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Abstract 
Alternative polyadenylation (APA) of 3’ untranslated regions (3’ UTRs) has been implicated in 

cancer development. Earlier reports on APA in cancer primarily focused on 3’ UTR length 

modifications, and the conventional wisdom is that tumor cells preferentially express transcripts 

with shorter 3’ UTRs. Here, we analyzed the APA patterns of 114 genes, a select list of 

oncogenes and tumor suppressors, in 9,939 tumor and 729 normal tissue samples across 33 

cancer types using RNA-Seq data from The Cancer Genome Atlas, and we found that the APA 

regulation machinery is much more complicated than what was previously thought. We report 

77 cases (gene-cancer type pairs) of differential 3’ UTR cleavage patterns between normal and 

tumor tissues, involving 33 genes in 13 cancer types. For 15 genes, the tumor-specific cleavage 

patterns are recurrent across multiple cancer types. While the cleavage patterns in certain 

genes indicate apparent trends of 3’ UTR shortening in tumor samples, over half of the 77 cases 

imply 3’ UTR length change trends in cancer that are more complex than simple shortening or 

lengthening. This work extends the current understanding of APA regulation in cancer, and 

demonstrates how large volumes of RNA-seq data generated for characterizing cancer cohorts 

can be mined to investigate this process. 

Introduction 
Alternative polyadenylation (APA) acts as a widespread and major post-transcriptional 

regulation mechanism for mRNAs, influencing their stabilization, translation, nuclear export, and 

cellular localization (Di Giammartino et al. 2011; Elkon et al. 2013; Tian and Manley 2013, 2016; 

Mayr 2016). APA is involved in normal cellular functions, such as cell proliferation and 

differentiation (Sandberg et al. 2008; Lianoglou et al. 2013; Hoffman et al. 2016), and it has also 

been implicated in various diseases (Ogorodnikov et al. 2016; Creemers et al. 2016; Hu et al. 
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2016), including cancer (Singh et al. 2009; Mayr and Bartel 2009; Lin et al. 2012; Liaw et al. 

2013; Xia et al. 2014; Erson-Bensan and Can 2016). Relative to normal cells, tumors have been 

reported to favor mRNAs with shortened 3’ untranslated regions (3’ UTRs) via APA events. 

Shortening may eliminate certain sequences in the 3’ UTR, such as binding sites for miRNAs 

and RNA-binding proteins, and other regulatory motifs, including AU- and GU-rich elements. As 

a result, it may enable the escape of mRNAs from degradation or other regulatory mechanisms 

that rely on these sequences. Therefore, APA is expected to play a role in oncogenesis, 

although how it contributes to the process is still poorly understood. 

Standard RNA-Seq libraries have been shown to contain sufficient read evidence to identify 

APA events (Wang et al. 2008; Pickrell et al. 2010; Xia et al. 2014; Bonfert and Friedel 2017). 

Hence, collections of RNA-Seq datasets from large-scale sequencing projects like The Cancer 

Genome Atlas (TCGA) provide an opportunity for comprehensive investigation of APA in normal 

and tumor samples. Earlier, we have developed KLEAT (Birol et al. 2015), a tool that predicts 

cleavage sites (CSs) based on the transcripts assembled de novo from RNA-Seq reads, and its 

predictions can be used to infer APA events, because cleavage and polyadenylation of the 

nascent mRNA on the 3’ terminus are highly coupled reactions (Tian and Manley 2016). 

Here, we characterized the CS profiles of 114 genes, mostly oncogenes and tumor suppressors 

(Mayr and Bartel 2009; Kumar et al. 2015), in 10,668 (9,939 tumor and 729 normal) TCGA 

paired-end RNA-Seq samples across 33 cancer cohorts. We identified 77 cases (i.e. gene-

cancer type pairs) of differential 3’ UTR cleavage patterns between normal and tumor samples 

for 33 genes in 13 cancer types. For 15 of these genes, the tumor-specific cleavage patterns 

are recurrent in multiple cancer types. Among them, the FGF2 gene was identified to favor a 

shorter 3’ UTR in tumor tissues in four cancer types (BRCA, LUAD, LUSC, and PRAD) (see 

Figure 1 for full names of cancer types), corroborating a previous report (Mayr and Bartel 2009). 

In total, we identified 16 cases of 3’ UTR shortening and 16 cases of lengthening; the remaining 
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45 cases indicate APA regulations that are more complex than shortening or lengthening of 3’ 

UTRs. Fully characterizing these cases will likely require techniques other than short read 

sequencing to disambiguate the relationship between individual CS predictions and multiple 

overlapping 3’ UTR annotations. In addition, we show that the CS profiles of this set of genes 

contain sufficient information to distinguish tumor samples of over 15 different cancer types, and 

normal from tumor samples in certain cancers. 

