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Abstract 

Mitochondria are essential cellular organelles that play critical roles in cancer 

development. Through International Cancer Genome Consortium, we performed a 

multidimensional characterization of mitochondrial genomes using the whole-genome 

sequencing data of ~2,700 patients across 37 cancer types and related RNA-sequencing 

data. Our analysis presents the most definitive mutational landscape of mitochondrial 

genomes including a novel hypermutated case. We observe similar mutational signatures 

across cancer types, suggesting powerful endogenous mutational processes in 

mitochondria. Truncating mutations are remarkably enriched in kidney, colorectal and 

thyroid cancers and associated with the activation of critical signaling pathways. We find 

frequent somatic nuclear transfers of mitochondrial DNA (especially in skin and lung 

cancers), some of which disrupt therapeutic target genes (e.g., ERBB2). The mitochondrial 

DNA copy number shows great variations within and across cancers and correlates with 

clinical variables. Co-expression analysis highlights the function of mitochondrial genes in 

oxidative phosphorylation, DNA repair, and cell cycle; and reveals their connections with 

clinically actionable genes. Our study, including an open-access data portal, lays a 

foundation for understanding the interplays between the cancer mitochondrial and nuclear 

genomes and translating mitochondrial biology into clinical applications. 
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Mitochondria are crucial cellular organelles in eukaryotes, and there can be several hundred 

mitochondria in a single human cell1. Known as “the powerhouse of the cell”, mitochondria 

play essential roles in generating most of the cell’s energy through oxidative 

phosphorylation2. Despite its small size (16.5 kb), the circular mitochondrial genome 

includes 13 protein-coding genes that are equipped with all the elements necessary for their 

own protein synthesis3. The proteins encoded by mitochondrial DNA (mtDNA) genes work 

with other nuclear genes to form the respiratory chain complexes that are the main energy 

production system in cells. The involvement of mitochondria in carcinogenesis has long 

been suspected4,5 because altered energy metabolism is a common feature of cancer6. 

Furthermore, mitochondria play important roles in other tasks, such as signaling, cellular 

differentiation, apoptosis, maintaining control of the cell cycle and cell growth7, all of 

which are intrinsically linked to tumorigenesis.  

 

Several recent studies have performed the molecular characterization of mitochondria in 

cancer using next-generation sequencing data8-12, but these studies have usually described 

one specific dimension of the mitochondrial genome (e.g., somatic mutations) based on 

relatively small sample cohorts. Thus, a comprehensive, multidimensional molecular 

portrait of mitochondria across a broad range of cancer types has not been achieved. 

Furthermore, previous studies have focused on the patterns of mitochondrial alterations 

alone, without fully exploring the interplay between the mitochondrial genome and the 

nuclear genome, as well as the biomedical significance of mitochondrial alterations.  

 

The International Cancer Genome Consortium (ICGC) project has deeply sequenced 

thousands of whole genomes from many cancer types, creating a tremendous resource for 

characterizing cancer mitochondrial genomes at an unprecedented level13. Meanwhile, The 

Cancer Genome Atlas (TCGA) project has generated RNA-seq data from a large number 

of patient samples, which allow assessing the transcriptional activities of mitochondrial 

genes14. Combining these two large-scale datasets, we first characterized the landscape of 

mitochondrial somatic mutations, nuclear transfers and copy numbers, and then examined 

the expression profiles of mitochondrial genes and their connections with clinically 
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relevant nuclear genes. Finally, we developed an open-access data portal to facilitate the 

community-based investigation of these mitochondrial molecular data.  

 

Results 

The landscape of somatic mutations in cancer mitochondrial genomes 

To characterize somatic mutations in mitochondrial genomes across cancer types, we 

extracted the mtDNA mapped reads of 2,658 cancer and matched normal sample pairs from 

the ICGC whole-genome sequencing (WGS) data. The samples we surveyed cover 21 

cancer tissues and 37 specific cancer types (Supplementary Table 1). On average, the 

sequence depth for the mitochondrial genome was 9,959×, which was much higher than 

those obtained from the whole-exome sequencing data, allowing for confident detection of 

somatic mutations at a very low variant allele frequency (VAF; heteroplasmic) level 

(VAF>1% in this study; Supplementary Fig. 1). By applying a well-designed 

computational pipeline that carefully considered various potentially confounding factors 

