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The vast majority of bacterial genome sequencing has been performed using Illumina short reads. Because

of the inherent difficulty of resolving repeated regions with short reads alone, only ˜10% of sequencing

projects have resulted in a closed genome. The most common repeated regions are those coding for

ribosomal operons (rDNAs), which occur in a bacterial genome between 1 and 15 times and are typically

used as sequence markers to classify and identify bacteria. Here, we show that the genomic context in which

rDNAs occur is conserved across taxa and that, by utilizing the conserved nature of rDNAs across taxa

and the uniqueness of their flanking regions, it is possible to improve assembly of these regions relative

to de novo sequencing. We describe a method which constructs targeted pseudocontigs generated by

iteratively assembling reads that map to a reference genomes rDNAs. These pseudocontigs are then used

to more accurately assemble the newly-sequenced chromosome. We show that this method, implemented

as riboSeed, correctly bridges across adjacent contigs in bacterial genome assembly and, when used in

conjunction with other genome polishing tools, can result in closure of a genome.
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Background

Sequencing bacterial genomes has become much more cost effective and convenient, but the number of complete,

closed bacterial genomes remains a small fraction of the total number sequenced (Table 1). The length of short

reads is increasing, but even with the advent of new long-read technologies, bacterial assembly remains a major

bottleneck [6, 31]. Although draft genomes are often of very high quality and suited for many types of analysis,5

researchers are forced to choose between working with these draft genomes (and the inherent potential loss of data),

Table 1: NCBI Genome Assemblies of Bacteria

Date Total Complete Chromosome Scaffold Contig

January 4th, 2017 85799 6255 1143 39972 38429

May 17th, 2017 96849 7212 1254 42839 43899

Source: https://www.ncbi.nlm.nih.gov/genome/browse/
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or spending time and resources polishing the genome with some combination of in silico tools, PCR, optical mapping,

re-sequencing, or hybrid sequencing [31, 44]. Many in silico genome finishing tools are available, and we summarise

several of these in Table 2.

Table 2: Alternative in silico genome polishing tools

Tool Method Summary

GapFiller [4] iteratively utilizes paired-end reads to close contig junctions

GapCloser [24] uses paired-end reads to close contig junctions

IMAGE [43] iteratively uses local assemblies of reads belonging to assembly gaps

CloG [51] use trimmed de novo contigs in hybrid assembly followed by a stitching algorithm

FGap [14,34] uses BLAST to find potential gap closures from alternate assemblies, libraries or
references.

GFinisher [14] uses GC-skew to refine assemblies

GapFiller [30] produces “long-reads” from paired-end sequencing data using a local assembler, which
can then be used in a de novo assembly.

CONTIGuator [13] uses contigs from a de novo assembly along with one or more reference sequences to
generate a contig map and PCR primer sets to validate in the lab.

Konnector [45] uses paired-end reads to make long reads to be used in a Bloom filter representation
of a de Bruijn graph

MapRepeat [26] uses a directed scaffolding method to fill in rDNA gaps, but limited to Ion Torrent
reads, and affected by inversions between rDNAs [27]

GRabB [5] selectively assembles tandem rDNAs and mitochondria

The Illumina entries in NCBI’s Sequence Read Archive (SRA) [20] outnumber all other technologies combined by about10

an order of magnitude (Table S2). Draft assemblies from these datasets have systematic problems common to short

read datasets, namely gaps in the sequences due to the difficulty of resolving assemblies of repeated regions [42, 49].

By improving the ability to resolve assemblies through repeated regions it may be possible to improve on current

assemblies, and therefore obtain additional sequence information from existing short read datasets in the SRA.

The most common repeated regions are those coding for ribosomal RNA operons (rDNAs). Sequencing of the 16S15

ribosomal region is widely used to identify bacteria and explore microbial community dynamics [7, 8, 48, 50], as the

region is conserved within taxa, yet retains enough variability to act as a bacterial “fingerprint” to separate clades

informatively. However, the 16S, 23S, and 5S ribosomal subunit coding regions are often present multiple times

in a single prokaryotic genome, and commonly exhibit polymorphism [9, 23, 29, 46]. These long, inexactly repeated

regions [2] are problematic for short-read genome assembly. Other large repeated regions also exist, but none as20

pervasive as rDNAs, as ribosomes are essential for cell function. As rDNAs are frequently used as a sequence marker

for taxonomic classification, resolving their copy number and sequence diversity from short read collections where the

assembled genome has collapsed several repeats into a single region could increase the accuracy of community analysis.