Results 

CS prediction in candidate genes 

We curated a list of 114 genes, the majority of which are tumor suppressors and oncogenes 

(Kumar et al. 2015) (Supplemental Table S1). According to COSMIC v80 (Forbes et al. 2015), 

all of these genes have at least one pathogenic mutation (Supplemental Fig. S1A), and they 

undergo various genomic changes, such as fusion (F), mutation (M), overexpression (O), and 

underexpression (U), in different diseases (Supplemental Fig. S1B). Six of the genes have been 

reported earlier to yield transcripts with shorter 3’ UTRs in cancer cells (Mayr and Bartel 2009). 

To characterize the CS profiles of these genes, we developed a targeted de novo assembly and 

analysis pipeline based on KLEAT (Birol et al. 2015) (Fig. 1A). The pipeline was designed for 

execution on the Google Cloud Platform (GCP), a cloud computing environment. Benefiting 

from the scalability of the GCP, it took approximately three days to analyze 10,668 RNA-Seq 

samples, which consisted of 1.6 trillion reads with an average read length of 53 bp, and 

amounted to 67 TB of data after compression. The number of RNA-Seq samples per TCGA 

cancer type is shown in Figure 1B, and detailed in Supplemental Table S2. 
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Figure 1 (A) Schematic diagram of the targeted CS prediction pipeline. (B) Composition of 

10,668 RNA-Seq samples across 33 cancer types. TCGA RNA-Seq data are sorted in 

decreasing order of normal and tumor samples in each cancer. Sufficient normal means that a 

cancer type has ≥ 15 normal RNA-Seq samples, which is a requirement in our study to qualify 

for comparison between normal and tumor CS usage patterns. Insufficient normal means that a 

cancer type has one to 15 normal samples, and no normal means that no normal sample is 
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available. The abbreviation of each disease is (alphabetically), ACC: adrenocortical carcinoma; 

BLCA: bladder urothelial carcinoma; BRCA: breast invasive carcinoma; CESC: cervical 

squamous cell carcinoma and endocervical adenocarcinoma; CHOL: cholangiocarcinoma; 

COAD: colon adenocarcinoma; DLBC: lymphoid neoplasm diffuse large B-cell lymphoma; 

ESCA: esophageal carcinoma; GBM: glioblastoma multiforme; HNSC: head and neck 

squamous cell carcinoma; KICH: kidney chromophobe; KIRC: kidney renal clear cell carcinoma; 

KIRP: kidney renal papillary cell carcinoma; LAML: acute myeloid leukemia; LGG: brain lower 

grade glioma; LIHC: liver hepatocellular carcinoma; LUAD: lung adenocarcinoma; LUSC: lung 

squamous cell carcinoma; MESO: mesothelioma; OV: ovarian serous cystadenocarcinoma; 

PAAD: pancreatic adenocarcinoma; PCPG: pheochromocytoma and paraganglioma; PRAD: 

prostate adenocarcinoma; READ: rectum adenocarcinoma; SARC: sarcoma; SKCM: skin 

cutaneous melanoma; STAD: stomach adenocarcinoma; TGCT: testicular germ cell tumors; 

THCA: thyroid carcinoma; THYM: thymoma; UCEC: uterine corpus endometrioid carcinoma; 

UCS: uterine carcinosarcoma; UVM: uveal melanoma.  

We filtered the raw CS predictions from KLEAT to remove off-target and low-confidence 

predictions (Supplemental Fig. S2 and Methods) and compared the refined results to the 

Ensembl gene annotations (GRCh37.75) (Aken et al. 2016). We chose the last base of a 3’ UTR 

to represent its corresponding CS (Supplemental Fig. S3). Overall, the predicted CSs have 

good concordance with annotations, with 66% of them located within 15 bp of the closest 

annotated sites (Fig. 2A), and 79% of them having a polyadenylation signal (PAS) hexamer 

motif detected within a 50 bp (Xia et al. 2014) upstream window (Fig. 2B). Consistent with 

previous reports (Xia et al. 2014; Tian and Manley 2016; Beaudoing et al. 2000; Gruber et al. 

2016b), we observe a peak at around 21 bp for genes on either strand in the distribution of 

distances between the identified PAS hexamers and CS predictions (Fig. 2B), and we find the 

two most prevalent PAS hexamers are the canonical motifs AATAAA (52%) and ATTAAA (13%) 

(Supplemental Fig. S4). Because the precise cleavage site can vary by up to tens of base pairs 

(bp) (Martin et al. 2012; Tian and Graber 2012), we clustered the filtered CSs that were ≤ 20 bp 

apart across all samples with a single-linkage hierarchical clustering algorithm, and selected the 

mode coordinate within each cluster as its representative CS (Methods). We note a good 
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concordance between representative and annotated CSs, with the distance between them 

spiking at 0, and note a robust distance distribution for different clustering cutoff values 

(Supplemental Fig. S5). Subsequent analyses are based on the representative CSs only, unless 

stated otherwise. 