(e.g., sample cross-contamination, mis-mapping of reads from nuclear mtDNA-like 

sequence15, and artifactual mutations caused by oxidative DNA damage during library 

preparation16), we identified a total of 7,611 substitutions and 930 small indels in 2,536 

cancer samples (122 samples were excluded in the mutation analysis for the issues 

mentioned above; Supplementary Fig. 2, Online Methods). The somatic alterations 

called by our pipeline are highly reliable, as confirmed by a) comparison to a long-range 

PCR-based benchmark dataset (Supplementary Table 2) and b) the expected 

mitochondria-specific mutational signatures displayed by the low-allele-frequency variants 

(Supplementary Fig. 3). Across all the cancer samples, we observed several mutational 

hotspots in the regulatory D-loop region and the ND4 gene (Fig. 1a). As for the gene 

mutation frequency, ND5 was the most frequently mutated gene in most cancer types, while 

ND4 was the one in prostate and lung cancers, and COX1 in breast, cervical and bladder 

cancers (Fig. 1b). We identified that cancer type and gene identity were the most important 

factors affecting the mutation status of the 13 coding genes (log-linear model, p [cancer 

type] < 2.210-16, p [gene] < 2.210-16 ) but the effect of their interaction was not significant 

(p [cancer type × gene] = 0.12). We also checked the expression of mtDNA somatic 

mutations using related RNA-seq data. Generally, VAFs of mtDNA mutations at the RNA 
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level were consistent with those at the DNA level. However, a fraction of tRNA mutations 

showed significantly higher VAFs at the RNA level, consistent with a previous report17 

(Supplementary Fig. 4).  

 

The mutational spectrum in the nuclear genomes shows highly distinct cancer-specific 

patterns18. For example, the mutational spectrum of lung cancers is dominated by C→A 

mutations associated with exposure to the polycyclic aromatic hydrocarbons in tobacco 

smoke19; while melanoma shows a distinct pattern of frequent C→T mutations at adjacent 

pyrimidines that is caused by the mis-repair of ultraviolet radiation-induced intrastrand 

crosslinks20. In contrast, although the mutation rate varied largely by cancer type, the 

mutation signatures in the mitochondrial genomes were very similar, with C→T (58.3%) 

and T→C (34.2%) substitutions being the most and second most frequent mutation types 

across all cancer types (Fig. 1c, d). Consistent with a previous report10, we observed 

extreme replicational DNA strand bias, i.e., C→T substitutions occurring mostly on the 

mtDNA heavy (H) strand and T→C substitutions on the mtDNA light (L) strand (Fig. 1d) 

despite the relative depletion of cytosines and thymines on the mtDNA H and the L strand, 

respectively. Indeed, the fraction of C→A mutations (the dominant mutation type by 

tobacco smoking) in the mitochondrial genomes of lung cancer and the fraction of C→T 

mutations at dipyrimidine sites (the dominant mutation type by ultraviolet light) in 

melanoma were very similar to those in other cancers (Fig. 1e), suggesting that tobacco 

smoking and ultraviolet radiation are not the dominant causes of mtDNA mutations even 

in these two cancer types. The proportion of G→T mutations, which is the major mutation 

type induced by reactive oxygen species21, was very low (3.2%), suggesting that the impact 

of oxidative stress on mtDNA mutations is minimal contrary to the conventional wisdom. 

These observations indicate that the mutational processes in the mitochondrial genome are 

independent from those in the nuclear genome and that there is a strong unique endogenous 

mutational process operating in mitochondria.  

 

On average, each sample had ~3 somatic substitution mutations in the mitochondrial 

genome (Supplementary Fig. 5a). Interestingly, some samples contained extremely large 

numbers of mtDNA mutations. The most striking case was a breast cancer sample 
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harboring 33 mutations, 29 of which were localized in a 2kb region (Fig. 2a). The vast 

majority of these mutations were confirmed in the independent whole-exome sequencing 

data from the same patient (Supplementary Fig. 5b, c). These localized mutations showed 

highly similar VAFs (~7%), were mostly T→C substitutions (Fig. 2b) and were present on 

the same mitochondrial genome copies (co-clonal) when any pair of mutations were close 

enough to be phased by Illumina sequencing reads (i.e., < 500 bp). These suggest that all 

these mutations were acquired simultaneously by a single mutation crisis event (Fig. 2c), 

rather than by gradual accumulation of mutations over time. These features are quite 

similar to Kataegis, a pattern of localized hypermutation in nuclear genomes22. These 

mutations were enriched in the vicinity of mtDNA L-strand replication origin (Fig. 2c), 

suggesting that the event is coupled with the initiation of mtDNA L-strand replication. 

