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Abstract

In vitro cell culture is routinely used to grow and supply a sufficiently large number of cells
for various types of cell biology experiments. Previous experimental studies report that cell
characteristics evolve as the passage number increases, and various cell lines can behave differently
at high passage numbers. To provide insight into the putative mechanisms that might give rise
to these differences, we perform in silico experiments using a random walk model to mimic the
in vitro cell culture process. Our results show that it is possible for the average proliferation
rate to either increase or decrease as the passaging process takes place, and this is due to
a competition between the initial heterogeneity and the degree to which passaging damages
the cells. We also simulate a suite of scratch assays with cells from near–homogeneous and
heterogeneous cell lines, at both high and low passage numbers. Although it is common in the
literature to report experimental results without disclosing the passage number, our results show
that we obtain significantly different closure rates when performing in silico scratch assays using
cells with different passage numbers. Therefore, we suggest that the passage number should
always be reported to ensure that the experiment is as reproducible as possible. Furthermore,
our modelling also suggests some avenues for further experimental examination that could be
used to validate or refine our simulation results.

Introduction

In vitro cell culture is routinely used to grow and supply cells for various types of cell biology
experiments [1]. These experiments are used to study a wide range of biological phenomena
including drug design, cancer spreading and tissue repair [9,20,23,42]. According to the American
Type Culture Collection (ATCC) protocols, to grow cells in traditional two–dimensional (2D)
in vitro cell culture, cells propagated in a growth medium are initially seeded as a monolayer
in a cell culture flask [3], as shown in Fig 1a. Cells are seeded in a monolayer with a density
typically varying from 10–20% of confluence [3]. Cells are then cultured in an incubator, in
an appropriate temperature and CO2 concentration, and grown until they reach a density of
80%–90% of confluence [3]. To continue growing the population, cells are lifted, often using
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trypsin, and spilt into smaller proportions. The smaller subpopulations are transferred into new
cell culture flasks to re-grow [3]. This process is referred to as passaging, with passage number
indicating the number of splits [3, 4]. Although passaging is a standard process in 2D cell
culture, the passage number of cells used in experiments is not always reported in experimental
protocols [2, 17,37–39,41].

It is known that passaging can affect cells in a number of ways, and therefore has the potential
to impact the reproducibility of in vitro experiments [41]. There are many ways in which
passaging can affect cells. For example, primary cells, which are directly isolated from living
tissues [16], undergo morphological changes and cumulative damage as the passage number
increases [6, 10, 18, 22, 24, 31, 32, 34]. As a result, the cell morphology, migration rate and
proliferation rate can become increasingly varied, which is thought to increase the heterogeneity
in cell lines [10, 18, 24, 32, 34]. Because a range of cell behaviours could depend on passage
number, the passaging process can be a source of variability that affects the reproducibility of
various in vitro experiments, such as 2D scratch assays [2, 4, 41].

Seemingly contradictory observations have been reported about the effects of passaging cell
lines [10, 18, 26, 32, 34]. For example, Hayflick reports that for human diploid cell lines, cells
at high passage numbers demonstrate increased generation time, gradual cessation of mitotic
activities, and accumulation of cellular debris [18]. This observation of decreased cell proliferation
rate is also supported by studies of other cell lines [10,32,34]. However, Lin and coworkers show
that the population of LNCaP cells at passage number 70 is over two times larger than that at
passage number 38 after five days [26]. It has also been stated that for some cell lines, changes
due to the passaging process occur at relatively low passage numbers, whereas for other cell
lines the changes occur at relatively high passage numbers [4]. Therefore, we are motivated
to undertake a mechanistic study to quantify how different variables relevant to the passaging
process might give rise to such seemingly contradictory observations and to explore how these
effects might impact the reproducibility of in vitro experiments.

Although problems associated with high passage numbers are widely acknowledged, the mech-
anism of passage–induced changes is not well understood [4, 10, 13, 18, 26, 29, 32, 34, 45]. For
example, standard experimental protocols suggest avoiding cells at high passage numbers,
whereas the definition of a ‘high passage number’ is rather vague [4, 29]. On the other hand,
the mechanism that causes the seemingly contradictory observations at high passage numbers
still remains unknown [10, 18, 26, 32, 34]. Computational models can be useful for exploring
mechanisms and trade-offs between various factors. Therefore, the problems with high passage
numbers invoke us to apply a computational model to investigate putative mechanisms that
could lead to the seemingly contradictory changes. As far as we are aware, this is the first time
that problems with passaging of cell lines are investigated using a computational approach of
this kind.

