between ���
 and �, we optimize on the sum of element 
wise multiplication of ���
 and �. This objective can be written as  

max� �
� �� ������ ��������� ���� � ��  

= max 
�

��� ���� � ���  (sum of element in matrix � � ���� ) 

� max 
�

��� � � ��� (Let � � ����) 

� max 
�

��� 

�� 
���  (property of Hadamard product) 

� max
�

 �������  

� max
�

 ���������� � max
�

 ���������� � max
�

 ���������� 

 � max���������� ! ���  

where � is the element wise multiplication and more formally known as Hadamard 
product,  
and �� refers to the trace of a matrix which is sum of diagonal elements.  

This reduces the problem to the simplest type of 0-1 knapsack problem which 
can be solved by a greedy algorithm. To solve this problem, we rank the genes by 
���������, and pick the top n genes.  

Algorithm Complexity: 
The complexity of the iCOMPRESS-GI algorithm mainly lies in the matrix multiplication 
�����. So if � is the genetic interaction matrix composed of � queries and � arrays, the 
complexity for �����  matrix multiplication is O(��� " ��� ) = O(������ " ��). The 
complexity of the knapsack problem is O(�), so the overall complexity of the algorithm is 
O(������ " ��). This complexity makes the algorithm perfectly reasonable to run on 
genetic interaction datasets that are several folds larger than the current largest genetic 
interaction datasets [3]. Further, the algorithm can be used even for organisms with a 
much larger number of genes (�, � ~ 60,000). This complexity allows the algorithm to be 
run very quickly for iterative approaches, which has been specifically demonstrated in 
the results.  
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Interaction profile similarity measure  
We have used the dot product similarity measure because we showed earlier that it is 
among the best performers on genetic interaction data for predicting gene associations 
[39]. More importantly, similarity measures that use normalization such as Pearson 
correlation, Cosine correlation and Spearman correlation are unstable on smaller 
profiles, so they could not be used for this study where we are building the informative 
set of genes. Further, dot product has been shown to be more robust to noise and batch 
effects, which are typical in genetic interaction data [39].  
 
Block discovery 
To discover block structure in the genetic interaction data, we have used a block 
discovery method published earlier by our lab, XMOD [23]. We streamlined the XMOD 
implementation and provide a python interface to XMOD so that it can be run from the 
command line. For all block discovery applications (Fig 1d), we use a minimum support 
threshold of 6 and item-set size of 3, which means all the discovered blocks are greater 
than or equal to size of 6 (on the query side) by 3 (on the array side).  The blocks 
discovered are compared with blocks obtained by running XMOD on degree distribution 
preserved randomized genetic interaction network (see Bellay et al.[23]), and we use a 
p-value of 0.001 to filter out insignificant blocks. The discovered set of blocks may be 
overlapping, so we remove blocks which share an overlap of 10% or more with a larger 
block.  
Gene Ontology 
The S. cerevisiae and S. pombe Gene  Ontology (GO) standard were created using the 
approach described in [24], which generates a co-annotation matrix based on the S. 
cerevisiae Gene Ontology [40] and annotations. The S. cerevisiae datasets were 
downloaded on January 22, 2012, and the S. pombe datasets were downloaded on July 
4, 2012. The final standard includes annotations for all pairs of genes with some denoted 
as positives (functionally related), some as negatives (not functionally related), and 
some as zero (neither). The S. cerevisiae standard contains 5513 genes while the S. 
pombe dataset contains 4598 genes. The GO standards for both species are available 
for download on the Supplementary website (http://csbio.cs.umn.edu/compress-gi).  

Genetic Interactions 
We used the S. cerevisiae and S. pombe genetic interaction datasets from Costanzo et 
al. [4] and and Ryan et al [27] studies, respectively. These datasets contain multiple 
alleles or multiple conditions for some strains which can confound some of the analyses 
in our study. In such cases, only the strain/condition profile that had the highest negative 
genetic interaction degree (genetic interaction ε < -0.08, pval < 0.05) was retained. The 
resulting data sets contain 1672 query (rows) by 3885 array (columns) genes for S. 
cerevisiae dataset and 879 query (rows) genes by 1955 array (columns) genes for S. 
pombe dataset.  