We present here an in silico method, riboSeed, that capitalizes on the genomic conservation of rDNA regions within

a taxon to improve resolution of these normally difficult regions and provide a means to benefit from unexploited25

information in the SRA/ENA short read archives.

riboSeed is most similar in concept to GRabB, the method of Brankovics et. al [5] for assembling mitochondrial and

rDNA regions in eukaryotes, as both use targeted assembly. However, GRabB does not make inferences about the

number of rDNA clusters present in the genome, or take advantage of their genomic context. In riboSeed, genomic
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context is resolved by exploiting both rDNA regions and their flanking regions, harnessing unique characteristics of30

the broader rDNA region within a single genome to improve assembly.

The riboSeed algorithm proceeds from two observations: (1) that although repeated rRNA coding sequences within

a single genome are nearly identical, their flanking regions (that is, the neighboring locations within the genome) are

distinct, and (2) that the genomic contexts of rDNAs are conserved within a taxonomic grouping. riboSeed uses only

reads that map to rDNA regions from a reference genome, and is not affected by chromosomal rearrangements that35

occur outside the flanking regions immediately adjacent to each rRNA.

Briefly, riboSeed uses rDNA regions from the closest completely sequenced reference genome to generate rDNA cluster-

specific “pseudocontigs” that are seeded into the raw short reads to generate a final assembly. We refer to this process

as de fere novo (meaning “starting from almost nothing”) assembly.

Figure 1: Reads are mapped to a reference genome and those reads that align to rDNA and flanking regions
are extracted. A subassembly for each group of reads that maps to an rDNA region is constructed to produce a
“pseudocontig” for each region. These pseudocontigs are then concatenated together separated by 5kb of Ns as a
buffer. Reads are then iteratively mapped to the concatenated pseudocontigs, extracted, and again subassembled
to each region. After the final iteration, the pseudocontigs are included with raw reads in a standard de novo
assembly. The complete process is referred to as de fere novo assembly. The subassemblies attempt to bridge
proper rDNA regions by ensuring that flanking regions (represented here by colors) remain correctly paired.

Implementation40

We present riboSeed: a software suite that allows users to easily perform de fere novo assembly, given a reference

genome sequence and single or paired-end Illumina sequence reads. The code is primarily written in Python3, with

several accessory shell and R scripts.

riboSeed relies on a closed reference genome assembly that is sufficiently closely-related to the isolate being assembled,
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in which rDNA regions are assembled and known to be in the correct context(see Figure 5).45

riboSeed proceeds in three stages: preprocessing, de fere novo assembly, and assessment/visualization.

1. Preprocessing
riboScan.py

riboScan.py uses Barrnap (https://github.com/tseemann/barrnap) to annotate rRNAs in the reference genome,

and EMBOSS’s seqret [36] to create GenBank, FASTA, and GFF formatted versions of the reference genome. This50

preprocessing step unifies the annotation vocabulary for downstream processes.

riboSelect.py

riboSelect.py infers ribosomal operon structure from the genomic location of constituent 16S, 23S and 5S sequences.

The number of 16S sequences is identified from the riboScan.py annotation, and Jenks natural breaks algorithm (using

the 16S count to set the number of breaks) is then employed to group rRNA annotations into likely operons on the55

basis of their genomic coordinates. The output identifies individual rDNA clusters and describes their component

elements in a plain text file. This output can be easily adjusted by hand before assembly if the clustering does not

appear to accurately reflect the arrangement of the operons (for example, based on visualization of the annotations in

a genome browser).

2. De Fere Novo Assembly60

riboSeed.py

riboSeed.py implements the algorithm described in Figure 2. Short reads for the sequenced isolate are mapped to the

reference genome using BWA [21]. Reads that map to each annotated rDNA and its flanking regions (default size

1kbp) are extracted into subsets (one per cluster). Each subset of extracted reads (one per cluster) is assembled into

a representative pseudocontig with SPAdes [3], using the reference rDNA regions as a trusted contig. The resulting65

pseudocontigs are evaluated for inclusion in future mapping/subassembly iterations based on their length (as discussed

below), and concatenated into a pseudogenome, in which pseudocontigs are separated by 5kb of Ns as a buffer. This

process is repeated in each subsequent iteration, using the pseudogenome as the reference, and the pseudocontig as a

trusted contig.

After a specified number of iterations (3 by default), SPAdes is used to assemble all short reads in a hybrid assembly70

that includes the pseudocontigs from the final iteration as “trusted contigs” (or as “untrusted contigs” if the mapping

quality of reads to that pseudocontig falls below a threshold). As a control, the short reads are also de novo assembled

without the pseudocontigs.

