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Abstract

One approach to the reconstruction of infectious disease transmission
trees from pathogen genomic data has been to annotate the internal nodes
of a phylogeny with information about the host that each ancestral lin-
eage was infecting. If the transmission bottleneck is complete, the set of
all possible ways of making this annotation is equivalent to the set of par-
titions of the nodes of the phylogeny such that the nodes in each partition
element induce a connected subgraph of the tree. However, the mathemat-
ical properties of this space remain largely unexplored. Here, a procedure
by which the cardinality of the set of partitions for a given phylogeny can
be calculated is described, and also I show how to uniformly sample from
that set. The procedure is outlined, first, for situations where one sample
is available from each host and trees do not have branch lengths, and it is
then extended to allow incomplete sampling, multiple sampling, and the
application to time trees in a situation where limits on the period dur-
ing which each host could have been infected are known. The sampling
algorithm is available as an R script.

1 Introduction

The use of genetic data to reconstruction pathogen transmission trees has been
the subject of considerable interest in recent years. Many different approaches
have been proposed, both phylogenetic and non-phylogenetic [1, 5, 10]. The
phylogenetic approaches can broadly be divided into two categories: those that
assume that internal nodes in the phylogenetic tree correspond to transmission
events [7–9], and those that do not [2–4, 6]. In the former case, the phylogeny
and the transmission tree are effectively the same object.
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The assumption of coinciding lineage coalescences and transmission events
may be unwise, and in particular it does not take into account within-host
pathogen diversity [11]. Several approaches have been taken that do not make
it, one of which to note that if a phylogeny from a completely sampled outbreak
has its nodes annotated with the hosts in which each lineage was present, the
transmission tree is known [2–4]. In particular, Hall, Woolhouse, and Rambaut
[4] noted that the set of transmission trees for a known phylogeny, with complete
sampling and assuming transmission is a complete bottleneck, is equivalent to
the set of partitions of its nodes such that each partition element contains at
least one tip and the subgraph induced by the nodes in each partition element
is connected. However, for the most part the mathematical properties of this
space of partitions remain unexplored.

Here, I provide procedures for counting the total number of partitions (and
hence the total number of transmission trees) for a known phylogeny. I also show
how an algorithm can be written to sample uniformly from the set of partitions.
Initially I assume that the phylogeny is binary, sampling is complete, that each
host provided one sample, and that nothing is known about the timings of
each infection, but I go on to individually relax each of these assumptions.
The procedures outlined here may be useful to researchers wishing to explore
the structure that the phylogeny imposes on transmission tree space. An R
implementation of the algorithms described here is available at http://github.
com/twoseventwo/TTsampler.

2 Complete, single sampling

2.1 Preliminaries

Let the phylogeny T be an unlabelled rooted binary tree, initially without
branch lengths. Let T ∗ represent the unrooted tree obtained from T by at-
taching a single extra tip to the root of T by a single edge. (Note that two
distinct T s can have the same T ∗.) T ∗, importantly, has one more tip than T .

I follow the correspondence described by Hall, Woolhouse, and Rambaut [4]
between transmission trees and partitions of the node set of T such that all tips
derived from the same host are members of the same partition element and the
subgraph induced by each partition element is connected. This assumes that
sampling is complete, which I later relax, and that transmission is a complete
bottleneck, which is a more fundamental assumption. Furthermore, I assume
for now that only one tip is derived from each host. See figure 1 for an example.

In what follows, “subtree” has its normal phylogenetic meaning; a subgraph
of tree T consisting of a node of T , all its descendants (if any), and the edges
between them. If u is a node then we will denote the subtree rooted at u by Tu;
this is defined even if u is a tip.
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Figure 1: A rooted phylogeny (left) and the five compatible transmission trees
expressed as partitions of its node set (right). Coloured branches connect mem-
bers of the same partition element.

