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Abstract

Motivation: Phenomics is an emerging branch of modern biology, which uses high throughput phenotyping
tools to capture multiple environment and phenotypic trait measurements, at a massive scale. The resulting
high dimensional data sets represent a treasure trove of information for providing an indepth understanding
of how multiple factors interact and contribute to control the growth and behavior of different plant crop
genotypes. However, computational tools that can parse through such high dimensional data sets and
aid in extracting plausible hypothesis are currently lacking. In this paper, we present a new algorithmic
approach to effectively decode and characterize the role of environment on phenotypic traits, from complex
phenomic data. To the best of our knowledge, this effort represents the first application of topological data
analysis on phenomics data.
Results: We applied this novel algorithmic approach on a real-world maize data set. Our results
demonstrate the ability of our approach to delineate emergent behavior among subpopulations, as dictated
by one or more environmental factors; notably, our approach shows how the environment plays a key role
in determining the phenotypic behavior of one of the two genotypes.
Availability: Downloadable Source code and test data are freely available with instruction set at
https://xperthut.github.io/HYPPO-X.
Contact: ananth@eecs.wsu.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
High-throughput technologies are beginning to change the way we
observe and measure the natural world in life sciences. In medicine,
physicians are using imaging and other specialized sampling devices
to keep a longitudinal log of patients’ drug/therapy response and other
disease-related phenotypes. In agricultural biotechnology, phenotyping
technologies such as cameras and LiDARs are being used to measure
physiological and morphological features of a crop on the field. Further,
advancements in genotyping technologies (sequencing) have made it
possible to characterize and track genetic diversity and changes at a
high resolution, and decode genetic markers key to performance traits.
Taken together, advancements in these technologies are leading to a rapid
explosion of high-dimensional data, obtained from a variety of sources.

A distinctive feature of these inherently high-dimensional data sets
is that their generation is motivated more based on the availability and
easy access to high-throughput technology (as opposed to specific working
hypotheses). While there are some broad high-level questions or research
themes that motivate the collection of data, the specific questions that
relate to testable hypothesis and eventual discoveries (e.g., what genetic
variations impact a physical trait, or how a combination of environmental
variables control a phenotype) are not readily available a priori.

Consider the case of plant phenomics (6; 17). Understanding how
different crop genotypes (G) interact with environments (E) to produce
varying different performance traits (phenotypes (P )) is a fundamental
goal of modern biology (G×E → P ) (3; 21). To address this fundamental
albeit broad goal, plant biologists and farmers have started to widely
deploy an array of high-throughput sensing technologies that measure
tens of crop phenotypic traits on the field (e.g., crop height, growth
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Fig. 1. Schematic table view of a multi-dimensional phenomics data set.

characteristics, photosynthetic activity). These technologies, comprising
mostly of camera and other recording devices, generate a wealth of images
(visual, infrared, thermal) and time-lapse videos, that represent a detailed
set of observations of a crop population as it develops over the course of
the growing season. Additionally, environmental sensors help in collecting
daily field conditions that represent the growth conditions. Furthermore,
through the use of sophisticated genotyping technologies, the genotypes
of the different crop varieties are also cataloged. Fig. 1 shows a table view
of a typical phenomics data set.

From this medley of plant genotypes, phenotypes, and environmental
measurements, scientists aim to extract plausible hypotheses that can
be field-tested and validated. However, the task remains significantly
challenging, due to the dearth of automated software capabilities that
are capable of handling complex, high-dimensional data sets. Scatter
plots and correlation studies can reveal only high-level correlations and
behavioral patterns/differences within data. However, it is common
knowledge that different individuals or subgroups of individuals behave
differently under similar stimuli. For instance, while it is useful to
know that a given environmental variable (e.g., humidity) shows an
overall positive correlation to a performance trait (phenotype), such
high-level correlations obfuscate the variations within a population—e.g.,
how different subgroups or genotypes respond to different environmental
intervals; or how one environmental variable interacts/interplays with
another to affect the performance trait; or how the same genotype expresses
variability in their performance in different environments. In fact, the need
to identify such intra-population variations is what drives the generation
of high-dimensional data in the area of phenomics (6; 17; 24).