Although riboSeed uses SPAdes to perform both the subassemblies and the final de fere novo assembly, the pseudo-

contigs could be submitted to any hybrid assembler that accepts short read libraries and contigs. After assembly, the75

de fere novo and de novo assemblies are assessed with QUAST [15].
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riboSeed (reference, riboSelect clusters, reads, iters)
ref = reference;
clusters = parse riboSelect clusters;
for i in iters do

map reads to ref;
for cluster in clusters do

filter and extract reads within clusters and flanking;
subassemble with SPAdes;
return pseudocontig;

end
assess subassembly;
if success then

make pseudogenome from pseudocontigs ;
ref = pseudogenome ;

end

end
run SPAdes with reads and pseudocontigs;

end

Figure 2: Pseudocode of riboSeed algorithm

3. Assessment and Visualization
riboScore.py

riboScore.py extracts the regions flanking the rDNAs in the reference and in the assemblies generated by riboSeed.

The rDNA flanking regions from an assembly are aligned to rDNA flanking regions reference regions using BLAST,80

and depending on the scoring of the alignments, calls a junction a correct, incorrect, or ambiguous join based on the

criteria outlined below.

riboSnag.py

riboSnag.py is provided as a helper tool to produce useful diagnostics and visualisation concerning rDNA sequence

in the reference genome. Using the clustering generated by riboSelect.py, sequences for the clusters can be extracted85

from the genome, aligned, and Shannon entropy [39] plotted with consensus depth for each position in the alignment.

riboSwap.py

In all cases, we recommend assessing the performance of the riboSeed pipeline visually using Mauve [10,11], Gingr [41],

or a similar genome assembly visualizer to compare reference, de novo, and de fere novo assemblies in addition to

riboScore.py. If contigs appear to be incorrectly joined, the offending de fere novo contig can be replaced with syntenic90

contigs from the de novo assembly using the riboSwap.py.

riboStack.py

riboStack.py uses bedtools [35] and samtools [21] to compare the depths of coverage in the rDNA regions to randomly

sampled regions elsewhere in the reference genome. riboStack.py takes output from riboScan.py, and a BAM file of

reads that map to the reference. If the number of riboScan.py-annotated rDNAs matches the number of rDNAs in95

the sequenced isolate, the coverage depths within the rDNAs will be similar to other locations in the genome. If the

coverage of rDNA regions sufficiently exceeds the average coverage elsewhere in the genome, this may indicate that

the reference strain has fewer rDNAs than the sequenced isolate. In this case, using an alternative reference genome
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may produce improved results.

Results100

Characteristics of rDNA flanking regions

The ability to use rDNA flanking sequences to uniquely identify and place rDNAs in their genomic context requires

the flanking sequences to be distinct within the genome for each region. This is expected to be the case for most, if

not all, prokaryotic genomes. We determined that using 1kb flanking widths was sufficient to include differentiating

sequence (Figure S1). To demonstrate this, rDNA and 1kb flanking regions were extracted from E. coli Sakai [16]105

(BA000007.2), in which the rDNAs have been well characterized [32]. These regions were aligned with MAFFT [19],

and their consensus depth and Shannon entropy [39] calculated for each position in the alignment (Figure 3a).

In E. coli MG1655, the first rDNA is located 363 bases downstream of gmhB (locus tag b0200). Homologous rDNA

regions were extracted from 25 randomly selected complete E. coli chromosomes (Table S1). We identified the

20kb region surrounding gmhB in each of these genomes, then annotated and extracted the corresponding rDNA and110

flanking sequences. These sequences were aligned with MAFFT, and the Shannon entropies and consensus depth

plotted (Figure 3b).

Figure 3a (and Figure S3) shows that within a single genome the regions flanking rDNAs are variable between operons.

This enables unique placement of reads at the edges of rDNA coding sequences in their genomic context (i.e. there is

not likely to be confusion between the placements of rDNA edges within a single genome).115

Figure 3b shows that homologous rDNAs, plus their flanking regions, are well-conserved across several related genomes.

Assuming that individual rDNAs are monophyletic within a taxonomic group, short reads that can be uniquely placed

on a related genome’s rDNA as a reference template are also likely able to be uniquely-placed in the appropriate

homologous rDNA of the genome to be assembled.

Taken together, these two properties allow for unique placement of reads from homologous rDNA regions in the120

appropriate genomic context. These “anchor points” then reduce the number of branching possibilities in de Bruijn

graph assembly for each individual rDNA, and thereby permit complete assembly through the full rDNA region.

Validating Assembly across rDNA regions

Settings used for analyses in this manuscript are the defaults as of riboSeed version 0.4.09 (except where otherwise

noted).125

To evaluate the performance of de fere novo assembly compared to de novo assembly methods, we used Mauve to

visualize syntenic regions and contig breaks of the assemblies in relation to the reference genome that was used to

generate pseudocontigs. We categorized each rDNA in an assembly as either a success, failure, or misassembly.