2.2 Counting transmission trees

With T fixed and having n tips, suppose we wish to count the number of
partitions, as defined above, of its node set N(T ). If the set of such partitions is
P(T ) (this is a set of sets of sets), we wish to calculate |P(T )|. Nothing about
the definition of a partition requires a rooted tree, so P(T ∗) is defined similarly.
It is trivial that if n = 1 then |P(T )| = |P(T ∗)| = 1.

If Tu is a subtree, we can define P(Tu) in the obvious way by regarding
it as a tree in its own right. We need to define another set of partitions of
N(Tu), however, which is the set of its intersections with all the elements of
each member of P(T ). This is different because it allows an internal node of Tu
to share its partition element with no tip of Tu, as that element was constructed
by taking the intersection of N(Tu) with an element of a partition of N(T ) that
contains a tip of T which is not a tip of Tu.

Suppose A is a partition of N(T ) and there exists A ∈ A such that A∩N(Tu)
is nonempty and contains no tip of Tu. Then:

1. u ∈ A ∩ N(Tu) because if it were not then the A would not obey the
connectedness requirement for being an element of a partition of N(T ). If
v ∈ A ∩N(Tu) and t is the tip of T in A then the path from v to t must
intersect u.

2. A∩N(Tu) is the only member of the set {B∩N(Tu) : B ∈ A} that contains
no tips of Tu, because u can belong to only one member of it.

Let Q(T ) be the set of partitions of T which allow (but do not insist on) an
extra partition element containing T ’s root. Figure 2 shows an example of the
extra elements of Q(T ) which are not already elements of P(T ) (and hence
already displayed in figure 1).
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Figure 2: For the tree in figure 1, the three members of Q(T ) which are not
members of P(T ).

To look at Q(Tu) (u 6= r) in another way, suppose ∼ is an equivalence
relation on the elements of P(T ) such that A ∼ B if A ∩N(Tu) = B ∩N(Tu),
where A∩N(T ) is the set of pairwise intersections of N(T ) with elements of A.
Q(Tu) can be seen as the set of equivalence classes. An important point to note
is that even if the tip of T which shares a partition element with u is different
in A and B, A ∼ B is still possible. The partition of the nodes in N(T )\N(Tu)
does not matter. |Q(Tu)| is the number of ways of partitioning the nodes of
Tu allowing for the possibility that that an unspecified extra partition element
could “creep” down onto it from above.

The exact correspondence of Q(T ) with P(T ∗) is obvious, as T ∗ is obtained
from T by attaching a single tip to T ’s root. Compare figure 3 with the full set
of partitions displayed in figures 1 and 2 as an example.

If n is at least 2, then T has a left subtree TrL rooted at the left child rL of
its root node r and a right subtree TrR rooted at the right child rR.

Proposition 2.1. If T has at least two tips, then |P(T )| = (|P(TrL)|×|P(T ∗rR)|)+
(|P(TrR)| × |P(T ∗rL)|).

Proof. Since T is not the tree with one node, its root r is internal. First we
count the number of partitions where r is in the same partition element as a
tip of TrL. If this is true then rL is in that same element by the connectedness
requirement for elements: if it were not then the path from that tip to r would
go through a node in a different element. The connectedness requirement then
also insists that no node of TrL is in the same partition element as a tip of
TrR, and the number of ways of partitioning the nodes of TrL as a subtree of T
such that this is true is just |P(TrL)|. For each of those ways, the number of
ways of partitioning the nodes of TrR is |Q(TrR)|, since some nodes of TrR can
be in the same element as r (and hence rL) and if any are then rR is. Since
|Q(TrR)| = |P(T ∗rR)| the number we are looking for is hence |P(TrL)|×|P(T ∗rR)|.

An identical argument shows that the number of partitions where r is in
the same element as a tip of TrR is |P(TrR)| × |P(T ∗rL)|, so the total number is
(|P(TrL)| × |P(T ∗rR)|) + (|P(TrR)| × |P(T ∗rL)|).