In this work, we describe a mathematical model that can be used to study the passaging process
in 2D in vitro cell culture [19, 43]. A key feature of our model is that we allow individual
cells within the population to take on a range of characteristics, such as variable proliferation
rates, and therefore it is natural to focus on using a discrete model for this purpose [8, 19].
In particular, we are interested in examining whether the apparently contradictory effects
of passaging reported in the literature can be recapitulated using a fairly straightforward
discrete model. After examining the trade-off between cell heterogeneity and passage–induced
damage, we then use the in silico model to examine how the passaging process might affect
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the reproducibility of scratch assays [20,25]. In this work we focus on the impact of passaging
on the cell proliferation rate, and apply a discrete model to explain how passaging can lead to
either increasing or decreasing proliferation rates, depending on the competing effects of natural
inheritance versus passaging–induced damage. In our model we impose three key assumptions:
(i) the passaging process does not affect the cells’ ability to migrate; (ii) initially the proliferation
rate of each cell is assigned randomly from a normal distribution; and (iii) when proliferating,
daughter cells inherit the same proliferation rate as the mother cell. Our approach is to focus on
two prototype cell populations. The first is near–homogeneous in the sense that the proliferation
rate of the cells is close to constant throughout the population initially. The second has a
distinctively heterogeneous distribution of proliferation rates. For each prototype population,
we systematically vary the amount of damage caused by passaging to investigate the impact of
the damage.

Discrete model

Model framework

We use a discrete random walk model to simulate the passaging process and we refer to individual
random walkers in the model as cells. All simulations are performed on a hexagonal lattice, with
the lattice spacing ∆ taken to be equal to the average cell diameter [19]. The model includes
crowding effects by ensuring that there is, at most, one cell per lattice site [36]. Each lattice
site, indexed (i, j) where i, j ∈ Z+, has position

(x, y) =

{(
(i− 1)∆,

√
3(j − 1)∆/2

)
if j is even,(

(i− 1/2)∆,
√

3(j − 1)j∆/2
)

if j is odd,

such that 1 ≤ i ≤ I and 1 ≤ j ≤ J [19]. In any single realisation of the model, the occupancy
of site (i, j) is denoted Ci,j, with Ci,j = 1 if the site is occupied, and Ci,j = 0 if vacant.

If there are N(t) cells at time t, then during the next time step of duration τ , N(t) cells are
selected independently at random, one at a time with replacement, and given the opportunity
to move [19, 36]. The randomly selected cell attempts to move, with probability Pm, to one
of the six nearest neighbour sites, with the target site chosen randomly. Motility events are
aborted if a cell attempts to move to an occupied site. Once N(t) potential motility events
are attempted, another N(t) cells are selected independently, at random, one at a time with
replacement, and given the opportunity to proliferate with probability Pp. The location of the
daughter cell is chosen, at random, from one of the six nearest neighbour lattice sites [19,36]. If
the selected lattice site is occupied, the potential proliferation event is aborted. In contrast, if
the selected site is vacant, a new daughter cell is placed on that site. After the N(t) potential
proliferation events have been attempted, N(t+ τ) is updated [19,36].

The discrete models in this study are coded in C++. And the C++ simulation code is supplied
in the Supporting Information.
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Simulation domain

The domain is a rectangle of dimensions 10 cm by 7.5 cm, which we use to represent the 75 cm2

cell culture flask in Fig 1a. This corresponds to a simulation domain in which I = 4168 and
J = 3610, with ∆ = 24 µm [20]. Therefore, the maximum number of cells in a 100% confluent
monolayer is approximately 15 million. To simplify our visualisation of the model output,
although we always perform simulations on the entire 10 cm by 7.5 cm simulation domain, we
visualise a smaller, 2 mm by 2 mm, subregion in the centre of the simulation domain, as shown
in Fig 1b. No flux boundary conditions along the boundaries of the simulation domain are
applied in all cases. For the remainder of this work, we visualise snapshots of the distribution of
cells in the smaller field of view, such as the results in Fig 1c–d.