1.1 Contributions

In this paper, we present a novel computational approach for
extracting hypotheses from high-dimensional data sets such as phenomics
collections. We formulate the problem of hypothesis extraction as one
of: (a) identifying the key connected structural features of the given data,
and (b) exploring the structual features in a way to facilitate extraction of
plausible hypotheses.

Structure Identification: Our approach uses emerging principles
from algebraic topology as the basis to observe and discern structural
features from high-dimensional data. Algebraic topology is the field
of mathematics dealing with the shape and connectivity of spaces
(22; 8). There are multiple important properties of topology that make
it particularly effective for extracting structural features from large,
high-dimensional data sets (see Section 5).

Topological Object Exploration: While topological representations
offer a compact way to represent and explore the data, the process of
navigation and hypothesis extraction is an unexplored problem—one that
is nontrivial with no current solutions. In this paper, we formulate this
problem formally as one of identifying maximal interesting paths in a
topological object. This novel formulation and a related algorithm allows
our approach to systematically identify and evaluate potentially interesting
features in topological representations.

Experimental Results: To demonstrate its effectiveness, we
conducted a thorough experimental evaluation of our topological
exploratory approach on a real-world maize data set, which contains
environmental and phenotypic observations for two genotypes in two
geographic locations (Kansas (KS) and Nebraska (NE)), over a period
of 100 days—for a total of 400 “points”. Our automated approach
generates the topological object that clearly separates the genotypes of
both locations. In fact, the interesting paths of the topological object
identified by our method demonstrates the ability to: (i) identify the
developmental and environmental stages of separation between the two
genotypes, and between the two locations; and (ii) identify subtle variations
in the behavior of individuals (or groups) within the subpopulations defined
by genotypes and locations. Note that these findings are achieved in an
entirely unsupervised manner by our approach.

We have implemented our approach as a software tool, which we call
Hyppo-X1. The tool is available as open source on the following website:
https://xperthut.github.io/HYPPO-X).

Even though we demonstrate the utility of our approach in the
context of plant phenomics, our approach can be applied more broadly
to other similar application contexts where the goal is to derive plausible
hypotheses from complex, high-dimensional biological data sets.

The rest of the paper is organized as follows: Section 2 presents
our algorithms and implementation details of our topologial exploratory
framework. Section 3 presents the model to extract the hypothesis from
the topological object constructed in Section 2 in the form of interesting
paths. Section 4 presents a thorough experimental study and evaluation of
our framework on a real-world maize data set. Section 5 reviews related
tools used in phenomics research.

2 Building Compact Topological Representations
The first step in our approach is to construct topological representations
using the connectivity properties of the data. The motivation is to obtain
higher order structural information about the high-dimensional data prior
to gleaning hypotheses. We adopt and adapt the Mapper algorithmic
framework (25) for this purpose, and output our representations in the form
of simplicial complexes (defined below). In what follows, we describe the
details of our implementations of the individual steps of the framework.
Fig. 2 is a schematic illustration of our approach.

Input: We are given a set of n points S in a d-dimensional space,
representing the space of interest X . In the case of phenomics, a point
x ∈ S represents a crop individual that is measured at a particular time t,
and the dimensions represent the attributes which describe the point at that
time. These include a setE ofm factors (e.g., time, temperature, humidity,
etc.), and a performance trait, the phenotype p (e.g., plant height or growth
rate). Note that these dimensions represent continuous variables2.

Output: We aim to create a highly compact coordinate-free
representation of X as a simplicial complex, using a clustering
(overlapping) of the points in X (represented by P here).

A simplicial complex is a collection of simplices (nodes, edges,
triangles, tetrahedra, etc.) that fit together nicely—all subsimplices of each
simplex are included in the collection, and any two simplices that intersect
do so in a lower dimensional subsimplex. Specifically, each cluster is
represented by a node (0-simplex). Whenever two clusters have a non-
empty intersection, we add an edge (1-simplex), and when three clusters
intersect, we add a triangle (2-simplex), and so on.