 

Figure 2 Validation of our pipeline for predicting CSs. (A) Distribution of the distances between 

a predicted CS and the closest annotated CS. (B) Distribution of the distances between a 

predicted CS and the PAS hexamer motif found within 50 bp upstream. 
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Tumor-specific 3’ UTR cleavage patterns 
We calculated the usage frequency of every CS in each gene in both normal and tumor samples 

for each cancer cohort. By comparing the CS frequencies between normal and tumor samples, 

we identified 77 cases of tumor-specific 3’ UTR cleavage patterns. Each case is denoted as a 

gene-cancer type pair, and a cleavage pattern is defined as the collection of CS frequencies 

within a gene in a dataset, where a dataset is defined as the normal or tumor samples from a 

cancer cohort. The identified 77 cases involve 33 genes across 13 cancer types. Notably, of the 

14 cancer types with sufficient (≥15) normal samples available, no such pattern is found in 

STAD. 

For 18 genes, tumor-specific cleavage patterns are observed in multiple cancer types. For 15 of 

these genes (AKT2, BRCA1, CCNE1, CDKN2A, CHURC1, DRAM1, EZH2, FGF2, FGFR2, 

GNAS, KRAS, MAX, MITF, NFE2L2, WT1), the tumor-specific patterns are consistent across 

cancer types, thus recurrent. For 6 genes (CDKN2A, FLT3, HNF1A, NFE2L2, RNF43, and 

WT1), the tumor-specific patterns are inconsistent across cancer types, thus disease-

dependent. Three genes (CDKN2A, NFE2L2, WT1) are in both sets, and show recurrent 

patterns only in a subset of the cancer types in which they are identified. 

For each case, we inferred a 3’ UTR length change trend in cancer based on the corresponding 

tumor-specific cleavage pattern. Here, we highlight eight cases that involve six genes (FGF2, 

CCNE1, RNF43, CDKN2A, EZH2, and PTCH1). The first four display 3’ UTR shortening or 

lengthening trends in tumors (Fig. 3), and the other four show more complex cleavage patterns 

that do not fit the shortening/lengthening paradigm (Fig. 4). All other cases are depicted in 

Supplemental Figure S6. Gene-level and CS-level summaries for all 77 cases are provided in 

Supplemental Table S3 and S4, respectively. 
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Figure 3 Three representative genes showing tumor-specific CS usage patterns in different 

cancer types, with implications on their 3’ UTR length changes. (A) FGF2. (B) CCNE1. (C,D) 

RNF43. (A-D) Inside each panel, to the left, the bar plot shows the usage frequencies of CSs 

within a given gene. Each group of bars represents the frequencies of one CS in normal (blue) 

and tumor (red) samples, respectively. Bar groups are ordered by the genomic coordinates of 

their corresponding CSs, and those corresponding to insignificant (p ≥ 0.01, Fisher's exact test) 

frequency change are greyed out. Bar width is not meaningful. The text box shows the number 

of normal (N) and tumor (T) samples considered for frequency calculation with sufficient gene 

expression. The background of the text box encodes the trend of 3’ UTR length change with 

respect to the CS usage patterns in normal. To the right, the number of cancers supporting 

recurrent tumor-specific CS usage patterns are shown beside the bar plots. The arcs represent 

mappings between annotated stop codons and CSs with corresponding 3’UTRs drawn below. 3’ 

UTRs drawn here may also contain introns. Vertical arrows indicate the positions of predicted 

CSs by KLEAT. Annotated and predicted CSs match well, but are not expected to overlap 

exactly. An arrow pointing upwards or downwards represents an increase (red) or decrease 

(blue) in frequency from normal to tumor, respectively, with its height representing the difference 

(𝚫). Like bars, arrows are greyed out if the corresponding difference is insignificant. The X-axis 

represents the genomic coordinates offset by the position of the first stop codon, and a 

horizontal arrow indicates the gene strand. For clarity, CSs with usage frequencies lower than 

5% in both normal and tumor samples, and that do not undergo any significant change in any 

cancer type considered herein are not shown. For a comprehensive view of all CSs with 

distribution of gene expression levels, see Supplemental Figure S6. 

The FGF2 gene (Fig. 3A) presents an example of 3’ UTR shortening that has been previously 

reported in several cancer cell lines (Mayr and Bartel 2009). The predicted and annotated CSs 

have strong concordance, but their coordinates are not expected to match exactly. We use a 

convention that labels CSs by a letter from the gene name followed by an index incremented 

relative to the CS genomic coordinates on the positive strand, so the three predicted CSs of 

FGF2 are marked as F1, F2, and F3. For FGF2, a positive strand gene with a single annotated 

stop codon, an increment in the index (e.g. F2 to F3) indicates an increase in the 3’ UTR length. 

The F1 site is over 2 kb from the closest annotated CS, and demonstrates the ability of our 

analysis to detect potential novel CSs. F1 has a low frequency of usage in both normal and 
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tumor samples (typically less than 20%, Supplemental Table S4), and its frequency does not 

undergo any significant change (p > 0.01, Fisher's exact test) from normal to tumor. In contrast, 

F2 and F3 are frequently used. In four TCGA cohorts (LUAD, BRCA, LUSC, and PRAD), the 

frequency of F2 increases in tumor samples, while that of F3 decreases, both significantly (p = 

0.0004 and 0.001, respectively). Therefore, it indicates that FGF2 undergoes 3’ UTR shortening 

in the tumor tissues that are associated with these cancer types. 