 

Excessive truncating mitochondrial mutations in kidney, colorectal and thyroid 

cancers 

To investigate the mutational patterns of mtDNA genes, we examined the dN/dS ratio10,23, 

a common measure of selective pressure. We found that dN/dS was close to 1 for missense 

mutations at different VAFs across cancer types, suggesting that overall selective pressure 

on mtDNA genes is nearly neutral (Supplementary Fig. 6). We next focused on truncating 

mutations and examined their heteroplasmic frequency distribution since they would lead 

to loss-of-function of individual mitochondrial genes. The frequency was remarkably low 

in most cancer types, suggesting the prevalence of negative selection; whereas kidney, 

colorectal and thyroid cancers showed substantially larger proportions of high-allele-

frequency truncating mutations, suggesting the presence of positive selection in these 

cancer types (F test, p < 2.2×10-16, Fig. 3a). The enrichment of higher allele-frequency 

(i.e., >60% VAF) truncating mutations in these cancers, especially in kidney chromophobe 

and kidney papillary, was very striking, suggesting that loss of normal mitochondrial 

function is an important step in cellular transformation24 (Fig. 3b, Supplementary Fig. 7). 

Interestingly, we did not observe such a high frequency of mtDNA truncating mutations in 

the samples of kidney clear cell, where inactivation of genes controlling cellular oxygen 

sensing (i.e. VHL) are observed in ~60% of cases25. 
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We then examined the truncating mutations in ND5. This mtDNA gene showed the highest 

mutation rate across cancer types, and in particular, it significantly enriched truncating 

mutations in kidney chromophobe (chi-squared test, p < 6×10-3). Interestingly, we observed 

distinct distribution patterns of truncating mutations in different tumor contexts: more 

enriched at N-terminal for kidney papillary but more dispersed for kidney chromophobe 

and colorectal cancer (Fisher exact test, p = 0.05, Fig. 3c). Integrating with the mutation 

data of nuclear genes, we found that the high-allele-frequency truncating mutations in the 

two kidney cancers were mutually exclusive to the mutations of known cancer genes 

(Fisher exact test, p = 0.01, Fig. 3d). Moreover, gene set enrichment analysis (GSEA)26 

showed that up-regulated genes in cancer samples with truncating mutations were 

significantly enriched in critical pathways such as oxidative phosphorylation, mTOR 

signaling, TNFα signaling, protein secretion, suggesting activation of these pathways (false 

discovery rate [FDR] < 0.05, Online Methods, Fig. 3e). These results suggest functional 

roles of mitochondrial truncating mutations in the initiation and/or development of kidney, 

colorectal and thyroid cancers. 

 

Somatic transfer of mitochondrial DNA into the nuclear genome 

Recently, somatic transfers of mtDNA into the nuclear genome have been reported11, 

mostly in breast cancer. In order to understand the general pattern of somatic mtDNA 

nuclear transfers (SMNTs) in human cancer, we applied the same bioinformatic pipeline 

to the 2,658 cancer genomes. In total, we found 55 positive cases (2.1% overall positive 

rate) (Online Methods). However, the frequency of SMNT varied according to the cancer 

tissue type (Fisher’s exact test, p < 1×10-5, Fig. 4a). In particular, samples from lung, skin, 

breast, and uterine cancers showed frequencies higher than 5%. Among lung cancers, lung 

squamous showed 14.6% positive rate (7/48), a significantly higher rate than the average 

(Fisher’s exact test, p < 0.001). Despite the overall prevalence of 2%, we did not find any 

positive cases from >600 samples of blood, kidney, esophagogastric, liver, prostate and 

colorectal cancers. This tissue-specific pattern suggests that the processing of mtDNA in 

cells, from mitochondria to integration into nuclear genomes, depends on specific cancer 

contexts. We further examined the correlations of SMNT with structural variations in the 

nuclear genome. Intriguingly, across cancer types, the samples with SMNT showed a much 
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higher number of global and local structural variations in the nuclear genome than those 

without (p = 1×10-4; Fig. 4b), and this pattern was particularly obvious in breast cancer (p 

= 5.4×10-4). Further, this pattern was also consistent across different types of structural 

variations (Supplementary Fig. 8)  Indeed, the distance from SMNT breakpoints to the 

nearest structural variation breakpoints was significantly shorter than random expectation, 

especially for inversions and translocations, but not for deletions and tandem duplications 

(Fig. 4c). These results suggest that the integration of mtDNA segment into nuclear DNA 

is often mechanistically combined with some specific mutational processes of structural 

variations. 