We now provide the main algorithmic details of the approach.

1 Stands for "Hypothesis Extraction".
2 A point may also have other non-continuous or static variables (e.g., the
genotype). For the purpose of our topological representations we will use
only the continuous variables.
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Fig. 2. The TDA algorithmic framework for analyzing phenomic data.

2.1 Filtering

The first component of the framework is a continuous function f : X → Z

to a real-valued parameter space Z, called the filter function. For each
factorZj , we define a filter function fj : X → Zj . We generate the open
cover Uj = {Uij} of Zj as follows:

(a)We divide each factor Zj into nj intervals (“sub-regions”), each of
length `j . Thus the entire d-dimensional region is divided into n1 ×
n2 × · · · × nm subregions, where each subregion represents a hyper-
rectangle of area `1×`2×· · ·×`m. Let the center of ith hyper-rectangle
be {C1i, C2i, . . . , Cmi}.

(b)We fix the center of each hyper-rectangle, and increase the length along
each factor Zj by a certain percentage αj such that an overlapping
region is created between consecutive pairs of the open sets Uij and
Ui+1,j , i.e., Uij ∩Ui+1,j 6= ∅. After increasing the length of all sides
in this fashion, the new area of the hyper-rectangle is `1(1 + α1) ×
· · · × `m(1 + αm)3. A 2D example is shown in Fig. 2.

We formulate the efficient determination of individual point sets
belonging to each hyper-rectangle as a problem of range querying.
Specifically, we implement the following querying function:

Range Query: GivenX and a hyper-rectangle h, return the subset of
points in X that lie in h.

To run this query efficiently, we use k-dimensional hyper-octtrees
(2; 10), which is a well known spatial data structure that uses recursive
bisection to index a spatially distributed set of points. The compressed
version of an n-leaves hyper-octree can be constructed in O(n logn)

time (2). Once constructed, a balanced binary search tree that uses the
order of the leaves is constructed. Using this auxiliary data structure, in
combination with the hyper-octree, enables anO(logn) worst case search
time for both point and cell searches (2). To answer the regional query for
a hyper-rectangle h, we perform a top-down traversal of the hyper-octree
by selectively retaining only those paths that can include at least one point
within h. This can be achieved by keeping track of the corners of the cell
defined by each internal node in the tree. This approach ensures that each
such query can be answered in time that is bounded by the number of
points in the hyper-rectangle.

2.2 Generation of Partial Clusters

Each open set (hyper-rectangle) computed by applying the filter functions
is processed independently for generation of partial clusters. The goal of

3 See Section 2.4 for further explanation of how we choose the αi values.

clustering is to partition the set of points in each hyper-rectangle based on
their phenotypic performance.

Let U represent an open set of points {x1, x2, . . . xt}. Note that each
point x ∈ U has a phenotypic trait value denoted by p(x). We define
a distance function d based on the phenotypic values of points in U as
follows. Given two points with trait values p(xi) and p(xj), the distance
d(i, j) = |p(xi)− p(xj)|.

Given U and distance function d, a partial clustering is defined by
a partitioning of the points in U . We denote the set of partial clusters
resulting from any given open set U as CU . Subsequently, we denote the
set of all partial clusters formed from all open sets (hyper-rectangles) by
C =

⋃
U
CU .

For the purpose of clustering, any distance-based clustering method
can be applied. We implemented a density-based clustering approach very
similar to that of DBSCAN (15). In the interest of space, we omit details
of our implementation. Of note are, however, two key points: a) the set
of partial clusters generated from within a hyper-rectangle represents a
partitioning of those points; and b) two partial clusters generated from a
pair of adjacent (overlapping) hyper-rectangles could potentially have a
non-empty intersection in points. In fact it is this intersection that renders
connectivity among the partial clusters generated, the information for
which will be used in the subsequent step of simplicial complex generation.