CCNE1 (Fig. 3B) presents an example of 3’ UTR lengthening in the tumor tissues of six cancer 

cohorts (LUAD, BRCA, HNSC, KIRP, LIHC, and LUSC). It also has a single annotated stop 

codon, and its two shorter 3’ UTR isoforms, associated with CSs labeled C1 and C2, decrease 

in frequency in tumor samples, while a longer form associated with C3 has an increased 

frequency, thus indicates 3’UTR lengthening. 

In contrast to FGF2 and CCNE1, the RNF43 gene (Fig. 3C,D) has two annotated stop codons, 

and it shows both 3’ UTR shortening and lengthening trends, depending on the tissue of origin. 

RNF43 has four predicted CSs. Since it is a negative strand gene, for the three CSs (R1, R2, 

and R3) that share the same stop codon, an increment in the index (e.g. R2 to R3) indicates a 

decrease in the 3’ UTR length. Among them, R2 and R3 experience significant shifts in their 

frequencies from normal to tumor in both KIRC and UCEC. Intriguingly, these shifts occur in 

opposite directions in the two diseases, indicating 3’ UTR shortening in KIRC and lengthening in 

UCEC. As for R4, which is associated with a different stop codon, we also note a significant 

usage frequency shift in KIRC, indicating biological condition specific expression of 

corresponding alternative transcript isoforms. 
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Figure 4 Three representative genes showing complex tumor-specific CS usage patterns in 

different cancer types. (A,B) CDKN2A. (C) EZH2. (D) PTCH1. (A-D) The legend of Figure 3 
applies. In addition, when the 3’ UTR length change is too complex to be resolved into a 

shortening or lengthening trend, the corresponding text box is left uncolored. NMD-related 

transcript elements are colored in cyan, as are the corresponding arrows for predicted CSs. An 

orange arrow indicates that a predicted CS that undergoes significant usage frequency change 

is mapped to multiple stop codons, with its associated 3’ UTR length being ambiguous. 

Unlike these clear and simple cases of shortening or lengthening, most cases we observed 

show more complex APA regulations. The CDKN2A gene, like RNF43, also displays multiple 

disease-dependent frequency shifts. Of its six predicted CSs, three (C2, C3, and C6) display 

significant frequency changes in KIRC and HNSC (Fig. 4A,B). Both C2 and C3 decrease in 

frequency in the former cancer but increase in the latter, while C6 shows the opposite change. 

However, CDKN2A has seven annotated stop codons, many more than the genes described 

above, and some of its CSs exhibit one-to-many relationships to its stop codons. Specifically, 

C1, C2, and C3 (highlighted in orange) can be associated with multiple stop codons; thus, the 

frequencies of their associated 3’UTR lengths cannot be determined unambiguously. On the 

other hand, C4, C5, and C6 match 3’ UTRs that have no overlap; thus, comparing the length of 

their matched UTRs is not straightforward. Non-overlapping 3’ UTRs indicate transcript isoforms 

with different translated gene products, hence their frequency shifts in KIRC potentially relate to 

the preferential usage of these isoforms in normal and tumor kidney tissues. In addition to the 

above complexity, one of the stop codons (on the annotation matched to C3) is involved in 

nonsense mediated decay (NMD), which is a surveillance mechanism for removing prematurely 

transcribed mRNAs (Lykke-Andersen and Jensen 2015; Lindeboom et al. 2016). We observe 

that NMD transcripts tend to have longer 3’ UTRs compared to the protein coding transcripts (P 

= 6.5x10-16, Kolmogorov–Smirnov test) (Supplemental Fig. S7), but the meaning of such a 

comparison is not clear, as the former may not result in any translated polypeptide. The intricate 
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tumor-specific 3’ UTR cleavage pattern of CDKN2A in KIRC is also consistently identified in six 

other cancer types including COAD, KICH, KIRP, LIHC, PRAD and THCA. 

Much like CDKN2A in KIRC, the EZH2 gene (Fig. 4C) also displays a recurring and consistent 

tumor-specific cleavage pattern in seven cancer types (BRCA, KIRC, KIRP, LIHC, LUAD, 

PRAD, THCA). In addition, it illustrates another level of complexity, as its second stop codon 

(near E3) is shared by both protein coding and NMD transcripts. Thus, EZH2 presents a many-

to-many-to-many relationship among CSs, stop codons, and transcript types. 

Finally, we show the PTCH1 gene (Fig. 4D) as an example of 3’ UTR length change trend that 

is resolvable despite complex CS frequency shifts. During the resolution process (Methods), we 

ignored P5, P6, and P7 because they were each mapped to a separate stop codon, and we also 

ignored P2 since it was mapped to multiple stop codons and hence associated with an 

ambiguous 3’ UTR length. For the remaining CSs, P1 and P3 correspond to longer 3’ UTRs, 

and their usage frequencies decrease in tumors, while P4 is associated with a shorter 3’ UTR, 

and its usage frequency increases in tumors. Therefore, in BRCA, PTCH1 could be tentatively 

considered to display a 3’ UTR shortening trend.  