Initial condition

Simulations are initiated by randomly populating 15% of lattice sites [3]. At each passage
number, the growth of cells in the culture is terminated when 85% confluence is reached. The
migration probability Pm of each cell is held constant. Motivated by experimental data of the
duration of the mitotic phase for individual cells [15], each cell is initially assigned a random
value of Pp, drawn from a normal distribution N (µp, σ) to mimic the stochasticity in proliferation
rate among the initial population. When a proliferation event takes place, we invoke the simplest
mechanism by assuming that both daughter cells inherit the proliferation rate of the mother cell.
For all simulations we set Pm = 0.35, µp = 0.004, ∆ = 24 µm and τ = 1/12 h so that we are
considering cell populations with a typical cell diameter, cell diffusivity (D ≈ 600 µm2/h) and
average proliferation rate (λ ≈ 0.05 /h) [19, 36]. We consider two prototype cell populations:
(i) a near–homogeneous cell population with a relatively small variance, σ = 1× 10−4; and (ii)
a heterogeneous cell population with a larger variance, σ = 1 × 10−3. We choose the values
of the standard deviation σ, so that the proliferation rate distribution is within a biologically
reasonable range, and the degree of heterogeneity in the near–homogeneous and heterogeneous
cell lines are distinguishable.

Passaging

In our simulations passaging takes place immediately after the population grows to 85%
confluence [3]. To split the populations we randomly select a number of cells that is equivalent
to cover 15% of lattice sites. These cells are randomly placed on an empty simulation domain
to mimic the splitting of cells in the passaging process. Note that Pm is constant for all cells
whereas we allow Pp to vary amongst the population and we also assume that the process of
passaging the cells involves some damage [32]. Considering that the passaging process involves
a combination of chemical (e.g. the usage of trypsin) and mechanical disturbances known to
disrupt normal cell behavior, it is reasonable to incorporate some kind of damage mechanism
into the passage simulations [3,6,10,18,31,32,34]. However, the exact cause and the form of the
passage–induced damage have not been established. Therefore any form of the passage–induced
damage which illustrates certain degrees of stochasticity could be a reasonable choice. In this
study, we consider two different degrees of passage–induced damage:
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Fig 1. Schematic illustration of the simulation domain. (a) Photograph of a 75 cm2

cell culture flask. (b) Schematic of the 10 cm × 7.5 cm simulation domain that represents the
75 cm2 flask. The orange squares in (a) and (b) indicate the 2 mm × 2 mm field of view. (c)
Snapshot of the field of view at 15% confluence. (d) Snapshot of the field of view at 85%
confluence.
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• Small amount of damage: Pp of each cell is decreased by ε, where ε ∼ N (2×10−5, 2×10−5);
and

• Large amount of damage: Pp of each cell is decreased by ε, where ε ∼ N (1×10−4, 1×10−4).

Each time the population of cells is split, the passage number increases by one. As previous
studies indicate that cell proliferation increases at high passage numbers [26], it is possible
to assume that the passage–induced damage could lead to the increase in proliferation rate.
However, since the aim of this study is to examine the trade-offs between the initial heterogeneity
in cell proliferation and the passage–induced damage, in both scenarios we only consider non–
negative passage–induced damage by changing any negative damage to zero. This assumption
allows us to limit the factors that can increase cell proliferation.

Results and discussion

Passaging cell lines without passage–induced damage

We first investigate how the initial degree of heterogeneity in proliferation rate changes as
the passage number increases. In this first set of results we do not consider any form of
passage–induced damage. We consider a suite of simulations from passage number 0 to 30
and present results for both the near–homogeneous cell line and the heterogeneous cell line.
Snapshots of the field of view at passage number 0 and passage number 30, for both prototype
cell populations, are shown in Fig 2a–d and Fig 3a–d, respectively. In each snapshot, different
colours of cells represent different ranges of the proliferation rate, with red indicating the
fastest–proliferating cells and blue showing the slowest–proliferating cells. At the end of passage
number 0 we observe a larger variation in cell proliferation rate in the heterogeneous cell line
than the near–homogeneous cell line, as we might expect. At the end of passage number 30 we
see that there is a dramatic change in the average proliferation rate of cells in the heterogeneous
cell line. This change is caused by the fact that cells with higher proliferation rates are more
likely to produce daughter cells that directly inherit the higher proliferation rate of the mother
cell. Therefore, we observe a greater proportion of faster–proliferating cells in the heterogeneous
cell line at high passage number. This leads to a larger average value of Pp and a greater
variation in Pp across the whole population of cells in the heterogeneous cells line, as shown in
Fig 2e–h and Fig 3e–h, respectively.