2.3 Construction of Simplicial Complexes

From the set of partial clusters C, we construct a simplicial complex K
as follows. We describe the details for the 2D case, where no more than
four open sets (hyper-rectangles) can mutually intersect. The extension to
higher dimensions is straightforward. Starting with an empty simplicial
complex, we implement the following steps:

i)A 0-simplex (or vertex) is added to the simplicial complexK for every
partial cluster.

ii)Next, a 1-simplex (edge) is added to K for every non-empty 2-
way intersection between any two partial clusters. Note that such
intersections could exist only between partial clusters originating from
different open sets.

iii)Following the same procedure as above, we also add 2-simplices
(triangles) and 3-simplices (tetrahedra) toK by enumerating only those
3-way and 4-way intersections, respectively, that could be non-empty.

The required multi-way intersections are computed using the range
querying function described earlier (in Section 2.1).

2.4 Persistent homology

We employ the concept of persistent homology (14) to choose the final
topological object for further analysis. In particular, the method in
which overlapping intervals are chosen (by specifying growing overlap
percentages αi, see Section 2.1) is already guided by this principle.
Termed multiscale mapper, growing the intervals in this fashion ensures
the topological objects formed (at each set of growing αi values) satisfy
a monotonic inclusion property (12). Hence results from persistent
homology could be used to guarantee (theoretical) stability of the
topological object formed (in the sense of persistence). At the same time,
no implementation of multiscale mapper is known. Instead, we increase
eachαi in steps of 2.5%, and construct the topological objects for each set
of αi values. We then construct the persistence barcodes (in dimensions
0, 1, and 2) using the sequence of topological objects formed by employing
JavaPlex, a standard software tool for this purpose (1). We then pick αi’s
such that all three barcodes do not change for values at or higher than
the chosen cutoff, ensuring the corresponding topological object chosen is
indeed stable. This chosen topological object is analyzed further to identify
interesting paths.
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Fig. 3. An edgee between two intersecting partial clusters (nodesu andv). The direction of
the edge indicates the direction in which the mean phenotypic/performance value increases.
The signature s(e) is a k-bit vector that captures the directions of change for each of the
k filter functions (e.g., environmental variables) along the edge—0 implies reducing and 1
implies increasing. The ith bit corresponds to the ith filter function.

3 Interesting paths
The topological representation naturally reveals the underlying abstract
structure of high-dimensional data. More specifically, a node (0-simplex)
represents a partial cluster, which is a collection of points (i.e., a
subpopulation) that shows similar phenotypic performance (by the distance
function) under similar environmental conditions (filter intervals). An
edge (1-simplex) connects two intersecting but distinct partial clusters.
Therefore, by following a trail of nodes that show a monotonically varying
performance, we can aim to capture the trail of subpopulations that
gradually (or abruptly) alter their behavior under a continuously changing
environment. Once identified, the user can extract points corresponding
to these different subpopulations, and use them for comparative analyses
and subsequent hypothesis extraction at the resolution of subpopulations.

Building on this idea, we formalize the notion of hypothesis extraction
through exploration of topological objects as one of extracting “interesting
paths” from the topological object. Details follow.

Using the simplicial complexK, we first construct a weighted directed
acyclic graph G(V,E), which represents the 1-skeleton of K along with
some additional info. Let V (K) and E(K) denote the set of nodes and
edges (0- and 1-simplices) of K. We set V = V (K) and E = E(K).

Note that each node u ∈ V denotes a set of points that constitute a
partial cluster in C. We denote this set asX(u). Consequently, we assign
real valued weights to all nodes and all edges inG—denoted by ω(u) and
ω(e), respectively, for u ∈ V and e ∈ E.

We set ω(u) to be the average phenotypic value for all points in u:

ω(u) =
Σx∈X(u)p(x)

|X(u)|
.

For an edge e = (u, v), we assign as its weight the absolute difference
between the weights of the two nodes:

ω(e) = |ω(v)− ω(u)| .