 

Despite the overall low SMNT frequency (~2%), some cancer samples showed multiple 

independent SMNT events (Fig. 4d, Supplementary Fig. 9). For example, a bladder 

cancer genome included three small mtDNA segments (all < 500 bp, Fig. 4d); and a breast 

cancer genome contained two independently transferred mtDNAs, with one transferred 

mtDNA being almost the entire mtDNA genome (Supplementary Fig. 9a). We observed 

complex rearrangements even in the mtDNA segments somatically transferred to the 

nucleus (Supplementary Fig. 9b), implying extreme genome instability during the SMNT 

process. Furthermore, SMNTs in 35 cases showed mtDNA insertion in the middle of genes 

(n = 42), mostly in introns (n = 37) but also in protein-coding regions (n = 3) and in 

untranslated-regions (n = 2) (Supplementary Table 3). Among these, open reading frames 

of at least 23 genes (23/42 = 55%), including cancer genes such as ERBB2, FOLH1 and 

ULK2, were predicted to be altered by these SMNTs and their combined SV events in the 

vicinity (Supplementary Fig. 10). Of particular interest, one SMNT was integrated into 

the ERBB2 gene in a HER2-positive breast cancer genome (Fig. 4e), combined with frame-

shifted duplication events of exons 10–23. This example suggests that some SMNTs 

influence functionally and clinically important chromosomal rearrangements cancer cells. 

 

Mitochondrial copy number alterations across cancer types 

Although previous studies have examined mtDNA copy numbers in individual cancer 

types27-29 or from a collection of whole-exome sequencing data12, we performed a 

systematic analysis of mtDNA copy numbers over the largest sample cohort with WGS 
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data so far. The analyses of mtDNA copy numbers are usually based on the ratio of the 

coverage depth of mtDNA over that of nuclear DNA. However, since (a) cancer samples 

consist of both normal and cancer cells (i.e., tumor purity < 1) and (b) cancer nuclear 

genomes have frequently gone through somatic copy number alterations30 (i.e., ploidy ≠ 2), 

the simple estimation of mtDNA copy number without accounting for these factors could 

be biased. Therefore, we incorporated tumor purity and ploidy data in our estimation of 

mtDNA copy numbers (Online Methods). Compared with the simple estimation, our 

method can effectively correct for the bias introduced by the low purity and high ploidy of 

cancer samples12 (Supplementary Fig. 11).  

 

Based on the 2,157 cancer samples that passed the purity filter (Online Methods), we 

observed a great variation in mtDNA copy numbers among and within cancer tissues:  

mtDNAs were most abundant in samples of ovarian cancer (median, 644 copies per cell) 

and least abundant in myeloid cancer (median, 90 copies per cell) (Fig. 5a). Furthermore, 

the cancer types that were derived from the same tissue frequently showed distinct mtDNA 

copy number distributions (Fig. 5b, Supplementary Fig. 12). For example, the mtDNA 

copy numbers of kidney chromophobe were significantly higher than those of kidney clear 

cell and kidney papillary (ANOVA, p < 7.8×10-6). This may be interlinked with the general 

inadequacy of mitochondrial quality control and resultant increase of steady-state mtDNA 

copy number, as seen in renal oncocytoma42. Indeed, we found that the mtDNA copy 

number was significantly higher in the samples with high-allele-frequency truncating 

mutations (ANOVA, p < 1.7×10-4, Fig. 5c), suggesting that the dosage effect of mtDNAs 

was selected to compensate for the deleterious effect of truncating mutations. For the 

cancer samples with the WGS data from matched normal tissues, we observed increased 

mtDNA copy numbers in cancer samples in patients with chronic lymphocytic leukemia, 

lung squamous and pancreatic adenocarcinoma, but decreased copy numbers in cancer 

samples in patients with kidney clear cell, liver hepatocellular carcinoma and 

myeloproliferative neoplasm (Fig. 5d). The distinct pattern in different cancer types may 

be due to cancer-specific oncogenic stimulation, metabolic activity and mitochondrial 

malfunctions. For example, a recent study12 suggests that significantly decreased mtDNA 

copy number in kidney clear cell may be due to down-regulation of PGC-1α, a central 
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regulator of mitochondrial biogenesis by hyperactivated HIF-1α, which is most frequently 

mutated and activated in this cancer type31.  