An rDNA assembly was classed as correct if two criteria were met: (i) the assembly merged two contigs across a rDNA
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(a) rDNAs from E. coli Sakai

(b) Equivalent rDNAs from 25 E. coli genomes

Figure 3: Consensus coverage depth (grey bars) and Shannon entropy (black points, smoothed entropy as red
line) for aligned rDNA regions. For the seven E. coli Sakai rDNA regions (a), entropy sharply increases moving
away from the coding sequences in the rDNA region. In this case flanking regions would be expected to assemble
uniquely. By contrast, the rDNA regions occurring closest to homologous gmbH genes from 25 E. coli genomes
(b) show greater conservation in their flanking regions. This indicates that flanking regions are more conserved for
homologous rDNA than for paralogous operons, and implies that related genomes are useful reference templates
for assembling across these regions. (Similar plots for each of the GAGE-B genomes used later for benchmarking
can be found in Figure S3.)

region such that, based on the reference, the flanking regions of the de fere novo assembly were syntenous with those130

of the reference; and (ii) the assembled contig extends at least 90% of the flanking length. An assembled cluster was
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defined as skipped if the ends of one or more contigs aligned within the rDNA or flanking regions (signalling that

extension through the rDNA region was not possible). Finally, if two contigs assembled across a rDNA region in a

manner that conflicted with the orientation indicated in the reference genome, the rDNA region was deemed to be

incorrect.135

In all cases, SPAdes was used with the same parameters for both de fere novo assembly and de novo assembly, apart

from the addition of pseudocontigs in the de fere novo assembly.

Simulated Reads with Artificial Genome

To create a small dataset for testing, we extracted 7 distinct rDNA regions from the E. coli Sakai genome (BA000007.2),

including 5kb upstream and downstream flanking sequence, using the tools riboScan.py, riboSelect.py and riboSnag.py.140

Those regions were combined to produce a ˜100kb artificial test chromosome. pIRS [18] was used to generate simulated

reads (100bp, 300bp inserts, stdev 10, 30-fold coverage, built-in error profile) from this test chromosome. These reads

were assembled using riboSeed, with the E. coli MG1655 genome (NC 000913.3) as a reference. Because of the random

nature of read simulation, this was repeated 8 times.

The de fere novo assembly bridged an average of 4 of the 7 rDNA regions in the artificial genome, while the de novo145

assembly method failed to bridge any (Table S2). To demonstrate that the choice of reference sequence determines the

ability to assemble correctly through rDNA regions, we ran riboSeed with the same E. coli reads using pseudocontigs

derived from the Klebsiella pneumoniae HS11286 (CP003200.1) genome [22]. The de fere novo assembly with pseu-

docontigs from K. pneumoniae bridged between 1 and 2 rDNAs, but also misassembled several rDNA gaps (Figure

4).150

Figure 4: Representative Mauve output describing the results of riboSeed assemblies of simulated reads generated
by pIRS from the concatenated E. coli Sakai artificial genome. From top to bottom: artificial reference chromosome;
rRNA annotations (red bars); de fere novo assembly (E. coli reference), de novo assembly (E. coli reference), and
de fere novo assembly (K. pneumoniae reference). riboSeed with E. coli reference assembles 4 of 7 rDNA regions,
but the de novo assembly recovers no rDNA regions correctly. riboSeed using a K. pneumoniae reference resolves
a single rDNA region, but misassembles clusters.
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Effect of reference sequence identity on riboSeed performance

To investigate how riboSeed assembly is affected by choice of reference strain, we implemented a simple mutation

model to generate reference sequence variants of the artificial chromosome described above, with a specified level of

sequence identity. A simple model of geometrically-distributed mutations at a desired mutation frequency (Figure 5a)

does not address the disparity of conservation between rDNAs and their flanking region, but a second model was also155

applied wherein substitutions were allowed only to the rDNA flanking regions (Figure 5b).

(a) Mutations Throughout

(b) Mutations in Flanking Regions Only

Figure 5: Variants of the artificial genome with mutation frequencies between 0 and 0.1 (i.e. 100 substitutions
per kbp). Neighbor-joining trees are shown, rooted by the original sequence. Correctly-assembled rDNAs were
counted, and the distribution of results shown against the appropriate mutation frequency. Results are shown for
models where substitutions are permitted (A) throughout the chromosome, and (B) only the flanking regions, the
latter emulating the relative rate of substitution in rDNA and flanking regions. N=8.

To obtain an estimate of substitution rate for the E. coli data used above, Parsnp [41] and Gingr [41] were used to iden-

tify SNPs in the 25 genomes used in the above analysis (Figure 3), with respect to the same region in E. coli Sakai. An

average substitution rate of 0.0062 was observed.
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Figure 5a indicates that the more similar the reference sequence is to the genome being assembled, the greater the160

likelihood of correctly assembling through rDNA regions. When mutating only the flanking regions (Figure 5b), which

more closely resembles the relative mutation frequencies of the rDNA regions, the procedure correctly assembles rDNAs

with tolerance to mutation frequencies up to approximately 30 substitutions per kbp.