In addition, the direction of an edge e is set from the lower weight
node to the higher weight node—i.e., if ω(u) ≤ ω(v), then e : u → v;
and e : v → u otherwise.

Edge and Path Definitions: If the simplicial complex was constructed
using k out of the m continuous variables (as filter functions), then along
each edge, each continuous variable Zi can independently increase or
decrease. Since we are trying to link the change of each of these variables
relative to the change in phenotype (along an edge), we record a k-bit
signature for each edge.

The signature of an edge e ∈ E of G(V,E), denoted by s(e), is
defined as a k-bit vector, where the ith bit is 1 if the direction of change
for the continuous variable Zi is consistent with the direction of the edge,
and 0 otherwise. In other words, let an edge’s direction be u→ v. Then,
if the mean value for the continuous variable Zi increases from u to v,
then the corresponding signature bit is 1; and 0 otherwise.

Fig. 3 illustrates a directed, signed edge in our representation.
Let P denote a directed path in G(V,E), containing a sequence of r

edges [e1, e2, . . . , er]. Path P is said to be exact if the signature of all
edges along the path is identical; and inexact otherwise.

We define the interestingness score I(P ) of a path P as follows.

I(P ) = Σr
i=1log(rank(ei, P ) + 1)× ω(ei), (1)

where the rank(e, P ) is the order of the edge e as it appears along the
directed path P . Intuitively, we use the rank of an edge as an inflation
factor for its weight—the later an edge appears in the path, the more its
edge weight will count toward the interestingness of the path. This logic
incentivizes the growth of long paths. The log function, on the other hand,
helps contain this growth rate by treating edges that appear later in the
path with comparable levels of importance (unless there is an order of
magnitude increase in the path length).

We call two paths overlapping if they contain at least one edge in
common.

Finding a set of Interesting Paths (P) problem: Given G(V,E)

constructed as above, the goal is to find a set of interesting paths P =

{P |P ∈ P}, such that (i) no two paths are overlapped and (ii) maximize
I(P) =maximize

∑
P∈P I(P ).

3.1 The Algorithm

In this section, we present an efficient heuristic for the Interesting Paths
problem. Our algorithm, while may not guarantee theoretical optimality
in the interestingness score, runs in linear time (and space) and is effective
in practice to identify meaningful paths with interesting aspects to them
(as shown in Section 4). The main idea of our approach is to use dynamic
programming.

Let e be an edge from u → v. Then, we define the set of candidate
predecessor edges for e as follows:

Pred(e) = {f |f ∈ E, f : w → u, such that w ∈ V and s(f) = s(e)} (2)

If the predecessor set is empty for an edge e, then the edge e is referred to
as a source edge.

Let Pe denote an optimal path ending at edge e—i.e., a path with
the maximum interestingness score ending at that edge. We compute two
recurrences at edge e: i) the recurrence T (e) as the interestingness score
of Pe; and ii) a rank function rank(e) that stores the rank of e along the
path Pe. The recurrences are as follows.

T (e) =

{
ω(e), if e is a source edge,

T (f∗(e)) + log(rank(f∗(e)) + 1)× ω(e), otherwise,
(3)

where, f∗(e) is an optimal predecessor of e:

f∗(e) = arg max
f
{T (f) + log(rank(f) + 1)× ω(e)} . (4)

Note that once T (e) is computed, rank(e) is given by:

rank(e) =

{
2, if e is a source edge,

rank(f∗(e)) + 1, otherwise.
(5)

A detailed pseudocode of our algorithm and a discussion on its runtime
and memory complexities are provided in the Supplementary Document
(Section S1).

4 Experimental Results

4.1 Experimental Setup

We tested our TDA framework on a real world maize data set. This data
set consists of phenotypic and environmental measurements for two maize
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genotypes (abbreviated here for simplicity as A and B), grown in two
geographic locations (Nebraska (NE) and Kansas (KS)). The data consists
of daily measurements of the genotype’s growth rate alongside multiple
environmental variables, over the course of the entire growing season (100

days). For the purpose of our analysis we treat each “point” to refer to a
unique [genotype, location, time] combination. Consequently, the above
data set consists of 400 points (n). Here, “time” was measured in the Days
After Planting (DAP).