Proposition 2.2. If T has at least two tips, then |P(T ∗)| = |P(T )|+(|P(T ∗rL)|×
|P(T ∗rR)|).
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Figure 3: An unrooted phylogeny (left) and the eight partitions of its node set
(right). Coloured branches connect members of the same partition element.
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Proof. The root r of T has become an internal node of T ∗ connected to a new
tip, t. In some partitions of N(T ∗), t is the only member of its element and
there are obviously |P(T )| of these, because counting them is the same problem
as counting partitions of the tree rooted at r with t excised.

If t is not the solo member of its element, r is in the same element by the
connectedness requirement. The number of ways of partitioning TrL and TrR as
subtrees of T if this is true are |Q(TrL)| (= |P(T ∗rL)|) and |Q(TrR)| (= |P(T ∗rR)|)
respectively. The total number of such partitions is the product of these.

Since P(T ) and P(T ∗) are trivially known when T has one tip, |P(T )| can
now be calculated for any T by doing a post-order tree traversal. Specifically,
at each node u, if u is a tip then we record |P(Tu)| = |P(T ∗u )| = 1. Otherwise
if uL and uR are u’s children, we have already recorded |P(TuL)|, |P(T ∗uL)|,
|P(TuR)| and |P(T ∗uR)|. Calculate |P(Tu)| and |P(T ∗u )| by propositions 2.1 and
2.2 and record them. The last node visited is r, and at this point we can stop
with the calculation of |P(T )|. See figure 4 for an example.

2.2.1 Extension to the multifurcating case

The modification is fairly trivial If T is not binary. If the root r has p children
then and Trk is the subtree rooted at its kth child, then:

|P(T )| =
∑

1≤i≤p

(
|P(Tri)|

∏
1≤j≤p
j 6=i

|P(T ∗rj)|
)

and

|P(T ∗)| = |P(T )|+
∏

1≤i≤p

|P(T ∗ri)|

and the traversal works as before.

2.3 Counting root elements

We now want to determine, of the |P(T )| partitions of T ’s node set, what
number have r in the same partition element as a tip t.

Let {t1, . . . , tn} be the tips of T , ordered as they would appear in a post-
order traversal, in particular such that the tips from any subtree make up a
consecutive run of indexes. We wish to calculate the elements of n-tuple v(T ) =
(v1(T ), . . . , vn(T )) where vi(T ) is the number of partitions of N(T ) with r in
the same element as ti; then

∑
1≤i≤n vi(T ) = |P(T )|. If T has one tip t1, then

obviously v1(T ) = 1 and v(T ) is the 1-tuple (1). For any other T , define v(TrL)
and v(TrR) as the same counts when TrL and TrR are considered trees in their
own right; these tuples thus have only the same number of elements as TrL and
TrR, respectively, have tips. Suppose the tips of TrL occur first in the ordering
of the tips of T , and there are z of the former (and hence n− z tips of TrR).
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1 1 1 1 1 1 11 1 1 1 1 1 1

2 2 23 3 3

5 8 12 215

201 369

1 1

570 939

Figure 4: How to count partitions. At each node u, if Tu is the subtree rooted
at u, then the red number is |P(Tu)| and the blue |P(T ∗u )|. If an internal u has
children uL and uR, |P(Tu)| is calculated as (|P(TuL)|×|P(T ∗uR)|)+(|P(TuR)|×
|P(T ∗uL)|) (the sum of the product of the blue number at uL and the red number
at uR, and the product of the blue number at uR and the red number at uL).
|P(T ∗u )| is calculated |P(Tu)|+(|P(T ∗uL)|×|P(T ∗uR)|) (the sum of the red number
at u and the product of the blue numbers at its children).
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Proposition 2.3. Suppose T has at least two tips. Then:

vi(T ) =

{
vi(TrL)× |P(T ∗rR)| ti is descended from rL

vi−z(TrR)× |P(T ∗rL)| ti is descended from rR

Proof. First suppose r is in the same element as a tip ti of TrL. (Because
the tips of rL occur first in the ordering, the index of ti as a tip of T is the
same as that of it as a tip of TrL.) This forces rL to be in the same partition
element as r by the connectedness requirement, and the number of members of
TrL that have this property is vi(TrL). Such a choice of partition of TrL leaves
|Q(TrR)| = |P(T ∗rR)| ways of partitioning the nodes of TrR. If r is instead the
same element as a tip of TrR, then the argument is the same except that the
ith tip of T is the (i− z)th tip of TrR.