Simulated reads with E. coli Sakai and K. pneumoniae Genomes

To investigate the effect of short read length on riboSeed assembly, pIRS [18] was used to generate paired-end reads165

from the complete E. coli MG1655 and K. pneumoniae NTUH-K2044 genomes, simulating datasets at a range of

read lengths appropriate to the most sequencing technology. In all cases, 300bp inserts with 10bp standard deviation

and the built-in error profile were used. Coverage was simulated at 20x to emulate low coverage runs and at 50x to

emulate coverage close to the optimized values determined by Miyamoto [28] and Desai [12]. De fere novo assembly

was performed with riboSeed using E. coli Sakai and K. pneumoniae HS11286 as references, respectively, and the170

results were scored with riboScore.py (Figure 6).

(a) E. coli (b) K. pneumoniae

Figure 6: Comparison of de fere novo assemblies of simulated reads generated by pIRS. In most cases, increasing
coverage depth and read length resulted in fewer misassemblies. Assemblies were scored using riboScore.py. N=5.

At either 20x or 50x coverage, de novo assembly was unable to resolve a single rDNA with any of the simulated

read sets. de fere novo assembly with riboSeed showed modest improvement to both the E. coli and K. pneumoniae

assemblies. Increasing depth of coverage and read length improves rDNA assemblies.

Benchmarking against Hybrid Sequencing and Assembly175

To establish whether riboSeed performs as well with short reads obtained by sequencing a complete prokaryotic

chromosome as with simulated reads, we attempted to assemble short reads from a hybrid Illumina/PacBio sequencing

project. The hybrid assembly using long reads was able to resolve rDNAs directly, and would provide a benchmark

against which to assess riboSeed performance in terms of: (i) bridging sequence correctly across rDNAs, and (ii)

assembling rDNA sequence accurately within each cluster.180
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Sanjar, et al.published the genome sequence of Pseudomonas aeruginosa BAMCPA07-48 (CP015377.1) [37], assembled

from two libraries: ca. 270bp fragmented genomic DNA with 100bp paired-end reads sequenced on an Illumina HiSeq

4000 (SRR3500543), and long reads from PacBio RS II. The authors obtained a closed genome sequence by hybrid

assembly. We ran the riboSeed pipeline on only the HiSeq dataset in order to compare de fere novo assembly to

the hybrid assembly and de novo assembly of the same reads, using the related genome P. aeruginosa ATCC 15692185

(NZ CP017149.1) as a reference.

de fere novo assembly correctly assembled across all 4 rDNA regions, whereas de novo assembly failed to assemble

any rDNA regions (Table 3). Thus, we find that the de fere novo assembly using short reads performs better than de

novo assembly using short reads alone, validated against a complete hybrid assembly using the same data.

Table 3: Assembly of Hybrid-Sequenced P. aeruginosa BAMCPA07-48

Sequenced Strain Name Platform Length Depth
Reference Strain de novo de fere novo

Name rDNAs ✓ skip × ✓ skip ×

P. aeruginosa BAMCPA07-48 HiSeq 100 200x ATCC 15692 4 1 3 0 4 0 0

✓ = correct assembly

skip = skipped assembly

× = incorrect assembly

Case Study: Closing the assembly of S. aureus UAMS-1190

Staphylococcus aureus UAMS-1 is a well-characterized, USA200, methicillin-sensitive strain isolated from an os-

teomyelitis patient. The corresponding published genome was sequenced using Illumina MiSeq generating 300bp

reads, and the assembly refined with GapFiller as part of the BugBuilder pipeline [1]. Currently, the genome assembly

is represented by two scaffolds (JTJK00000000), with several repeated regions acknowledged in the annotations [38].

As the rDNA regions were not fully characterized in the annotations, we proposed that de fere novo assembly could195

resolve some of the problematic regions.

Using the same reference S. aureus MRSA252 [17] (BX571856.1) with riboSeed as was used in the original assembly,

de fere novo assembly correctly bridged gaps corresponding to two of the five rDNAs in the reference genome (Table

4). Furthermore, de fere novo assembly bridged two contigs that were syntenic with the ends of the scaffolds in the

published assembly, indicating that the regions resolved by riboSeed could allow closure of the genome.200

Table 4: Assembly of the S .aureus UAMS-1

Sequenced Strain Name Platform Length Depth
Reference Strain de novo de fere novo

Name rDNAs ✓ skip × ✓ skip ×

S.aureus UAMS-1 MiSeq 300 110x MRSA252 5 0 5 0 2 3 0

✓ = correct assembly

skip = skipped assembly

× = incorrect assembly

We modified the BugBuilder pipeline (https://github.com/nickp60/BugBuilder) used in the published assembly

to incorporate pseudocontigs from riboSeed, resulting in a single scaffold of 7 contigs. In this case, riboSeed was able

to bring an existing high-quality scaffold to completion.
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Benchmarking against GAGE-B Datasets

We used the Genome Assembly Gold-standard Evaluation for Bacteria (GAGE-B) datasets [25] to assess the perfor-205

mance of riboSeed against a set of well-characterized assemblies. These datasets represent a broad range of challenges;

low GC content and tandem rDNA repeats prove challenging to the riboSeed procedure. Mycobacterium abscessus,

having only a single rDNA operon, does not suffer from the issue of rDNA repeats, and was excluded from this analysis.