Each point has one phenotypic value (growth rate) and 10
environmental variables (including but not limited to: humidity,
temperature, rainfall, solar radiation, soil moisture, soil temperature). For
the purpose of the studies presented in this paper, we select humidity,
temperature and solar radiation, as they were the top variables that showed
the most interesting trends and observations against the phenotypic trait.
Results for other variables are omitted due to space considerations.

4.2 Topological object construction

We tested our framework using both single and two filter function(s).
Single filter function: The goal of our single filter study was to

understand how the [location, genotype] combinations showed different
performance in the phenotype as a function of time. Consequently, we used
DAP as the filter function4 and built our topological object, as described
in Section 2.

Fig. 4 shows the resulting topological object. As can be seen, our
method demonstrates the ability to clearly separate the two genotypes in
both locations—as seen in the branching of paths, and the branch points
in time indicate the DAP at which those genotypes separate. Notably, in
both KS and NE, genotype B shows an accelerated growth rate earlier
in its developmental stage than for A. Furthermore, both varieties in
KS show an accelerated growth rate earlier than their NE counterparts.
These observations are also confirmed by the scatter plot (Fig. S1 in the
Supplementary Document).

Fig. 4. Topological object based on the single filter function of days after planting (DAP).
Here we considered both genotypes (A and B) in both locations (KS and NE). The pie chart
at each node indicates the relative frequency of the four [location, genotype] combinations.

Two filter functions: While the above single filter function study
shows some interesting behavioral differences between the genotypes with
time and location, it is not adequate to provide any clues on the basis for
such differences. In fact, what led to genotype B behaving differently
across the two different locations? To delve into this specific question
further, we include a second filter function, which can be any one of the
environmental variables5, and include only the genotype B points (i.e.,
[KS,B] and [NE,B]) for subsequent analysis. Fig. 5 shows the topological
object generated using DAP and humidity as the two filter functions.

The topological object contains two large connected components. In
the topological object colored by mean DAP (Fig. 5(C)), we notice that the
largest connected component (right-top) captures the points from early to

4 The topological objects resulting from the use of other variables such as
humidity and solar radiation as the single filter function are shown in the
Supplementary Document (Section S2).
5 Section S3.1 in the Supplementary Document shows the results for an
alternative setup where the two filter functions used are two environmental
variables.

active growth stages, whereas the other connected component (left-bottom)
holds the points for the post-growth stage (DAP roughly over 70).

4.3 Path analysis

As our next step, we identified multiple interesting paths from the
topological object constructed using DAP and humidity as the two filter
functions, using the method described in Section 3. Fig. 5 shows (using
different colors) the paths that were automatically detected. For the purpose
of this analysis, we kept the signature along a path fixed6.

We now evaluate the qualitative significance of the interesting paths
identified by our method, shown in Fig. 5:

ÔThe collection of co-located paths P8, P9, P10 essentially helps us
understand how the genotype behaves in its early stages of development,
in the two locations. More specifically, path P8 starts with points
from both locations because their performances in similar conditions
(DAP and humidity) are also very similar; however, after roughly 20

DAP (Fig. 5C), the points from KS and NE separate (into P10 and P9

respectively).
ÔThe sequence of paths [P6, P5, P1, P3], which also includes the most

interesting path by interestingness score (P1), represents the active
growth period for the KS population (see Fig. 5B). In this period,
the growth rate increased from 1.38 cm/DAP to 9.73 cm/DAP, from
approximately 35 DAP to 64 DAP (see Fig. 5C). In contrast, the plants
in NE, despite being the same genotype, had very low growth rates during
roughly the same period in time (35 DAP to 55 DAP; see Figs. 5B, 5C).