All entries of v(T ) can be calculated by a similar post-order traversal to
that described in the previous section. At each internal node u, v(Tu) can
be formed as described above, |P(Tu)| obtained by summing its elements, and
|P(T ∗u )| calculated from |P(Tu)| and the partition counts for u’s child subtrees.
See figure 5 for an example.

2.4 Sampling uniformly from P(T )
If the post-order traversal above is complete, sampling a random partition re-
quires a single pre-order traversal. The vector v(T ) consists of probability
weights for a draw of partition element for r, as it determines how many of the
|P(T )| total partitions have r in each element. Subsequently, when the traversal
reaches another node u with parent uP , and we have already placed uP in a
partition element containing a tip t, then u must also be in that element if t
is one of its descendants, by connectedness, or if t is u itself. Otherwise, there
are |P(T ∗u )| ways in which Tu can be partitioned given that uP has already
been allocated an element. |P(T ∗u )| − |P(Tu)| of these have u in the same el-
ement as uP , while the remaining |P(Tu)| do not. The entries of v(Tu) give
the numbers of ways in which u can be placed in the same element as each
of its descendant tips. The partition element for u can then be sampled with
probability determined by a weight vector that has the entries of v(Tu) for the
elements containing the tips descended from u, |P(T ∗u )|−|P(Tu)| for the already
determined parent partition element, and 0 for any other element.

3 Incomplete sampling

Now suppose that not every host in the transmission tree was sampled, but
instead that that there were m unsampled individuals, all of which are ancestral
to at least one sampled individual. It is not sufficient merely add m extra
partition elements that contain no tips. This is because, to provide a simple
example, if an unsampled host b was infected by a sampled host a and directly
infects only one other host c which was also sampled, the region of the phylogeny
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(1) (1) (1) (1) (1) (1) (1)(1)

(1,1) (1,1) (1,1)

(1,1,3) (3,3,3,3)

(21,21,63,24,24,24,24)

(21,21,63,24,24,24,24,369)

(1)

Figure 5: The calculation of v(T ) if T is the tree in figure 4. Each internal node
u is annotated with v(Tu), with orders within tuples occurring in the order of
the descendant tips of u as displayed from left to right.
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corresponding to the infection of b exists only along a branch (the branch whose
parent node is in the partition element containing a’s tip and whose child node
is in the one containing c’s tip) and no internal nodes are associated with b at
all. Nonetheless, the procedure for counting, and sampling from, the set of tree
partitions with m extra elements turns out to lead to the more general answer
as a byproduct of the calculations.

Now suppose Pm(T ) is this set. (P(T ) as described above is P0(T )). Let
PSm(T ) be the subset of Pm(T ) where the root of T shares its partition element
with a tip, and PUm(T ) the subset where it does not. Pm(T ∗) can be defined,
although as T ∗ has no root PSm(T ∗) and PUm(T ∗) cannot be. Qm(T ) can
also be defined and again is exactly analogous to Pm(T ∗).

Call the partition elements containing tips the sampled elements, and those
not containing tips the unsampled elements.

If T has a single tip then Pm(T ) = 0 and Pm(T ∗) = 0 for all m > 0. No
internal nodes exist to be assigned to unsampled elements.

3.1 Counting transmission trees

Proposition 3.1. If T has at least two tips, then

|PSm(T )| =
m∑
i=0

((|Pi(TrL)| × |Pm−i(T ∗rR)|) + (|Pm−i(TrR)| × |Pi(T ∗rL)|))

Proof. Since r is not part of an unsampled element, the m such elements must be
split between the subtree descended from its left child and that descended from
its right child. The summation expresses the number of ways to make this split.
Apart from this adjustment the argument is the same as in proposition 2.1, as
if m = 0 then r is always in a sampled element.