When a reference used in the GAGE-B study came from the sequenced strain we chose an alternate reference, as using

the true reference sequence would provide an unfair advantage to riboSeed. The GAGE-B datasets include both raw210

and trimmed reads; in all cases, the trimmed reads were used. Results are shown in Table 5.

Compared to the de novo assembly, de fere novo assembly improved the majority of assemblies. In the case of the S.

aureus and R. sphaeroides datasets, particular difficulty was encountered for all of the references tested. In the case

of B. fragilis, the entropy plot (Figure S3g) shows that the variability on the 5’ end of the operon is much lower than

the other strains, likely leading to the misassemblies.215

Table 5: Assembly of GAGE-B datasets

Sequenced Strain Name Platform Length Depth
Reference Strain de novo de fere novo

Name rDNAs ✓ skip × ✓ skip ×

A. hydrophila SSU HiSeq 101 250 ATCC 7966 10 0 10 0 4 6 0

B. cereus VD118 HiSeq 101 300 ATCC 10987 12 0 12 0 1 11 0

B. cereus ATCC 10987 MiSeq 250 100 NC7401 14 0 14 0 12 2 0

B. fragilis HMW 615 HiSeq 101 250 638R 6 0 5 1 0 3 3

R. sphaeroides 2.4.1 HiSeq 101 210 ATCC 17029 4 0 4 0 1 3 0

R. sphaeroides 2.4.1 MiSeq 251 100 ATCC 17029 4 1 2 1 1 2 1

S. aureus M0927 HiSeq 101 250 USA300 TCH1516 5 0 5 0 3 2 0

V. cholerae CO 0132(5) HiSeq 100 110 El Tor str. N16961 8 0 8 0 5 3 0

V. cholerae CO 0132(5) MiSeq 250 100 El Tor str. N16961 8 0 8 0 4 4 0

X. axonopodis pv. Manihotis UA323 HiSeq 101 250 pv. Citrumelo 2 0 1 1 2 0 0

✓ = correct assembly

skip = skipped assembly

× = incorrect assembly

Discussion

We show that the regions flanking rDNAs from related strains show a high degree of conservation. This homology

allows us to infer the location of rDNAs within a newly sequenced isolate, even in absence of the resolution that would

be provided by long read sequencing. Comparing the regions flanking rDNAs within a single genome, we observed that

with sufficient flanking length, flanking regions show enough variability to differentiate each instance of the rDNAs.220

Taken together, the cross-taxon homology allows inference of the location (i.e. the flanking regions) of rDNAs, and

the variability of these flanking regions within a genome enables identification of reads likely belonging to each cluster.

The similarity between the sequenced isolate and the reference influences the resulting de fere novo assembly; dis-

tance can be estimated using an alignment-free approach such as the KGCAK database [47]. To prevent spurious

joining of contigs, if less than 80% of the reads map to the reference, the resulting pseudocontigs will be treated as225
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“untrusted” contigs by SPAdes. However, performance of riboSeed using degenerate artificial genomes shows that

although one should use the best reference available for optimal results, the subassembly method is robust against

moderate discrepancies between the reference and sequenced isolate’s flanking regions.

The method of constructing pseudocontigs implemented by riboSeed relies on having a relevant reference sequence,

where the rDNA regions to act as “bait”, fishing for reads that likely map specifically to that region. Although this230

has been shown to be an effective way to partition the appropriate reads, perhaps a more robust and supervision-

free method would be use a probabilistic representation of equivalent rDNA regions for a particular taxon. By

developing a database of hidden Markov Models from each of the rDNAs in a taxon, perhaps the step of choosing

an appropriate reference could be circumvented. In the case of datasets where the choice of reference determined

riboSeed’s effectiveness (see S. aureus, table 5), a probabilistic approach may improve performance. Figure 3a shows235

the unique nature of the rDNA flanking regions; however, although Figure 3b shows strong conservation of the 16S

region, the 23S and 5S regions show some degree of variation. These areas in particular may benefit from a probabilistic

representation.