To summarise how the cell proliferation rate changes with passage number, we plot the evolution
of the proliferation rate data from the entire populations as boxplots [28] in Fig 4. The boxplots
show the median and quartiles of the distribution of Pp from the entire population as a function
of the passage number. Comparing results in Fig 4a and Fig 4d shows that the median Pp

increases much faster in the heterogeneous cell line than the near–homogeneous cell line. For
the near–homogeneous cell line the distribution of Pp appears to be approximately independent
of the passage number in this case. In contrast, the distribution of Pp for the heterogeneous cell
line is strongly dependent on the passage number. In particular, the median Pp increases, and
the distribution of Pp becomes increasingly negatively skewed as the passage number increases.
Overall, these results suggest that starting with the same average proliferate rate, the degree of
heterogeneity of the cell line alone is enough to lead to very different outcomes when the two

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 9, 2017. ; https://doi.org/10.1101/161265doi: bioRxiv preprint 

https://doi.org/10.1101/161265


7

cell lines are sufficiently passaged. Therefore, the initial heterogeneity of the cell line appears to
be important in terms of understanding how passaging affects properties of cell lines.

In this first set of results, we find that differences in the cell proliferation rate among the
cell population can lead to changes in the overall population behaviour at sufficiently high
passage numbers. We note that in both prototype cell populations, the average proliferation
rate increases with the passage number and this is consistent with some previous experimental
studies [26]. However, most experimental studies report a decrease in average proliferation rate
with increasing passage number [10,18,32,34]. This observation motivates us to include a second
mechanism in our discrete model, namely passage–induced damage.
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Fig 2. Snapshots of simulations for a near–homogeneous cell line. For each passage number, snapshots at the beginning (15%
confluence) and end (85% confluence) of the experiments are shown. Results in (a)–(d),(i)–(l) and (q)–(t) show snapshots of the field of
view at passage number 0 and 30, with ε = 0, ε ∼ N (2× 10−5, 2× 10−5) and ε ∼ N (1× 10−4, 1× 10−4), respectively. Results in
(e)–(h),(m)–(p) and (u)–(x) show distributions of Pp for the entire domain at passage number 0 and 30, with ε = 0,
ε ∼ N (2× 10−5, 2× 10−5) and ε ∼ N (1× 10−4, 1× 10−4), respectively. The distribution of Pp in each subfigure is obtained from one
single realisation. The colour bar indicates Pp for individual cells. P̄p and σp represent the mean and standard deviation of Pp. Each
simulation is initiated by randomly populating 15% of lattice sites, on a lattice of size I = 4168 and J = 3610, with
Pp ∼ N (4× 10−3, 1× 10−4) for each cell. All simulations correspond to ∆ = 24 µm, τ = 1/12 h, and Pm = 0.35.
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Fig 3. Snapshots of simulations for a heterogeneous cell line. For each passage number, snapshots at the beginning (15%
confluence) and end (85% confluence) of the experiments are shown. Results in (a)–(d),(i)–(l) and (q)–(t) show snapshots of the field of
view at passage number 0 and 30, with ε = 0, ε ∼ N (2× 10−5, 2× 10−5) and ε ∼ N (1× 10−4, 1× 10−4), respectively. Results in
(e)–(h),(m)–(p) and (u)–(x) show distributions of Pp for the entire domain at passage number 0 and 30, with ε = 0,
ε ∼ N (2× 10−5, 2× 10−5) and ε ∼ N (1× 10−4, 1× 10−4), respectively. The distribution of Pp in each subfigure is obtained from one
single realisation. The colour bar indicates Pp for individual cells. P̄p and σp represent the mean and standard deviation of Pp. Each
simulation is initiated by randomly populating 15% of lattice sites, on a lattice of size I = 4168 and J = 3610, with
Pp ∼ N (4× 10−3, 1× 10−3) for each cell. All simulations correspond to ∆ = 24 µm, τ = 1/12 h, and Pm = 0.35.
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(e) small amount of damage, ε ∼ N (2× 10−5, 2× 10−5); and (f) large amount of damage, ε ∼ N (1× 10−4, 1× 10−4). In each subfigure the
distribution of Pp at individual passage numbers is obtained from one single realisation. Each simulation is initiated by randomly
populating 15% of lattice sites on a lattice of size I = 4168 and J = 3610, with Pp ∼ N (4× 10−3, 1× 10−4) for the near–homogeneous cell
line and Pp ∼ N (4× 10−3, 1× 10−3) for the heterogeneous cell line. All simulations correspond to ∆ = 24 µm, τ = 1/12 h, and Pm = 0.35.
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Passaging cell lines with passage–induced damage