Proposition 3.2. If T has at least two tips, then

|PUm(T )| =
m−1∑
i=0

(|Pi(T ∗rL)| × |Pm−1−i(T ∗rR)|)

Proof. Since r is in an unsampled element, one of the m of those is accounted
for. The remaining m−1 are split amongst the left and right subtrees as above.

If we consider TrL in isolation, we want to count the number of ways of par-
titioning its nodes with i unsampled elements for certain and possibly one extra
which, if it exists, must contain rL. (This possible element is the intersection
of N(TrL) with an element A of a member of P(T ) such that r ∈ A.) This
number is clearly |Qi(TrL)| = |Pi(T ∗rL)|. Since exactly the same applies to TrR,
the product of |Pi(T ∗rL)| and |Pm−1−i(T ∗rL)| is the desired number for a known
i.
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Proposition 3.3. If T has at least two tips, then

|Pm(T ∗)| = |Pm(T )|+
m∑
i=0

(|Pi(T ∗rL)| × |Pm−i(T ∗rR)|)

Proof. Identical to proposition 2.2 except that we again allow for all the ways
that the m unsampled elements can be distributed.

Propositions 3.1 to 3.3 then allow us to calculate |Pm(T )| = |PUm(T )| +
|PSm(T )| by a post-order traversal; note that at every internal node u we must
calculate |Pi(Tu)| and |Pi(T ∗u )| for all i with 0 ≤ i ≤ m, not just |Pm(Tu)| and
|Pm(T ∗u )|.

3.2 Counting root sampled elements

Once again, let {t1, . . . , tn} be the tips of T , ordered as they would appear in
a post-order traversal and suppose that the first z tips are descended from TrL.
Define V(T ) be the n× (m+ 1) matrix whose ijth entry vij(T ) is the number
of partitions of T such that r is in the same element as ti if there are j − 1
unsampled elements.

Proposition 3.4.

vij(T ) =

{∑j−1
k=0 vik(TrL)× |Pj−1−k(T ∗rR)| ti is descended from rL∑j−1
k=0 v(i−z)k(TrR)× |Pj−1−k(T ∗rL)| ti is descended from rR

Proof. Analagous to proposition 2.3 after counting the ways the i unsampled
elements can be split between the two child subtrees.

3.3 Sampling uniformly from Pm(T )
The previous sections allows us, for m ∈ N and a binary T , to calculate PUi(T ),
PSi(T ), P∗i (T ) and V(T ) for all i with 0 ≤ i ≤ m by a post-order traversal.
The pre-order sampling procedure works by, first, at r, choosing an element
using a vector of probability weights consisting of the (m + 1)th row of V(T )
for the sampled elements and PUm(T ) for an unsampled element. Once this
is done, we must randomly choose how the remaining unsampled elements are
divided between TrL and TrR.

If we chose the element containing a tip ti for r and ti is descended from
rL, then the number of partitions which have j unsampled elements amongst
the nodes of TrL (and hence m − j amongst the nodes of TrR) is vij(TrL) ×
|Pm−j(T ∗rR)|.

If we chose the element containing a tip ti for r and ti is descended from
rR, then the number of partitions which have j unsampled elements amongst
the nodes of TrL is vi(m−j)(TrR)× |Pj(T ∗rL)|.
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If we chose an unsampled element for r, then the number of partitions which
have j other unsampled elements amongst the nodes of TrL (and hence m−1−j
amongst the nodes of TrR) is |Pj(T ∗rL)| × |Pm−1−j(T ∗rR)|.