 

To assess the biomedical significance of mtDNA copy numbers, we examined their 

correlations with key clinical variables. We found significant positive correlations between 

the mtDNA copy number and the patient’s age in prostate (Spearman rank rho = 0.31, p < 

1.7×10-4, Fig. 5e), colorectal and skin cancers (Supplementary Fig. 13). In contrast, we 

observed negative correlations of normal blood mtDNA copy number with patient age in 

most cases (Supplementary Fig. 14). Moreover, we observed the correlations between 

mtDNA copy number and tumor stage in multiple cancer types (Fig. 5f, Supplementary 

Fig. 15).  

 

The co-expression network analysis of mitochondrial genes   

We quantified the expression levels of the 13 mtDNA genes using RNA-seq data profiled 

from 4,689 TCGA tumor samples of 13 cancer types (Supplementary Table 4). The 

correlation between the expression levels of the mtRNA genes and mtDNA copy number 

varied by cancer types (Supplementary Fig. 16). Among cancer types, the mtDNA genes 

were highly expressed in the three types of kidney cancer (chromophobe, papillary and 

clear cell) but lowly expressed in the three types of squamous cell carcinoma (cervical, 

lung, and head&neck) (Fig. 6a). This observation was partially due to the relative 

abundance of mtDNA copy number across cancer types; and it is also consistent with a 

study of normal tissues32.  

 

To gain more insight into the functions of mtDNA genes and their related nuclear genes 

and pathways, for each cancer type, we used the WGCNA package33 to build a weighted 

gene co-expression network that consisted of both nuclear genes and mitochondrial genes 

(Online Methods). We then performed GSEA26 on the basis of the rank of all nuclear 

genes by measuring their edge strength to a mitochondrial gene in the co-expression 

network. We found oxidative phosphorylation to be the top-ranked enriched pathway, and 

to be enriched in 8 out of the 13 cancer types examined (FDR < 0.05), highlighting the 

essential role of mitochondria in energy generation (Fig. 6b). Pathways related to the cell 
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cycle (MYC targets, mitotic spindle, G2M checkpoint and E2F targets) and DNA repair 

were also enriched in multiple cancer types (Fig. 6b), consistent with the established notion 

that mtDNA plays an important role in these pathways34,35.  

 

We also examined the mtDNA-centric co-expression networks (Figure 6c, Online 

Methods). Across cancer types, the mtDNA genes were almost always strongly 

interconnected, which is expected since they are transcribed as long polycistronic precursor 

transcripts36. Interestingly, several clinically actionable genes were among the neighboring 

genes that showed strong co-expression patterns with mtDNA genes (Fig. 6c, 

Supplementary Figure 17). For example, AR, EGFR, DDR2 and MAP2K2 were 

connected with mtDNA genes in prostate cancer; and TMPRSS2, NF1, PIK3CA, BRCA1 

and TOP1 were the top neighbors of mtDNA genes in multiple cancer types. These 

interactions highlight the clinical relevance of mtDNA genes, and elucidating the 

underlying mechanisms will lay a foundation for developing mtDNA-related cancer 

therapy.   

 

The Cancer Mitochondrial Atlas data portal 

To facilitate mitochondria-related biological discoveries and clinical applications, we 

developed an open-access, user-friendly data portal “The Cancer Mitochondrial Atlas” 

(TCMA) for fluent exploration of the various types of molecular data characterized in this 

study (Supplementary Fig. 18). The data portal can be accessed at 

http://bioinformatics.mdanderson.org/main/TCMA:Overview. There are four modules in 

TCMA: somatic mutations, nuclear transfer, copy number, and gene expression. The first 

three modules are based on the ICGC WGS data and provide detailed annotations for the 

corresponding features of each cancer sample. The last module is based on the TCGA 

RNA-seq data and provides an interactive interface through which users can visualize the 

co-expression network with convenient navigation and zoom features. Users can not only 

browse and query the molecular data by cancer type, but also download all the data for 

their own analysis. 
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Discussion 