Incidentally, examining the humidity trends in the same period for these
two locations (see Fig. 5D), we see that the humidity was very low in
NE compared to KS, and that the increase in humidity values for the
NE population (after 58 DAP) coincides with the increased activity in
its growth rate (see Figs. 5C, 5D)—thereby giving us an indicator that
humidity may have an active role in NE, perhaps more so than in KS, in
accelerating growth rate during the mid-stages of development.

ÔThe sequence of paths [P7, P2, P4] represents the active growth period
of the NE population, where the growth rate increases from 1.57

cm/DAP to 6.89 cm/DAP (Fig. 5B). This high activity period starts
from approximately 60 DAP and ends roughly at 81 DAP. As indicated
above, this active growth rate coincides with the period with higher
humidity for NE.

To better understand the results and contrast it with more traditional
approaches, we plotted all the genotype B points as a scatter plot, based
on their DAP and humidity—see Fig. 6. The coloring of the points are by
their location. As can be seen, the plot shows a clear separation between
NE and KS humidity values, with NE exposed to lower humidity values
than KS, in general. However, this is coarse-level information which can
be easily obtained through a correlation test as well. At the same time,
such tests are not adequate to provide meaningful insights into where the
environmental or temporal triggers are relative to the performance, and
how that behavior varies within a diverse population. That is where our
topology-based approach can be useful—to make such inferences from
the data and formulate testable hypothesis.

To better illustrate this advantage, we overlaid the interesting path
sequences identified by our paths (discussed above) on to the scatter plot.
These path sequences are shown as arcs in Fig. 6. As can be seen, our
interesting paths show three major “features” within this scatter plot:

6 Our method has a feature to relax this condition, and we performed more
analysis using that feature (not reported due to space). Of note is that the
paths tend to get longer with this relaxation.
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Fig. 5. The topological object constructed using DAP and humidity as the two filter functions, using only the [KS,B] and [NE,B] points. The same object is shown in the four panes, albeit
with different coloring schemes. (A) shows each node (i.e., partial cluster) as a pie-chart of the relative concentrations of the two possible [location,genotype] combinations; (B) shows nodes
colored by their mean phenotypic value; (C) shows nodes colored by their mean DAP value; and (D) shows nodes colored by their mean humidity value. The mean values are also indicated
within the respective circles. The size of the circle for each node is proportional to the size of the corresponding partial cluster. Also shown highlighted as thick colored edges are the set of
interesting paths identified by our method. Edge directions are from low to high mean phenotypic values. The interesting paths are labeled as Pi{s1s2}, where i is the path number, and
s1s2 denotes the signature for that path (s1 corresponds to DAP and s2 corresponds to humidity). Recall that in the signature, 0 means decreasing and 1 means increasing.

i)the initial sequence where both NE and KS varieties behave similarly
in their initial developmental stages, before branching out (around 20

DAP);
ii)the period of active growth for [KS,B] between roughly 35 and 65

DAP; and
iii)the period of active growth for [NE,B] appearing much later, between

roughly 60 and 85 DAP.
More interestingly, the beginning of our interesting paths for [NE,B] is also
for the first time the humidity value experienced a spike for that location—
increasing from values under 30 to around 60s—effectively implying (or
at least indicating) a probable cause for increased growth activity. After
that trigger, minor fluctuations in humidity seemed to have little effect
in the growth rate, which continued to increase through DAP 85. This
study sets up a testable link between a genotype (B) and environmental
variable (in this case, humidity) toward a performance trait (growth rate).
Furthermore, the study raises a plausible working hypothesis that can be
tested: “If genotype [NE,B] is also exposed to a higher level humidity
earlier on, during its developmental stage, then it is also likely to show an
active growth rate earlier?”

This illustrative example serves to demonstrate that our topology-based
method also has the potential to enrich the information over what can be
obtained through only conventional methods such as scatter plots. Note
that our tool is meant for exploring high-dimensional data in a software-
guided manner and more/other environmental variables can be included
in our tests. In fact, in the Supplementary Document, we present more
studies along this line by replacing humidity with temperature and solar
radiation.