In all cases we have a set of weights which we can use to randomly select j.
When the traversal arrives at a new node u whose parent uP has been

assigned an element and we know that there are k previously unencountered
unsampled elements in the partition of the nodes of Tu, then we are forced to
put u in the same element as uP if that element is sampled and contains a tip
descended from u. Otherwise, the (k + 1)th row of V(Tu) gives the weights for
being in a sampled element along with a tip of Tu, |PUk(Tu)| the weight for a
transition to a new unsampled element (whether or not the element containing
uP is unsampled) and |Pk(T ∗u )|−|Pk(Tu)| the weight for continuing in the same
element as uP whether that element was sampled or unsampled. We choose an
element for u in this way and then, if u is not a tip, split the k−1 (if we assigned
u to a new unsampled element) or k (if we did not) remaining unencountered
unsampled elements between u’s left and right descendant subtrees as above,
except that there is an extra case where we chose a sampled element for u but the
tip in that element is descended from neither of u’s children. In that situation,
the weight for j of k remaining unsampled elements going to u’s left subtree
TuL is |Pj(T ∗uL)| × |Pk−j(T ∗uR)|.

3.4 Sampling uniformly from the set of transmission trees
with m unsampled hosts

To complete the picture, we now must consider the case where only l of the m
unsampled hosts actually correspond to partition elements, and the remaining
m − l appear only along branches. If we have sampled an element of Pl(T )
as above, we need to distribute the additional m− l hosts, and there are l + n
branches on which these can be put, which are the branches ending in the earliest
appearances of in the tree of each of the l + n partition elements. The number
of ways of doing this is the number of ways of assigning m− l identical objects
to l + n possibly empty groups, i.e.

(
m+n−1
l+n−1

)
.

If we calculate |Pl(T )| for 0 ≤ l ≤ m, then we know that there are |Pl(T )|×(
m+n−1
l+n−1

)
transmission trees with m unsampled hosts where l of those hosts

have partition elements. We can randomly select an l using those counts as
probability weights, randomly generate an element of Pl(T ) as above, and finally
randomly assign the extra m− l elements to branches.

4 Multiple sampling

Removing unsampled hosts from consideration, I now relax the assumption that
each partition element contains only a single tip. Fix a partition P of the tip set
E(T ) of T ; we now investigate the set P(T ;P) which is the set of partitions A
of N(T ) such that {A ∩E(T ) : A ∈ A} = P (i.e. the partitions of N(T ) which
agree with P on the tips). Each element of P contains all the tips sampled
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from a single host. P(T ) as in section 2 is P(T ; I) where I is the partition of
singletons of E(T ).

For a set A ∈ P define the bridge b(A) of A to be the minimal subset of
N(T ) such that A ⊆ b(A) and the subgraph of T induced by b(A) is connected.
This contains all elements of A, the MRCA of A, and all nodes on the paths
between them. Obviously if |A| = 1 then b(A) = A.

If any two elements of P have bridges whose intersections are nonempty,
then |P(T ;P)| = 0; there are simply no possible transmission trees because the
connectedness requirement would insist that some nodes be part of more than
one partition element. So assume that this is not true. For any partition, being
a bridge node forces a node to be a member of the same element as those tips
whose bridge it belongs to.

Note there are two intuitive ways to consider P(Tu;P) for a subtree Tu of T
rooted at u. The first would be to use the set Pu = {A ∩ E(Tu) : A ∈ P} as a
partition of the tips of Tu. In this case, bridge nodes determined by P are not
necessarily determined as such by Pu.

The second way is to retain the restrictions on the partition elements to
which a node of Tu can belong that are determined by P even when we move to
counting partitions of Tu. This is the version which is useful for our purposes.
For example, if A ∈ P consists of the two tips t1 and t2, but only t1 is a tip of Tu,
then in enumerating and sampling partitions we still consider the intersection
b(A)∩N(Tu) to be bridge nodes, even though {t1} is a singleton element of Pu.
(In fact u must be a member of b(A).)

So for any node u of T , we define P(Tu;P) to be the number of ways to
partitioning T ’s nodes that respects the set of bridge nodes that P requires.