In total, we investigated the 3’ UTR length change trends of all 77 cases of tumor-specific 

cleavage patterns by conducting stop codon-level comparisons (Fig. 5 and Methods). We 

identified a comparable number of 3’ UTR shortening (n=16) and lengthening cases (n=16), with 

the remaining 45 cases labeled as complex trends. 
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Figure 5 3’ UTR length modulation trends for all 77 reported cases with tumor-specific CS 

usage patterns identified. The numbers in parentheses indicate the numbers of annotated stop 

codons and CSs per gene. For example, AKT2 (8, 9) means the gene has 8 annotated stop 

codons and 9 annotated CSs. 

CS profiles distinguish tissues and biological states 
Presence of CSs is conditional on the expression of the transcripts they originate from, which 

may be tissue and/or biological condition specific. We also explored the utility of CS profiles in 

distinguishing cancer cohorts and the disease states of samples. To do that, we encoded CS 

profiles of samples as binary vectors marking presence or absence of CSs, and visualized those 

vectors in a 2-dimensional space using t-Stochastic Neighbor Embedding (t-SNE) (Platzer 

2013). 

t-SNE is a nonlinear dimensionality reduction method that retains local structures in a dataset, 

ignoring global structures. This means, in a reduced space samples with similar CS profiles are 

expected to form clusters that are separated by nondeterministic inter-cluster distances.  
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Using t-SNE, we first visualized the CS profiles of 9,939 tumor samples from all 33 cancer 

types. Exploring our dataset in 2-dimensional embeddings, we observed that 17 out of 33 

cancer types were more co-localized (Supplemental Fig. S8), so we reapplied t-SNE on these 

17 cancer types (Fig. 6A). Overall, CS profiles distinguish tumor samples of different cancer 

types, including two from the same organ ¾ LGG and GBM, two brain cancers. In contrast, two 

cancer types from the digestive tract, ESCA and STAD, form two overlapping clusters, 

suggesting that they have similar CS profiles. 

We then applied t-SNE to normal and tumor samples from 14 cancer cohorts with at least 15 

normal samples. Figure 6B-E shows four cancer types with different levels of separation 

between their normal (blue) and tumor (red) samples, with the rest plotted in Supplemental 

Figure S9. For certain cancer types such as KIRC, LUAD, and BRCA (Fig. 6B-D), the normal 

samples co-localize, implying that their CS profiles have characteristic differences from those of 

tumor samples. In HNSC, however, such co-localization is less pronounced, suggesting that CS 

profiles are similar in these tumor and normal samples (Fig. 6E). 
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Figure 6 CS profiles distinguish cancer types and sample types. (A) t-SNE visualization of the 

CS profiles of 7,105 tumor samples from 17 cancer types. (B-E) t-SNE visualization of the CS 

profiles of normal (blue) and tumor samples (red) per cancer type for KIRC, LUAD, BRCA and 

HNSC. t-SNE coordinates are transformed into 2-dimensional histograms and shown in 

hexagon bins, with color intensity indicating the count in a bin. 
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Discussion 

We have profiled the CSs of 114 genes in 10,668 TCGA RNA-Seq samples using a targeted 

analysis pipeline based on KLEAT (Birol et al. 2015). By comparing the frequencies of predicted 

CSs between normal and tumor samples, we identified 77 cases of tumor-specific 3’ UTR 

cleavage patterns involving 33 genes across 13 cancer types. For 15 genes, the tumor-specific 

patterns are recurrent in multiple cancer types, consistent with a previous report on recurrence 

of tumor-specific APA events (Xia et al. 2014). However, for certain genes (e.g. RNF43, 

CDKN2A), their tumor-specific cleavage patterns, even when observed in multiple diseases, 

may manifest in a disease-dependent manner. Specifically, while the frequency of a CS 

increases in tumors in one cancer type, it may decrease in another. Such patterns imply 

recurrent and disease-specific oncogenic mechanisms in cancers of different tissues of origin. In 

contrast to a two-polyA-site model (Xia et al. 2014), 40% (31/77) of the cases reported here 

have more than two CSs that undergo significant frequency changes (p < 0.01, Fisher’s exact 

test). 

In general, we expect many more cases of differential 3’ UTR cleavage patterns between tumor 

and normal samples than what is reported here. Note that, in our study we enforced the co-

occurrence of both a significant increase and a significant decrease in sample frequency for at 

least two separate CSs within the same gene (Methods). We also limited the scope of our study 

to 114 genes. 

Although previous reports have emphasized the shortening of 3’ UTRs in cancer cells (Mayr and 

Bartel 2009; Xia et al. 2014), our analysis suggests that lengthening may be equally frequent. 