Fig. 6. Scatter plot of data points ([individual, date/time]) with respect to DAP and humidity
in both locations. The color of a point indicates the corresponding location. According to
this figure, the range of humidity is higher in KS compared to NE. The paths generated from
our TDA framework are overlaid in this figure, which illustrate the phenotypic information.

Our study about the impact of temperature on plant growth rate is
presented in supplementary document in Section S3.2.

5 Related work
We are not aware of any previous automated or semi-automated hypothesis
extraction approaches for high-dimensional data sets.
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Topology and Applications: There are several important properties
that make algebraic topology particularly effective for gleaning structural
features out of high-dimensional data. First, topology studies shapes in
a coordinate-free way, which enables comparison among data sets from
diverse sources or coordinate systems. Second, topological constructions
are not sensitive to small changes in data, and robust against noise. Third,
topology works with compressed representations of spaces in the form of
simplicial complexes (or triangulations) (22), which preserve information
relevant to how points are connected. Compared to more traditional
techniques such as principal component analysis, multidimensional
scaling, manifold learning, and cluster analysis, topological methods are
known to be more sensitive to both large and small scale patterns (20).

Topological data analysis (TDA) has been applied to a wide range of
application domains, albeit for mostly visualization purposes (11; 9; 4; 13;
18; 23; 26). The foundational work in TDA most relevant to this paper was
done by Carlsson and coworkers (20). In (25), they describe a framework
called Mapper to model and visualize high-dimensional data. Most of
this work has been on the visualization front. A topology-based approach
was also rated as the best overall entry at an expression QTL (eQTL)
visualization competition organized by the BioVis community (5).

Tools for Plant Phenomics: Tools to decode associations between
genotypes and phenotypes have been under development for over two
decades. These tools look at the genetic variation observed at one or
more loci along the genome and study their correlation to quantitative
traits. The techniques used can be summarized as follows: i) Linkage
mapping techniques that use prior knowledge on the location (markers)
responsible for a certain trait; ii) Quantitative Trait Locus (QTL) mapping
that extends linkage to an interval of co-located markers along the genome;
and iii) Genome-Wide Association Studies (GWAS), which takes a whole
genome approach by scoring multiple markers located across the genome
for specific traits. In relation to capturing environmental variability, efforts
have been sparse. Brown et al. (7) presented an experimental framework
supplemented by GWAS to model environmental effects on phenotypes.
Lou et al. (19) provided a generalized linear model-based method to
capture gene to environment interactions.

6 Conclusion
We have presented a scalable exploratory framework for navigating high-
dimensional data sets and applied it to plant phenomics data to analyze
the effect of environmental factors on phenotypic traits. At its core, our
approach is fundamentally different from state-of-the-art techniques in
many ways: First, it inherits the advantages of topology including its
use of a coordinate-free representation, robustness to noise, and natural
rendition to compact representations. Second, by allowing the user to
define multiple filter functions, it enables them to study the combined
effect of multiple factors on target performance traits. Third, through its
clustering and visualization capabilities, it provides a way for domain
experts to readily observe emergent behavior among different groups or
subpopulations without requiring the knowledge of any priors. This feature
enables scientists to identify subpopulations, compare them, and perform
more targeted studies to formulate and test hypotheses.

Our approach is scalable in that it can scale to large data sets containing
possibly tens of thousands of points, reducing such large data to tens or
hundreds of partial clusters, thereby making visualization and exploration
possible. Although we have presented results on a smaller data set, we
have tested our approach on larger data sets (e.g., with thousands of points
(27); we did not present these results due to space constraints and also due
to some missing information about the data (e.g., genotypes)).

While the scope of this work can be further expanded through
application to a broader range of phenomics data collections, the results
presented in this paper show a promising application of topology and its
role in hypothesis extraction from high-dimensional data sets. Considering

the nascency of the phenomics field, tools for users to explore data and
help extract plausible hypothesis in a data-guided manner from large-scale
complex data, will be important going forward.
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