We now investigate the impact of including passage–induced damage, and we consider both small
and large amounts of damage scenarios. All other features of our simulations are maintained as
described in the section without passage–induced damage. Snapshots of simulations including
small and large amounts of damage, and boxplots showing the distribution of Pp data are shown
in Fig 2–4. Comparing results in Fig 2a-h and Fig 2i-p suggests that we observe very similar
outcomes when we include a small amount of damage in the simulations of the near–homogeneous
cell line. Similarly, results in Fig 3a-h and Fig 3i-p suggest that the small amount of damage
has a negligible impact on the passaging process for the heterogenous cell line. In contrast, with
the large amount of damage we see that the proliferation rate decreases by passage number 30
in the near–homogeneous cell line, as shown in Fig 2q–x, whereas results in Fig 3q–x show that
the proliferation rate increases by passage number 30, but the increase in proliferation rate is
not as pronounced as in the case where there is no damage in the heterogenous cell line.

Results in Fig 2–3 focus on snapshots of the population at passage numbers 0 and 30. Additional
results in Fig 4b–c and Fig 4e–f to show how the distribution of Pp evolves as a function of the
passage number. For the near–homogeneous cell line, the median Pp decreases monotonically
with the passage number for both small and large amounts of damage. In contrast, the median
Pp for the heterogeneous cell line behaves very differently as it increases until approximately
passage number 20, and then decreases with further passaging. These results, combined, provide
a simple explanation for why some previous studies have reported that the proliferation rate can
increase with passage number, as in the case of Fig 4d–e, whereas other studies suggest that
the proliferation rate can decrease with passage number, as in the case of Fig 4c. In fact, our
results suggest that it is possible to have a situation where the proliferation rate both increases
and decreases with passage number, as in the case of Fig 4f, and we observe different trends
depending on the passage number. These differences arise in our model due to a trade-off
between the initial heterogeneity of the cell line and the amount of damage sustained in the
passaging process.

Scratch assay with passaged cells

Having demonstrated that the interplay between cell heterogeneity and passage–induced damage
can lead to complicated trends in the relationship between the proliferation rate and passage
number, it is still unclear how these kinds of differences can affect how we interpret in vitro
experiments. To explore this issue we use cells from a range of passage conditions to mimic
a scratch assay [25]. For this purpose we focus on the geometry associated with experimental
images obtained from an IncuCyte ZOOMTM scratch assay [11, 14, 20, 33, 44], as shown in Fig 5.
The images, of dimension 1400 µm × 1900 µm, show a fixed field of view that is much smaller
than the spatial extent of the cells in the scratch assay [19, 21]. To model this situation we
apply zero net flux boundary conditions along all boundaries of the lattice. We use a lattice of
size 80× 68 to accommodate a typical population of cells with ∆ = 24 µm. To initialise the
scratch assay, we randomly populate all lattice sites with an equal probability of 30% [20]. To
simulate the scratch, we remove all cells from a vertical strip of width approximately 550 µm,
and we then observe the rate at which the populations spread into the vacant area. All cells
have the same constant value of Pm = 0.35, and we assign values of Pp by sampling from the
various histograms in Fig 2 and 3. This means that we are effectively simulating a scratch assay
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(a) (b) (c)

t = 0h t = 24h t = 48h

Fig 5. Experimental images of IncuCyte ZOOMTM scratch assay [20,21]. The
images in (a)–(c) show the closure of the initially scratched region which is highlighted by the
dashed orange lines at t = 0. The red scale bar corresponds to 300 µm.

using cells from different cell lines, with different amounts of passage-induced damage, and from
different passage numbers according to our in silico results of cell culture growth in the previous
section.