Lengthening of 3’ UTRs has also been reported in other APA studies, such as those on breast 
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(Fu et al. 2011) and colorectal (Morris et al. 2012) cancers, but its roles in cancer biology remain 

unclear. In principle, while shortening may enable escape from inhibition of gene expression, 

conceivably promoting unchecked growth, lengthening may potentiate repression of anti-

proliferative genes ¾ both having the potential to abet cancer progression. For certain genes 

(e.g. RNF43), 3’ UTR length changes could be disease-dependent, with shortening in one 

cancer, but lengthening in another. 

For many genes, even when differential 3’ UTR cleavage patterns between normal and tumor 

tissues are identified, it may be difficult to resolve them into a simplistic shortening or 

lengthening pattern at the isoform level, especially when a CS is associated with multiple stop 

codons. In the results reported here, 33/297 (11%) of the predicted CSs in 33 genes are 

mapped to more than one stop codon. In such cases, it is not possible to quantify the usage of 

corresponding 3’ UTRs based on CS predictions alone, other than providing an aggregate 

measure of all the 3’ UTRs cleaved at the same genomic coordinates. In general, genes with 

multiple stop codons are very common, and account for 28 out of 33 genes with tumor-specific 

cleavage patterns reported here, or about 68% of all human protein coding genes based on the 

Ensembl annotations used. Even when the CS-to-stop codon mappings are unambiguous, if 

multiple 3’ UTRs are associated with different stop codons, and have no or limited overlap, their 

interpretation within the old paradigm of length modifications of 3’ UTRs may be difficult, as is 

the case for the CDKN2A gene. In addition, about half (16/33) of the reported genes have stop 

codons related to NMD transcripts (Lykke-Andersen and Jensen 2015; Lindeboom et al. 2016), 

and in some genes (e.g. EZH2), a stop codon can be used in both protein coding and NMD 

transcripts.  

Taking advantage of TCGA RNA-Seq data, we demonstrated that retrospective analysis can 

add value to publicly available data from large cohort studies. Our results extend the current 

understanding of APA regulation in cancer, revealing a more complex pattern than simple 3’ 
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UTR shortening or lengthening. We also demonstrated that CS profiles of samples might have 

enough information to cluster samples with respect to their tissues of origin, and even 

differentiate certain cancer types from common tissue types. 

Methods 

Collection of RNA-Seq data and metadata 
We used a copy of the TCGA RNA-Seq data hosted by the Institute for Systems Biology-Cancer 

Genomics Cloud (ISB-CGC) pilot on the Google Cloud Storage, part of the Google Cloud 

Platform (GCP). Most of the metadata were extracted from a MANIFEST file from the CGHub 

(Wilks et al. 2014). In total, 10,668 samples were analyzed, with each sample identified by a 

unique analysis ID. All analysis IDs are listed in Supplemental Table S5. Sample types were 

generalized as ‘normal’ (solid tissue normal) and ‘tumor’ (which includes primary solid tumor, 

metastatic, recurrent solid tumor, additional - new primary). A more detailed description of the 

protocols for data collection is provided in the Supplemental Methods.  

Curation of genes for analysis 
Of the genes studied, 99 have been reported to be either an oncogene or a tumor suppressor 

(Kumar et al. 2015), six have been reported to favor transcripts with shorter 3’ UTRs in cancer 

(Mayr and Bartel 2009), and 10 were from in-house studies. DICER1 is in both of the first two 

sets, bringing the total to 114 genes. 

Design of the targeted CS prediction pipeline 
RNA-Seq reads were first filtered against the candidate genes using the biobloomcategorizer 

utility from BioBloomTools (BBT) (Chu et al. 2014). The resulting categorized reads were then 

assembled into contigs with Trans-ABySS (Robertson et al. 2010), and these contigs were in 
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turn aligned to the reference human genome with GMAP (Wu and Watanabe 2005). The raw 

reads were aligned to both the assembled contigs with BWA (Li and Durbin 2009), and the 

reference genome with GSNAP (Wu and Nacu 2010). Both contig-to-genome and read-to-contig 

alignment results were used for CS prediction by KLEAT (Birol et al. 2015), and the read-to-

genome alignments were used for both expression level quantification and assessment of 

KLEAT predictions. 

Implementation of the pipeline 
The pipeline was implemented in Python with the Ruffus framework (Goodstadt 2010). The 

software used include SAMtools-0.1.18 (Li et al. 2009), BioBloom tools-2.0.12 (Chu et al. 2014), 

Trans-ABySS-1.5.2 (Robertson et al. 2010) and ABySS-1.5.2 (Simpson et al. 2009), GMAP-

2014-12-28 (Wu and Watanabe 2005; Wu and Nacu 2010), and BWA-0.7.12 (Li and Durbin 

2009). The source code also includes a copy of the specific version of KLEAT.py used in this 

study. For its use on the GCP, a Docker image of the pipeline can be built from the Dockerfile 

included in the source code. 