This work represents the first study to characterize the cancer mitochondrial genome in a 

comprehensive manner, including somatic mutations, nuclear transfer, copy number and 

mtDNA gene expression. Because of the mtDNA ultra-high coverage from the WGS data 

and the large number of patient samples surveyed, our study provides the most definitive 

landscape of mtDNA somatic mutations and reveals several unique features. First, in 

contrast to the diversified mutational signatures observed in the nuclear genomes of 

different cancers18, mtDNAs show very similar mutational signatures regardless of cancer 

tissue origins: predominantly C→T substitutions in the H strand and T→C substitutions in 

the L strand. This monotonous pattern may partially stem from different mutational 

generators implemented in mitochondrial DNA polymerase and/or differential DNA repair 

processes operating between nucleus and mitochondria10,37,38. Due to their large numbers 

of copies per cell, mitochondria may simply remove defective DNA through autophagy 

and other mitochondrial dynamic mechanisms39, rather than employing a complex array of 

repair proteins. Second, although hypermutated nuclear genomes have been reported in 

several cancer types (e.g., endometrial and colorectal cancers40,41), our study here reports 

the first hypermuated mitochondrial case, highlighting the mutational complexity even in 

this tiny genome. Third, our systemic analysis of mitochondrial genomes have firmly 

demonstrated that several cancer types are enriched for high-allele-frequency truncating 

mutations, including previously reported kidney chromophobe24,42 as well as newly 

identified kidney papillary, thyroid, and colorectal cancers. Interestingly, thyroid and 

kidney are the most frequent sites of oncocytoma, which are rare, benign tumors 

characterized by the vast accumulation of defective mitochondria due to pathogenic 

mitochondrial mutations43. Thus, some cancers with defective mitochondria may have 

grown from early benign oncocytic cells42.  

 

One novel aspect of our study is the integrative analysis of mitochondrial molecular 

alterations with those in the nuclear genome that are characterized by ICGC. We found that 

high-allele-frequency truncating mtDNA mutations are mutually exclusive to mutated 

cancer genes in kidney cancer; mtDNA nuclear transfers are associated with increased 

numbers of structural variations in the nuclear genome; and the mtDNA co-expressed 
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nuclear genes are enriched in several processes critical for tumor developments. These 

results indicate that the mitochondrial genome is an essential component in understanding 

the complex molecular patterns observed in cancer genomes and helping pinpoint cancer 

driver events. Importantly, our results, such as the nuclear transfer of mtDNA into a 

therapeutic target gene, correlations of mtDNA copy numbers with clinical variables, and 

the co-expression of mtDNA and clinically actionable genes, underscores the clinical 

importance of mitochondria.  

 

Taken together, this study has untangled and characterized the full spectrum of molecular 

alterations of mitochondria in human cancers. Our analyses have provided essentially 

complete catalogs of somatic mtDNA alterations in cancers, including substitutions, indels, 

copy number and structural variations. Furthermore, we have developed a user-friendly 

web resource to enable the broader biomedical community to capitalize on our results. 

These efforts would lay a foundation for translating mitochondrial biology into clinical 

investigations.  
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Online Methods 

Data generation and collection 

We extracted BAM files of mitochondrial DNA sequencing reads from the whole-genome 

alignment files of 2,658 cancer samples and their matched normal tissue samples generated 

by the ICGC PanCancer Analysis of Whole Genomes group (PCAWG). BWA was used to 

align the reads to the human reference genome (GRCh37). From CGHub, we obtained the 

TCGA RNA-Seq BAM files of 13 cancer types, all of which employed paired-end 

sequencing strategies. We used Cufflinks to quantify the mRNA expression levels (in 

fragments per kilobase per million mapped fragments [FPKM]) of the 13 mitochondrial 

protein-coding genes.  

 

Somatic mutation calling 

The nuclear genome mutations were called by using the Sanger pipeline, provided by the 

PCAWG. The mitochondrial variants were initially called using VarScan244 and the same 

parameter setting as previously reported10: --strand-filter 1 (mismatches should be reported 

by both forward and reverse reads), --min-var-freq 0.01 (minimum VAF 1%), --min-avg-

qual 20 (minimum base quality 20), --min-coverage × and --min-reads2 ×). We applied 

a series of downstream bioinformatic filters to further remove false positives as follows 

(Supplementary Fig. 2a). 

 

First, we filtered germline polymorphisms and false positive calls. For example, frequent 

mapping errors due to known mtDNA homopolymers, candidates with substantial mapping 

strand bias, and candidates with substantial mutant alleles in the matched normal sample. 

For simplicity in the analyses, we removed multi-allelic mtDNA mutations and back 

mutations from non-reference to reference allele. After this filtration step, we obtained 

10,083 somatic substitution candidates. 