For parts of our evaluation of COMPRESS-GI and iCOMPRESS-GI, square 
genetic interaction matrices were required for each species where genes on the row side 
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are also on the column side. These square genetic interaction matrices were derived 
from the rectangular matrices for both the species by retaining only the common genes 
for both row and column sides. The S. cerevisiae square matrix contains 1141 rows and 
columns and the S. pombe square matrix contains 408 rows and columns.  
 

Source Code 
The source code for the methods are available at: http://csbio.cs.umn.edu/compress-gi .  

Fig Legends 

Fig 1. Overview of genetic interaction profile similarity objective.  (a) The 
COMPRESS-GI algorithm maximizes the information content in the genetic interaction 
profile similarity network using precision-recall metric. Given a profile similarity network 
at a defined similarity threshold and using the similarities as predictions, the similarities 
can be compared with positive and negative co-annotation based on an external 
standard (e.g. the Gene Ontology) to measure precision and recall. We address two 
different screening scenarios with the COMPRESS-GI algorithm: (b) The batch version 
of COMPRESS-GI is designed for scenarios in which substantial genetic interaction data 
already exist while the iterative version of COMPRESS-GI is designed for screening 
genetic interactions in contexts with little or no pre-existing genetic interaction data.  

Fig 1. COMPRESS-GI algorithm and evaluation. (a) Precision-recall curves reflecting 
the predictive power of the genetic interaction profile similarity network generated with 
different random subsets of the profile. The precision-recall curves shown are the mean 
of 11 different random runs for each gene set size mentioned. (b) A flowchart describing 
the COMPRESS-GI method. The inputs for the COMPRESS-GI algorithm are genetic 
interaction data, a Gene Ontology or other standard for gene pair functional 
relationships, and gene membership in broad functional categories. The algorithm 
outputs an informative set of genes, which is a small subset of the original screened set 
against which profiles are maximally informative.  (c) Precision-recall evaluation of the 
top 100 COMPRESS-GI selected genes and comparison with an equal number of 
randomly selected genes, equal number of top hubs, and the entire S. cerevisiae genetic 
interaction dataset. (c) The evaluation in (b) was repeated for different functional 
categories by modifying the Gene Ontology standard, and precision at 25% recall was 
averaged across the different functions. The randomization for (c) and (d) was repeated 
100 times. The middle line is the median across those runs, and the boundaries of the 
shaded area represent the first and third quartile, respectively. (e,f) shows analyses 
similar to (c,d) conducted on S. pombe data.   

Fig 2. Cross-validation of the COMPRESS-GI algorithm. (a) The Gene Ontology is 
split into training and test samples for cross-validation, and COMPRESS-GI is run on the 
training GO standard, and the informative set of genes is discovered. The informative set 
of genes is evaluated using precision-recall measures on the held-out part of the GO 
standard. (b) Similarly, the cross-validation is repeated on different parts of genetic 
interactions data by splitting it into training and test halves on the query side. (c) The 
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informative set of genes discovered on the training genetic interaction data is evaluated 
on the test half. The utility of the informative set of genes discovered on the array side is 
tested on the query side. The square genetic interaction matrix, which has the same 
genes on both the array and the query sides, is used for cross-validation in (c). The hubs 
in each of the plot are dataset-specific. For example, in (b), hubs from the test genetic 
interactions are used. For the random baselines, the randomization was repeated 100 
times, and median precision-recall performance is plotted. The lower and upper bounds 
of the gray area represent the first and third quartile across these randomizations. 

Fig 3. Iterative genetic interaction screening scenario. (a) The schematic describes 
the iterative genetic interaction screening scenario, which assumes no initial genetic 
interaction data other than 10 random screens for initialization. (b,c) The iterative 
COMPRESS-GI method is evaluated by simulating iterative genetic interaction screening 
on the square genetic interaction Costanzo et al. data. (b) compares the precision-recall 
curves for 100 genes selected by this approach with an iterative hub and random 
baseline approaches. (c) compares the precision at 25% recall performance of the 
different approaches averaged across all functional categories. In addition to these 
approaches, the performance of the complete genetic interaction data has also been 
added in (b,c). Since there is random variation due to the selection of the first 10 genes, 
the approaches were repeated 10 times each with different initial gene sets. Each of the 
random cases, where the rest of the 90 genes are random, was also repeated 10 times 
(d, e). Same evaluation as in (b,c) repeated on S. pombe genetic interaction data.  