Execution of the pipeline 

We executed the pipeline on the ISB-CGC powered by the GCP. For each RNA-Seq sample, a 

virtual machine (VM) instance with four vCPUs, 20 GB of memory, and a sample size-

dependent amount of persistent disk was used. For each instance, we requested a sufficient 

disk size for storing both input data and intermediate and final results, calculated as 30 x 

Size(sample) + 50 GB. The scaling factor of 30 is based on experience in pilot runs, and the 

extra 50 GB was reserved for storing reference data. Google Genomics Pipelines API 

(https://cloud.google.com/genomics/reference/rest/v1alpha2/pipelines) was used to orchestrate 

all VM instance tasks including creation, deletion, and data transfer, and it substantially reduced 

the administrative workload. 
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The reference data included an hg19 reference genome (Lander et al. 2001), the 

GMAP/GSNAP (Wu and Watanabe 2005; Wu and Nacu 2010) index of hg19, a prebuilt 

BioBloom filter (Chu et al. 2014) of all the candidate genes’ transcripts, and a specific version of 

the gene annotation used by KLEAT (Birol et al. 2015) (more details on annotations are 

available in Supplemental Methods). 

The BioBloom filter was built with the biobloommaker utility from BBT (Chu et al. 2014). As for 

the input to biobloommaker, all transcripts of all the candidate genes from the Ensembl 

annotation (Aken et al. 2016) were used. The annotated sequences were augmented by 300 bp 

flanking sequences on both ends of each transcript to collect RNA-Seq reads that were partially 

aligned to them. 

During the de novo assembly of transcripts for each sample, three k-mer sizes were used, 

depending on the corresponding read length: (22, 32, 42), (32, 52, 72), and (32, 62, 92) were 

used for samples with read lengths of 45-50, 75-76, and 100 bp, respectively. 

Annotation pre-processing 
The Ensembl annotation was downloaded from http://ftp.ensembl.org/pub/release-

75/gtf/homo_sapiens/Homo_sapiens.GRCh37.75.gtf.gz, and then pre-processed before being 

used. First, we extracted the annotated CSs of all protein coding and NMD transcripts that were 

CDS 3’ complete (without cds_end_NF tag, https://www.gencodegenes.org/gencode_tags.html) 

for all candidate genes. To calculate 3’ UTR lengths, we also extracted the mapping information 

between annotated CSs and stop codons from transcripts. A more detailed description of the 

extraction process can be found in Supplemental Methods. After extraction, we discarded 

transcript-level information, since a predicted CS is transcript agnostic, and removed redundant 

mapping relationships caused by multiple transcripts sharing the same CS and stop codon. 

Lastly, we clustered the annotated CSs as described in CS Clustering. 
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CS prediction and post-processing  
The CSs were predicted by KLEAT with all parameters set to default. We post-processed the 

KLEAT results before any CS usage analysis (Supplemental Fig. S2). Specifically, we used the 

following columns output by KLEAT: gene, transcript_strand, chromosome, cleavage_site, 

length_of_tail_in_contig, number_of_bridge_reads, and max_bridge_read_tail_length. 

In total, 67,544,140 CSs were predicted across 10,668 samples. First, we filtered out off-target 

CSs by only selecting those that were associated with the candidate genes, keeping 17% of the 

predictions. After initial filtering by genes, we reassigned each remaining CS to the closest 

clustered annotated CS (See Annotation pre-processing), and then calculated the signed 

distance between them. We also calculated the location of PAS hexamer motifs, if present, 

searching up to a 50 bp window upstream of a predicted CS. When multiple PAS hexamers 

existed in the window, the strongest one was picked (Beaudoing et al. 2000). Next, we applied 

another filter to select the most confident predictions. Specifically, a predicted CS must meet at 

least one of the following two criteria to be retained: 1) Its distance to the closest annotated CS 

was required to be 25 bp or less. The 25-bp threshold was chosen by considering the distance 

distribution shown in Supplemental Fig. S10, and taking a threshold at the plateau. This criterion 

was designed for selecting CSs that had already been annotated. 2) One of the two strongest 

PAS hexamers AATAAA and ATTAAA (Gruber et al. 2016a) were required to be within a 50 bp 

window, and at least one of the following conditions of polyadenylation evidence was satisfied: 

length_of_tail_in_contig ≥ 4, number_of_bridge_reads ≥ 2, or max_bridge_read_tail_length ≥ 4. 

The second criterion is an empirical one that is independent of annotation, and it is designed 

mainly for selecting potential novel CSs. We verified that AATAAA and ATTAAA were the two 

most frequent PAS hexamers associated with the predicted CSs both before and after the 

second filtering steps (Supplemental Fig. S4). After the two filtering steps, about 5% of the CSs 
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were retained and clustered as described in CS Clustering. The post-processing steps resulted 

in 2,136 unique predicted CSs in 114 target genes across all samples. 

CS clustering 
We used the single-linkage hierarchical clustering algorithm to combine CSs that were ≤ 20 bp 

apart, iterating when necessary for clusters to converge. After clustering, we selected the mode 

CS coordinate within each cluster as its representative location. If multiple modes existed, the 

median of the modes was used. Then, every CS was associated with one of the representative 

CSs, and multiple CSs associated with the same representative CS were merged within each 

sample. The clustering method was independently applied to both annotated and predicted 

CSs.  