Snapshots from the discrete model, showing the progression of the scratch assays, are shown
in Fig 6–7. In general we see that, regardless of the initial cell population, all of the scratch
assays lead to successful closure by approximately 48-72 h, which is consistent with standard
experimental observations [14, 20]. However, close examination of the results reveals some
differences. In particular, visual inspection of the snapshots suggests that those cell populations
with higher initial proliferation rate lead to larger numbers of cells at later times, and hence
more rapid closure of the initially–vacant space. These trends are subtle, but are most obvious
in Fig 7 where the population corresponds to cells taken from passage number 30, with no
damage, leading to more effective re-colonisation of the initially–vacant space than cells from
passage number 0. Since these differences are subtle it may be difficult to detect them when
visually comparing results from scratch assays. Therefore, we will now quantify the spatial and
temporal distribution of cells in Fig 6–7 to provide more information.

Since the initial condition is uniform in the vertical direction [19,36], we average the population
density in Fig 6–7 along each vertical column of lattice sites to obtain

〈Ci〉 =
1

J

J∑
j=1

Ci,j.

This quantity is further averaged by considering 100 identically prepared simulations of the
discrete model to reduce fluctuations [19]. This procedure allows us to plot the time evolution of
the average cell density as a function of the horizontal coordinate, as shown in Fig 8 [19]. Results
in Fig 8a–b suggest that the evolution of the cell density profile is practically indistinguishable
when we consider cells from the near–homogeneous cell line that is passaged without damage, as
we might expect from the results in Fig 4a. In contrast, comparing results in Fig 8a with results
in Fig 8c shows that we observe very different results when damage is included in the passaging
process for the near–homogeneous cell line. When we consider the results in Fig 8d–f, for the
heterogeneous cell line, we see that the evolution of the cell density profiles is very different for
all three cases considered.
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Fig 6. Snapshots of a suite of scratch assays performed using a near–homogeneous cell line. In each column the
distributions of cells at time t = 0, 24, 48, 72 h are shown. Each simulation is initiated by randomly populating a lattice of size 80 × 68, so
that each site is occupied with probability 30%. A scratch of 23 lattice sites wide is made at t = 0 h. All simulations correspond to
∆ = 24 µm, τ = 1/12 h, and Pm = 0.35. In each row the initial Pp of individual cells is assigned by randomly selecting from the in silico
data in Fig 2f, h and x, respectively.
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Fig 7. Snapshots of a suite of scratch assays performed using a heterogeneous cell line. In each column the distributions of
cells at time t = 0, 24, 48, 72 h are shown. Each simulation is initiated by randomly populating a lattice of size 80 × 68, so that each site
is occupied with probability 30%. A scratch of 23 lattice sites wide is made at t = 0 h. All simulations correspond to ∆ = 24 µm,
τ = 1/12 h, and Pm = 0.35. In each row the initial Pp of individual cells is assigned by randomly selecting from the in silico data in Fig
3f, h and x, respectively.
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Fig 8. Averaged simulation data showing cell density profiles from the scratch assays. (a)–(c): Cell density profiles for a
near–homogeneous cell line. (d)–(f): Cell density profiles for a heterogeneous cell line. In each subfigure cell density profiles are given at
t = 0, 24, 48, 72 h, and the direction of increasing t is shown with the arrows. All simulation results are averaged across 100 identically
prepared realisations of the discrete model, with ∆ = 24 µm, τ = 1/12 h, and Pm = 0.35, on a lattice of size 80 × 68. In each subfigure
the initial Pp of individual cells is assigned by randomly selecting from the corresponding in silico data in Fig 2f, h, x, and Fig 3f, h, and
x, respectively.
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Conclusion

Passaging of cell lines is an essential processes of growing cells in cell culture [3, 4]. The
passaging process involves both chemical and mechanical disturbances which accumulatively
change cell characteristics. Problems associated with high passage numbers, such as the
change of cell proliferation, are widely acknowledged. However, the mechanisms are not well
understood [10,13,18,26,29,32,34,45]. Therefore, the aim of this work is to use a computational
approach to provide insight into the putative mechanisms that could possibly lead to the
problems.

In this work, we apply a lattice–based discrete model to investigate and quantify the impact
of passaging cell lines. Although there are many properties of cells that are affected by the
passaging process [6, 10,13,18,31,32,34,45], we choose to focus on how passaging affects the
cell proliferation rate. In our model, when a cell proliferates, the daughter cells directly inherit
the same proliferation rate as the mother cell. Furthermore, we also assume that during the
passaging process, the cell proliferation rate is decreased by some passage–induced damage. For
all results presented, we investigate the role of cell heterogeneity by comparing results where we
begin the passaging process with a hear-homogeneous population of cells where Pp is almost
constant, with a heterogeneous population of cells where Pp varies significantly among the
population.