Fig 5. Application of diagnostic set of genes discovered by COMPRESS-GI to 
chemical genetic screens.  (a) The schematic illustrates that with COMPRESS-GI, 
diagnostic gene set selection, even with smaller partial profiles, we can recapitulate 
similar compound-gene target predictions. (b) The Fig compares the number of 
compounds out of 82 compounds in Parsons et al. study whose top 10 targets based on 
COMPRESS-GI selected genes (red arrow) with the random partial profile targets (blue 
histogram, random runs repeated 100 times) are enriched for Gene Ontology terms. The 
top targets of a compound are identified by finding query genes (rows) in the genetic 
interaction data that have maximum correlation with the chemical genetic interaction 
profile of the compound of interest.  

Fig 6. COMPRESS-GI enables large-scale chemical genetic screen and functional 
interpretation of chemical genetic profiles. (a) The flowchart provides an overview of 
how COMPRESS-GI was used for the high-throughput chemical genetic screens in S. 
cerevisiae. COMPRESS-GI was applied to the S. cerevisiae genetic interaction data to 
identify a gene set that recapitulates a functionally predictive genetic interaction profile 
similarity network. The mutant strains corresponding to those selected genes were used 
to create a mutant pool, which was used to screen chemical genetic profiles using the 
barcode sequencing technology. (b) Using the COMPRESS-GI selected minipool, we 
were able to screen an order of magnitude more conditions (768 vs. 60) using same 
amount of sequencing resources, thereby reducing the sequencing cost for each 
condition. (c) Clustergram of the resulting chemical genetic data for 11,983 compounds 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 5, 2017. ; https://doi.org/10.1101/159632doi: bioRxiv preprint 

https://doi.org/10.1101/159632
http://creativecommons.org/licenses/by-nc-nd/4.0/


across 7 major compound libraries screened using the COMPRESS-GI selected genes. 
(d) Distribution of the target process predictions for the high-confidence set of 
compounds in the screen across several biological processes. (e) The experiment 
shows the similarity of the top 20 targets predicted by Parsons et al. whole genome 
chemical genetic profiles as compared to predictions derived from the screens 
completed using the COMPRESS-GI designed diagnostic mutant set.  

Supplementary Fig 1. Evaluation of baseline strategies for common genetic 
interaction screening objectives. (a) Genetic interaction coverage: The figure shows 
how selection strategies of random genes (gray) and genes prioritized based on single 
mutant fitness defects affect the percentage of the interactions covered. The random 
selection was conducted 21 times, and the light gray region is the inter-quartile range 
while the dark gray line is the median across random selections. Similar analyses are 
repeated for the other genetic interaction use cases. (b) Profile similarity network: The 
functional information in the profile similarity network was measured using precision-
recall analysis (see Online Methods). Precision is sampled at a recall of 2048 true 
positives (~2% recall). (c) Genetic interaction degree estimation: The genetic interaction 
degree is estimated with partial profiles, and Pearson correlation is used to compare with 
actual degrees obtained from the complete dataset. (d) The number of bipartite or the 
block structures in the genetic interaction network: The number of significant blocks was 
discovered by running XMOD [23] with different sets of array genes. 

Supplementary Fig 2. Genetic interaction information is concentrated in the top 
few principal components, suggesting potential for compression. Standard PCA 
analysis was conducted to estimate the number of unique principal components 
explaining the majority of observed variation in the genetic interaction data. The figure 
plots the cumulative fraction of variance explained (y-axis) captured by the top most 
informative components (x-axis). Consistent with our findings, this analysis suggests the 
possibility of substantial compression given the disproportionate among of variance 
explained by the early principal components.  
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