The clustering process inevitably decreases the detection resolution, so our analysis is not able 

to distinguish CSs that were closer than the clustering cutoff (20 bp). However, the clustering 

results were insensitive to different cutoff values, albeit the number of clusters would vary 

(Supplemental Fig. S5). 

CS usage frequency calculation 
For a given CS in a gene, its usage frequency was calculated as the fraction of normal or tumor 

samples that were predicted to use it. For each sample, we required the gene under 

consideration to have at least one CS predicted; otherwise, its expression was considered 

insufficient, and the sample was excluded from the frequency calculation. 

Comparison of cleavage patterns between normal and tumor samples 
For every predicted CS of every gene in each cancer type, we calculated usage frequencies in 

normal and tumor samples, and then evaluated the significance of the frequency difference with 

a Fisher’s exact test. The input to the test included the number of normal and tumor samples 
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with and without a CS. The frequencies of multiple CSs within one gene collectively formed a 

cleavage pattern for that gene, and to report difference in patterns between normal and tumor, 

we required the co-occurrence of at least one significant increase (p < 0.01) in the frequency of 

one CS, and at least one significant decrease in that of another CS. Without this requirement, 

an increase or decrease in the CS frequency could simply be a result of gene up- or down-

regulation in the normal or tumor samples. For example, if a gene is down-regulated in tumor, 

the decreases in the usage frequencies of certain CSs was expected due to a lower probability 

of CS prediction by KLEAT (Supplemental Fig. S11). However, when the increase in the use of 

other CSs was required, it implied involvement of regulation mechanisms of APA events (Di 

Giammartino et al. 2011; Elkon et al. 2013; Tian and Manley 2013, 2016).  

In addition, to justify the comparison of CS usage frequencies between two groups of samples, 

we also verified that the RNA-seq data for normal and tumor samples in TCGA have 

comparable sequencing depths (Supplemental Fig. S12). For CS predictions, comparable 

sequencing depths serve to normalize data among samples, as different sequencing depths 

yield different CS prediction probabilities. 

Resolution of the 3’ UTR length change trends 
We first mapped a predicted CS to the closest annotated one. If it was >25 bp away, the 

predicted CS was considered potentially novel, and was ignored for length trend resolution. The 

25-bp cutoff was selected after trying a range of values (Supplemental Fig. S13). After mapping, 

we determined the associated stop codons for each CS. If a CS was associated with only a 

single stop codon, its corresponding 3’ UTR length was unambiguously calculated and used for 

trend resolution. All CSs mapped to multiple stop codons were ignored. A detailed description of 

the trend resolution approach is provided in Supplemental Methods. 
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t-SNE transformation 
A CS profile is encoded in a binary vector using the set of all representative CSs, with 1 

indicating a prediction and 0 meaning no prediction. First, high-dimensional CS profile data were 

reduced to 50 dimensions with truncated singular value decomposition (SVD), and then further 

reduced to 2 dimensions with t-SNE. Different settings of the t-SNE parameters perplexity and 

learning rate were used, depending on the sample size, as follows. When transforming all tumor 

samples from 33 or 17 cancer types, perplexity (PX) was set to 50, and learning rate (LR) was 

set to 1000. In general, for the sample sizes used, the performance of t-SNE was observed to 

be qualitatively robust to these parameters (Van Der Maaten and Hinton 2008). However, when 

transforming normal and tumor samples for a single cancer type, PX and LR were lowered to 

account for a much smaller sample size in the cohorts. For BRCA, which has the largest 

number of samples of all the cancer types, we used PX=40 and LR=500. For cohorts with the 

smallest number of samples above our cutoff of 15, KICH and UCEC, we used PX=15 and 25, 

and LR=30 and 100, respectively. For other cancer types, we used PX=40 and LR=300. When 

visualizing normal and tumor samples of the same cancer type, we removed the means from 

the two t-SNE dimensions to center them at the origin, and then transformed the coordinates 

into a 2-dimensional histogram with hexagon bins. 

Python libraries used 
In addition to the aforementioned Ruffus framework (Goodstadt 2010), we used several other 

Python libraries for scientific computing (Oliphant 2007) to facilitate our analysis. The t-SNE 

implementation of Scikit-learn-0.18 (Pedregosa et al. 2011) was used to transform CS profiles. 

The hierarchical clustering algorithm implemented in SciPy-0.18.1 (Jones et al. 2001; van der 

Walt et al. 2011) was used for CS clustering. Pandas-0.19.0 (Mckinney 2009) was used for 

tabular data transformation and analysis. Matplotlib-1.5.3 (Hunter 2007) was used for plotting. 
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Jupyter-1.0.0 notebook (Perez and Granger 2007) was used for tracking analysis steps and 

results.  

Data access 
The curation process for candidate genes and their transcript sequences for BioBloom filter 

generation is documented in detail at https://github.com/bcgsc/utrtargets. The source code of 

the implemented targeted CS prediction pipeline is available at 

https://github.com/bcgsc/tasrkleat. A copy of all the reference and metadata used is provided at 

http://bcgsc.ca/downloads/tasrkleat-static/. 
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