Several checks are implemented after the subassembly to ensure that the resulting pseudocontig is fit for inclusion. If a

subassembly’s longest contig is greater than 3x the particular pseudocontig length or shorter than 6kb (a conservative240

minimum length of a 16S, 23S, and 5S operon), this is taken to be a sign of poor parameter choice so the user is

warned, and by default no further seedings will occur to avoid spurious assembly. Such an outcome can be indicative

of any of several factors: improper clustering of operons; insufficient or extraneous flanking sequence; sub-optimal

mapping; inappropriate choice of k-mer length for subassembly; inappropriate reference; or other issues. If this occurs,

we recommend testing the assembly with different k-mers, changing the flanking length, or trying alternative reference245

genomes. Mapping depth of the rDNA regions is also reported for each iteration; a marked decrease in mapping depth

may also be indicative of problems.

Many published genome finishing tools and approaches offer improvements when applied to suitable datasets, but none

(including the approach presented in this paper) is able in isolation to resolve all bacterial genome assembly issues.

One constraint on the performance of riboSeed is the quality of rRNA annotations in reference strains. Although it is250

impossible to concretely confirm it is the case in silico, we (and others [27]) have found several reference genomes of the

course of this study that we suspect have collapsed rDNA repeats. We recommend using a tool such as 16Stimator [33]

or rrnDB [40] to estimate number of 16s (and therefore rDNAs) prior to assembly, or riboStack.py to assess mapping

depths after running riboSeed.

As riboSeed relies on de Bruijn graph assembly, the same considerations must be made with both de novo and de fere255

novo assembly. Because of this, the results may depend on the choice of read trimming approach, error correction,

range of k-mers, or error correction scheme.

The difficulty in determining the accuracy of rDNA counts in reference genome stems from the fact that most genome

sequences are released without publishing the reads used to produced the genome. This practice is a major hindrance

when attempting to perform coverage-based quality assessment, such as to infer the likelihood of collapsed rDNAs.260
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Data transparency has become the norm for gene expression studies, but that stance has not been universally adopted

when publishing whole-genome sequencing results. To ensure the highest quality assemblies, it is imperative the

researchers allow the scientific community to scrutinize the raw whole genome sequencing data with the same rigor

that would be applied to any other type of high-throughput sequencing project.

Conclusions265

Demonstration that rDNA flanking regions are conserved across taxa and that flanking regions of sufficient length are

distinct within a genome allowed for the development of riboSeed, a de fere novo assembly method. riboSeed utilizes

rDNA flanking regions to act as barcodes for repeated rDNAs, allowing the assembler to correctly place and orient

the rDNA. de fere novo assembly can improve the assembly by bridging across ribosomal regions, and, in cases where

rDNA repeats would otherwise result in incomplete scaffolding, can result in closure of a draft genome when used in270

conjunction with existing polishing tools. Although riboSeed is far from a silver bullet to provide perfect assemblies

from short read technology, it shows the utility in using genomic reference data and mixed assembly approaches to

overcome algorithmic obstacles. This approach to resolving rDNA repeats unlocks further insights from large public

repositories of short read sequencing data, such as SRA, and when used in conjunction with other genome finishing

techniques, provides an avenue towards genomes closure.275
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Supplementary Data

Making the artificial test genome
The artificial genome used for testing was constructed using the makeToyGenome.sh script included in the GitHub

repository under the scripts directory. Briefly, the 7 rDNA regions from the E. coli Sakai genome were extracted with

5kb flanking sequence upstream and downstream; these sequences were then concatenated to form a single, ˜100kb

sequence containing the 7 rDNAs as well as their flanking context.

Archaeal Datasets
We assessed the effectiveness of riboSeed with assembling archaeal genomes. Most (˜55%) archaeal genomes have only

a single rDNA, and none has been observed to have more than four. As riboSeed requires a sequencing dataset and

a reference genome, applicability was limited; of the 104 entries in rrndb with multiple rDNAs, only 7 had multiple

entries at the species level. Among those, only 2 had publicly available short read data. We used riboSeed to re-

assemble Methanosarcina barkeri Fusaro DSMZ804 (Ion Torrent PGM, 89bp single-end reads) and Methanobacterium

formicicum st. BRM9 (Illumina HiSeq 2000, 100bp paired-end reads). Methanobacterium formicicum st. JCM10132

(DRR017790 ) and Methanosarcina barkeri Fusaro DSMZ804 (SRR2064286) were the only ones that were suitable for

riboSeed, meaning that there was publicly available short read data and that there is a related genome at the species

level which is complete.

M. formicicum st. JCM10132 was sequenced on an Ion Torrent PGM, generating 106.5Mbp of single-end data. M

formicicum BRM9 (CP006933.1) was used as a reference. The resulting de fere novo assembly resulted in assembly

of 1 of 2 rDNA gaps. This represents the first application of riboSeed to Ion Torrent data.