It should be fairly obvious that if an internal node is a bridge node then
one or both of its children must be as well. P(T ∗;P) has the definition one
would expect, with the extra node forming a singleton extra element of the tip
partition. For a node u, P(T ∗u ;P) again respects the bridge nodes imposed by
P on T .

Now suppose T has at least two tips and let u be any internal node of T ,
including r. Its children are uL and uR.

Proposition 4.1.

|P(T ∗u ;P)| =


|P(Tu;P)|
+(|P(T ∗uL;P)| × |P(T ∗uR;P)|) u is a not a bridge node

|P(Tu;P)| u is a bridge node

Proof. If u is a bridge node then it cannot belong to the partition element
containing the extra node, so the number of partitions is exactly the number
with that node excised. Otherwise, the argument is as proposition 2.2.

Proposition 4.2.

|P(Tu;P)| =


(|P(TuL;P)| × |P(T ∗uR;P)|)
+ (|P(TuR;P)| × |P(T ∗uL;P)|) u is not a bridge node

|P(T ∗uL;P)| × |P(T ∗uR;P)| u is a bridge node
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Proof. If u is a bridge node then at least one of its children is too. At least one
of those children, in fact, must be part of the same bridge as itself; suppose this
is uL. Now u and uL must be in the same partition element so the |P(TuL);P|
partitions of uL determine which element u belongs to, and because uL is a
bridge node |P(TuL);P| = |P(T ∗uL);P| by proposition 4.1. If uR is not a bridge
node then there are |P(T ∗uR);P| ways of partitioning the nodes of TuR by a
by now very familiar logic. If it is, then there are |P(TuR);P| partitions of
those nodes since the element that uR belongs to is fixed, but |P(TuR);P| =
|P(T ∗uR);P| by proposition 4.1. Obviously the same applies with uR and uL
reversed. If u is not a bridge node then the argument of proposition 2.1 still
applies.

If P has l elements, number them in an arbitrary way. Define v(T ;P) =
(v1(T ;P), . . . , vl(T ;P)) where vi(T ;P) is the number of partitions of the nodes
of T where r shares a partition element with the members of the ith element Ai

of P. For a subgraph Tu, let vi(Tu;P) be the number of partitions of the nodes
of Tu where r shares a partition element with the intersection E(Tu) ∩ Ai; this
may be 0 where that intersection is empty. Once again, vi(Tu;P) counts only
partitions that respect the bridge nodes imposed by P.

Proposition 4.3. Suppose |Ai ∩E(Tu)| > 0; that is, some tips of Tu are mem-
bers of Ai.

vi(Tu;P) =



vi(TuL;P)× |P(T ∗uR;P)| Ai ∩E(TuR) = ∅ and either u is not
a bridge node or u ∈ b(Ai)

vi(TuR;P)× |P(T ∗uL;P)| Ai ∩E(TuL) = ∅ and either u is not
a bridge node or u ∈ b(Ai)

vi(TuL;P)× vi(TuR;P) Ai∩E(TuL) 6= ∅ and Ai∩E(TuR) 6=
∅

0 otherwise

Proof. First note that if Ai ∩ E(TuL) 6= ∅ and Ai ∩ E(TuR) = ∅ then u is a
bridge node and in particular a member of b(Ai). If u is not a bridge node at
all, then we must be in one of the first two cases. The argument in that case
differs from proposition 2.3 only in terms of notation.

If u ∈ b(Ai) but only one child of u has any descendant tips that are members
of Ai, then suppose uL is the child that does. Then uR is either not a bridge
node or a member of b(Aj) for j 6= i. The number of ways of partitioning the
nodes of TuL with uL sharing a partition element with the members of Ai is
vi(TuL) and, because u shares a partition element with uL, each of those once
again results in |P(T ∗uR;P)| ways of partitioning the nodes of Tu. The same
goes with uL and uR reversed.