In the literature, previous experimental studies have reported apparently contradictory results
where some studies suggest that the average proliferation rate of cells can increase at large
passage number [26], whereas other studies suggest that the average proliferation rate of cells can
decrease with passage number [10,18,32,34]. We find that by varying the competition between
passage-induced damage and cell heterogeneity, our relatively straightforward simulation model
can predict each of these outcomes.

To study how passage number can affect in vitro experiments, we simulate a suite of scratch
assays using various populations of cells that are harvested from our in silico passaging process.
Our simulation results show that the passage number can lead to subtle changes in the evolution
of the scratch assay and these changes might be very difficult to detect visually. We provide
additional information about how the distribution of cells in a scratch assay might be influenced
by passage number by performing a large number of realisations and examining the average cell
density profiles. These average cell density profiles make it obvious that the passage number
could affect the rate of scratch closure. This observation, together with the fact that cell passage
number is often unreported in the experimental literature [2, 41], could explain why scratch
assays are notoriously difficult to reproduce [12]. In addition, the results of cell culture growth
and scratch assays indicate that even at the same passage number, the initial heterogeneity in
cell proliferation can give rise to very differently behaving cell populations. Therefore, separating
cell population without reporting the proliferative capacity can also affect the reproducibility
of in vitro experiments. However, the proliferative capacity of cell lines can be difficult to
measure experimentally, as most of the previous experiments only report the cell population
evolution [18,26], or the duration of the cell cycle [15].

There are several implications of this study that could be of interest to the experimental
community. First, we suggest that the passage number of cell lines should always be reported.
Second, there is a need for more experimental evidence about the impact of passaging on
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proliferation rates of various cell lines. For example, careful measurements of proliferation
rates over a sequence of passage numbers would provide more insight into the variability of key
cell properties in cell culture. This type of quantitative information would be invaluable for
understanding reproducibility of standard in vitro experiments. Third, we acknowledge that
our choices of the standard deviation, σ, to define the spread of the distribution of proliferation
rates in the near–homogeneous and heterogeneous cell lines is rather theoretical. Recently,
Haass et al. have devised new experimental methods that can be used to measure the durations
of different phases in cell cycle for a range of melanoma cell lines [15]. This data could be
used used to estimate the properties of the distribution of cell proliferation rates, such as the
mean and standard deviation of the distribution of proliferation rates. Therefore, we suggest
that similar experiments could be performed to generate proliferation rate distribution over
various passage numbers for a range of different cell lines of interest. This data could then be
directly integrated within our in silico models to examine the interplay between the degree of
heterogeneity and passage–induced damage.

There are also several implications of this study that are of interest to the applied mathematics
and mathematical biology communities. First, here we focus on the case where there is
heterogeneity in the rate at which individual cells proliferate in the population but, we treat the
motility rate as a constant. This is because most previous experimental studies have reported
differences in the rate of proliferation as a function of passage number rather than differences
in the rate of migration [18, 26, 34]. However, heterogeneity in cell migration rate can also
affect the reproducibility of in vitro experiments [32], especially scratch assays in which cell
migration plays a key role in wound closure [20]. An interesting extension of our present study
would involve dealing with both variability in the motility rate and the proliferation rate [30].
Secondly, in our work we make the most straightforward assumption that daughter cells inherit
Pp directly from the mother cell. It might be more plausible to introduce some stochasticity
in the inheritance process, and it might also be plausible to incorporate some kind of ageing
process where the proliferation depends on the age structure of the population [5, 32]. We
have chosen not to include these additional details as we wish to present a simpler model that
is capable of illustrating a proof–of–principle concept rather than capturing every possible
feature of the underlying biology. Finally, another extension of this work would be to consider
the derivation of an accurate mean–field approximation that could be used to describe the
evolution of the cell density profiles in Fig 7. This is a challenging task because all previous
derivations of such mean–field partial differential equations involve populations of cells with
constant rates [7, 19,27,35,36,40], whereas we are dealing with a more realistic heterogeneous
population of cells.
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