Methanosarcina barkeri Fusaro DSMZ804 was sequenced using an Illumina HiSeq2000 with 101bp paired-end reads,

with an average fragment length of 400bp. We downsampled to use 5% of the 19.4Gbp dataset. Methanosarcina

barkeri str. Wiesmoor was used as a reference. The resulting riboSeed assembly showed correct assembly of 3 of 3

rDNAs, while de novo assemble failed to resolve any.

Taken together, we show that given appropriate datasets, archaeal datasets can be processed in the same manner used

for bacteria.

∼
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Table S1: Accessions for 25 E. coli genomes

GCA 000021125.1 ASM2112v1
GCA 000023665.1 ASM2366v1
GCA 000026545.1 ASM2654v1
GCA 000262125.1 ASM26212v1
GCA 000273425.1 Esch coli MG12655 V1
GCA 000299255.1 ASM29925v1
GCA 000714595.1 ASM71459v1
GCA 000967155.1 HUSEC2011CHR1
GCA 000974405.1 ASM97440v1
GCA 000974465.1 ASM97446v1
GCA 000974575.1 ASM97457v1
GCA 001020945.2 ASM102094v2
GCA 001566675.1 ASM156667v1
GCA 002012245.1 ASM201224v1
GCA 001750845.1 ASM175084v1
GCA 001886755.1 ASM188675v1
GCA 001901145.1 ASM190114v1
GCA 002012145.1 ASM201214v1
GCA 900096815.1 Ecoli AG100 Sample2 M9 Assembly
GCA 002116715.1 ASM211671v1
GCA 002118095.1 ASM211809v1
GCA 002125925.1 ASM212592v1
GCA 001612475.1 ASM161247v1
GCA 001651965.1 ASM165196v1
GCA 001721125.1 ASM172112v1

All available at ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/

Table S2: Hits resulting from searching the SRA database for various sequencing technologies as of January, 2017

Search term Hits Percentage

illumina 2242225 94.27
pacbio 21131 0.89
ion 30560 1.28
roche 42445 1.78
oxford 12301 0.52
solid 29791 1.25
Total 2378453 100

Table S3: Strain names and accessions for reference genomes used in this study

Strain Name Accession

E. coli MG1655 NC 000913.3
A. hydrophila ATCC 7966 NC 008570.1
B. cereus ATCC 10987 AE017194.1
B. cereus NC7401 NC 016771.1
B. fragilis 638R FQ312004.1
R. sphaeroides ATCC 17029 NC 009049.1, NC 009050.1
S. aureus TCH1516 NC 010079.1
S. aureus MRSA252 BX571856.1
V. cholerae El Tor str. N16961 NC 002505.1, NC 002506.1
X. axonopodis pv. Citrumelo CP002914.1
P. aeruginosa BAMCPA07-48 CP015377.1
P. aeruginosa ATCC 15692 NZ CP017149.1
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Table S4: Software Versions

Tool Version

Mauve 2015-02-13 build 0
BLAST+ 2.2.28+
Barrnap 0.7
BWA 0.7.12-r1039
samtools 1.3.1
MAFFT v7.215
SPAdes v3.9.0
QUAST 4.1
bedtools 2.17.0
EMBOSS 6.6.0
pIRS 2.0.2

Figure S1: BLASTn was used to perform in silico DNA-DNA hybridization of all rDNA regions from E. coli
Sakai with variable flanking lengths. The number of hits is a proxy for occurrences in the genome; increasing the
flanking length increases the specificity.
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Figure S2: Assembly of artificial genome. De fere novo results in closure of 3-5 rDNAs with the correct reference;
only 1-2 rDNAs are correctly assembled using K. pneumoniae. No rDNAs are assembled with de novo assembly.
Scored with riboScore.py. N=8.
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(a) E. coli MG1655 (NC 000913.3)
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(b) K. pneumoniae subsp. pneumoniae HS11286
(CP003200.1)
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(c) P. aeruginosa strain ATCC 15692 (NZ CP017149.1)
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(d) A. hydrophila ATCC 7966 (NC 008570.1)
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(e) B. cereus ATCC 10987 (AE017194.1)
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(f) B. cereus NC7401 (NC 016771.1)
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(g) B. fragilis 638R (FQ312004.1)
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(h) R. sphaeroides ATCC 17029 (NC 009049.1,
NC 009050.1)
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(i) S. aureus TCH1516 (NC 010079.1)
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(j) V. cholerae El Tor str. N16961 (NC 002505.1)
(NC 002506.1)
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(k) X. axonopodis pv. Citrumelo (CP002914.1)

Figure S3: riboScan.py,riboSelect.py, and riboSnag.py were run on all the genomes used as references for de fere
novo assemblies. Consensus coverage depth (grey bars) and Shannon entropy (black points, smoothed entropy as
red line) for aligned rDNA regions.
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