If both children have descendant tips that are members of Ai then the num-
ber of partitions with u sharing an element with the members of Ai is just the
product of the number of ways of partitioning its child subtrees in the same
way. All three nodes are forced to be part of the same partition element.
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Under any other situation u ∈ b(Aj) for j 6= i and there cannot be any
partitions that have it sharing an element with the members of Ai.

If t is a tip then |P(T ∗t ;P)| = 1, |P(Tt;P)| = 1, and vi(Tt;P) = 1 if t ∈ Ai

and 0 otherwise. This is all that is necessary to set up traversals analogous to
those described in section 2.

5 Trees with timings

Finally, I return once more to the case where sampling is single and complete.
I now give T branch lengths, which means a height function h : N(T ) → R+

can be defined such that for all nodes u with parent uP , h(u) < h(uP ). Branch
lengths and heights are intended to be in units of calendar time, not genetic
distance. We extend h to N(T ∗) by setting h(t) =∞ if t is the extra tip; while
T ∗ remains formally unrooted, there is only one way to display it that makes
sense.

Each tip ti is now associated with a closed interval Ii = [αi, βi] such that, for
any partition A of the nodes of T , if {u, ti} ⊆ Ai ∈ A then h(u) ∈ Ii. (Obviously
no partitions exist without ti ∈ Ii for all i.)

The Iis determine minimum and maximum heights for all the nodes in each
partition element. This is useful if infection is expected to end with sampling, or
if a maximum time from infection to sampling is known. If I is the complete set
of intervals, then let P(T ; I) by the set of partitions subject to these additional
restrictions. For a subtree Tu, P(Tu; I) is the set of partitions subject to the
restrictions where they are appropriate (i.e. the Ii where ti is actually a tip of
Tu).

Let P(T ∗; I ∪ [γ,∞)) be the set of partitions of T ∗ such that the element
containing the extra tip contains only nodes of heights greater than γ, and the
restrictions imposed by I still apply to the other elements.

Proposition 5.1. If T has at least two tips, then

|P(T ∗; I ∪ [γ,∞))| =

|P(T ; I)| h(r) < γ

(|P(T ∗rL; I ∪ [γ,∞))| × |P(T ∗rR; I ∪ [γ,∞))|)
+ |P(T ; I)| h(r) ≥ γ

Proof. If h(r) < γ then r cannot be in the same partition element as the extra
tip, so the number of partitions is the same as in the rooted case. Otherwise,
see proposition 2.2.

I omit a single expression for |P(T ; I)| and instead suggest calculating it by
calculating the vi first and adding them up. So let vi(T ; I) be the number of
partitions of T where r is in the same element as ti and the restrictions imposed
by I apply. Returning to the notation of proposition 2.3, so TrL has z of the n
tips and those descended from it come first in the ordering:
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Proposition 5.2. If T has at least two tips, then

vi(T ; I) =


0 h(r) /∈ Ii
vi(TrL; I)× |P(T ∗rR; I ∪ [αi,∞))| h(r) ∈ Ii and ti is

descended from rL
vi−z(TrR; I)× |P(T ∗rL; I ∪ [αi,∞))| h(r) ∈ Ii and ti is

descended from rR

Proof. If h(r) lies outside Ii then the answer is trivially zero. If not, and ti
is descended from rL, then there are vi(TrL; I) ways of partitioning the nodes
of TrL such that rL is in the same element as ti. For each of these, we need
the the number of ways of partitioning the nodes of TrR such that an extra
element can creep down from the root, but that that element cannot contain
any nodes whose heights are smaller than the lower limit of Ii, i.e. αi. This is
|P(T ∗rR; I ∪ [αi,∞))|. As usual, an identical argument applies with rL and rR
reversed.

Then |P(T ; I)| =
∑n

i=1 vi(T ; I). If T has one tip, then both P(T ; I) and
P(T ∗; I ∪ [γ,∞)) (regardless of γ) have one element if the tip lies within its
own interval and zero if it does not. As in the previous section, the traversals
described in section 2 can be used to count the full set of partitions and sample
uniformly from it.
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