 

Second, we examined DNA cross-contamination, because even minor DNA cross-

contamination (i.e., contamination level < 3%) would generate many low VAF false 

positive calls that are in fact germline polymorphisms from the contaminating sample. We 

tested whether mtDNA somatic mutations detected from a cancer sample show greater 
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overlap with known mtDNA polymorphisms than expected from the overall average rate 

(73.5%; 3,922/5,337 substitutions) using the binomial test with cutoff p < 0.01. From this 

step, we removed 96 samples with evidence of DNA cross-contamination (harboured 935 

known mutations out of 1,131 known mutation candidates). 

 

Third, we examined the overall mtDNA substitution signatures in the 96 possible mutation 

classes. We removed four samples with extremely high proportions of C→G substitutions 

with strong sequence context bias (at CpCpN→CpApN; most frequently at CpCpG→

CpApG; Supplementary Fig. 2b), which is known to be a spectrum from artificial guanine 

oxidation during sequencing library preparation steps16 with low VAF (1%–2%). We 

explicitly removed these samples from further analyses. 

  

Then, we examined the possibility of false positive calls due to mis-mapping of reads from 

inherited nuclear mtDNA-like sequences (known as numts) not represented in the human 

reference genome15, especially when the specific numts regions were amplified in the 

cancer nuclear genome. These mutation candidates showed some specific features: (1) 

appeared as highly recurrent mtDNA somatic mutations among multiple samples; (2) 

VAFs in mitochondria were only slightly higher than our 1% cutoff criteria; and (3) the 

matched normal samples also had small, but substantial numbers of mutation allele counts. 

To remove these false positive calls, we applied two statistical tests: (1) whether the VAF 

of a mutation candidate in the matched normal sequences was within the normal range (< 

0.0024, the cutoff is determined by the median VAF of all mutation candidates + 2×IQR), 

and (2) whether 

𝑚𝑢𝑡𝑁𝑛𝑜𝑟 𝑅𝐷𝑛𝑜𝑟⁄
(𝑚𝑢𝑡𝑁𝑛𝑜𝑟 𝑅𝐷𝑛𝑜𝑟⁄ +𝑚𝑢𝑡𝑁𝑡𝑢𝑚 𝑅𝐷𝑡𝑢𝑚⁄ )⁄  

was within the normal range (<0.0357, the cutoff is determined by the median VAF of all 

mutation candidates + 2×IQR), where mutN is the mutation allele count, RD is the average 

read depth for the nuclear genome, and  nor and tum are normal and matched tumor tissues, 

respectively. When a mutation appeared to be an outlier according to both criteria, we 

removed the candidate from our downstream analyses.  
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In our previous study10, we could not detect mutations under a 3% VAF cutoff because 

mtDNA were sequenced with a read depth of ~100× from the majority of the samples 

surveyed. Taking advantage of the ultra-high depth (>8,000×) in this study, we used a 1% 

VAF cutoff to obtain better sensitivity. We found 2,133 more substitutions when the VAF 

was between 1% and 3%. Because of the ultra-high depth, even 1% VAF mutations were 

considered to be specific, and were supported by a high number (n = ~80) of mutation 

alleles. We confirmed the high specificity of these mutations using the unique mtDNA 

mutational signatures robustly observed even from these low VAF mutations: (1) the 

mutational spectrum is generally consistent with those from higher heteroplasmic levels of 

mutations (i.e., VAFs from 3%-10%, 10%-100%); (2) we  observed the absolute 

dominance of C→T ant T→C substitutions in the expected trinucleotide contexts (NpCpG 

for C→T and NpTpC for T→C substitutions); and (3) we also observed extreme replication 

strand bias (Supplementary Fig. 3). These features would not be observed if 

contaminations resulted in many false positive calls. To assess the factors affecting the 

mutation frequency of the 13 coding genes, we performed the sample-level analysis using 

log-linear modeling: we assigned the binary mutation indicator (1: with mutation; 0: 

without mutation) to each sample for each gene and then fit this binary response variable 

to a logistic regression model including cancer type, gene identity, and their interaction as 

explanatory variables, which were later summarized using analysis of variance (ANOVA). 

 

Truncating mutation analysis  

Taking into account the mtDNA specific mutational signature, we examined the dN/dS 

ratio for mtDNA missense substitutions as reported previously10. We defined truncating 

mutation as those that lead to truncated protein products (i.e., nonsense mutations, frame-

shift indels); and accordingly categorized the samples into the truncating group (bearing at 

least one truncating mutation with VAF ≥ 60%). The ND5 protein domain information was 

obtained from Pfam (http://pfam.xfam.org/protein/P03915). The list of cancer gene census 

was obtained from http://cancer.sanger.ac.uk/cosmic/download. Cancer census genes with 

recurrent somatic mutations in kidney chromophobe and kidney papillary were selected for 

the analysis of mutual exclusivity and heatmap representation. One sample with nuclear 

DNA hypermutator phenotype was excluded from this analysis. To examine the functional 
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consequences of mtDNA truncating mutations, we performed GSEA based on the ranks of 

differentially expressed genes between samples with mtDNA truncating mutations and 

without for kidney chromophobe, kidney papillary, colorectal, and thyroid cancers and 

their combination, and identified significantly enriched pathways at FDR = 0.05.  

 

Somatic mtDNA nuclear transfer 

We examined the whole-genome sequencing data from the cancer and matched normal 

tissue samples using a pipeline for the identification of mtDNA translocation to the nuclear 

genome as reported previously11. The specificity was shown to be 100% in the previous 

study11. Briefly, we extracted and clustered discordant reads from cancer genomes, where 

one end aligned to nuclear DNA and the other to mtDNA. Then, in order to determine the 

nucleotide resolution breakpoints, we searched for split reads near putative breakpoint 

junctions (1,000 bp upstream and downstream), where a fraction of a single read aligned 

to genomic DNA near the junctions and the rest aligned to mtDNA. All filtering criteria 

were the same as previously reported, except that we did not use BLAT45 for split-read 

detection because the BWA-MEM alignment tool used to map all pan-cancer samples 

fundamentally enables split-read mapping. We removed candidate mitochondria–nuclear 

DNA junctions that overlapped with clusters from matched and unmatched normal samples 

and/or known human SMNTs, a combined set from the human reference genome (hg19; n 

= 123) and from a published study46 (n = 766) because the source of the mtDNA sequence 

fused to the nuclear genome might be SMNTs rather than real mitochondria in the 

cytoplasm of cells. We obtained the structural variations from ICGC PCAWG and 

compared the samples with and without SMNT using t-test. To study the relationship of 

SMNT and SV breakpoints, we randomly chose the same number of SV breakpoints from 

each sample for 100 times to estimate the random expectation.  

 

MtDNA copy number analysis 

To better estimate the mtDNA copy number (CN) for cancer samples, we employed the 

following formula that incorporates both tumor purity and ploidy information:  
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, where is the tumor purity 

(ranging from 0 to 1, where 1 stands for pure cancer cells and 0 stands for pure normal 

cells);  and   are the mean coverage depths for 

mtDNA and the nuclear genome in individual WGS BAM files, respectively;  

is the number of sets of chromosomes in tumor cells, while the ploidy in the normal cells 

is 2. Both and were obtained by the allele-specific copy number analysis of 

tumors (ASCAT) estimation47, provided by PCAWG. Donors with multiple samples were 

pre-selected so that each donor comes with one representative primary cancer sample. We 

excluded cancer samples with low purity (<0.4, estimated by ASCAT) for further 

downstream analyses. Analysis of variance (ANOVA, if more than two cancer types) or t-

test was used to compare the mtDNA copy number of cancer types derived from the same 

tissue. Since many of the normal samples are from blood, we focused on the cancer types 

with at least 10 samples from the normal tissue adjacent to the tumor in order to compare 

the mtDNA copy number of the paired cancer and normal samples. We used the Wilcoxon 

signed rank test to compare the mtDNA copy number for each selected cancer type and 

further adjusted the raw p-values by the FDR. To assess the correlation of mtDNA copy 

number with truncating mutations, we employed ANOVA (with the cancer type included 

in the model to account for its potential effect). We assessed the correlations of the mtDNA 

copy number with the patient’s age, overall survival and stage using Spearman’s rank 

correlation, cox model/log-rank test, and ANOVA, respectively. We log2-transformed the 

mtDNA copy number values when using ANOVA and t-test to conform to the normality 

assumption. 

 

Co-expression analysis 

For each cancer type, we used the WGCNA package33 to build a weighted gene co-

expression network that contains ~20,000 nodes (including both nuclear genes and 

mitochondrial genes). The key parameter, β, for a weighted network construction was 

optimized to maintain both the scale-free topology and sufficient node connectivity as 

recommended in the manual. In such a network, any two genes were connected and the 

edge weight was determined by the topology overlap measure provided in WGCNA. This 

CNtumor =
Coverage_depthmtDNA

Coverage_depthgDNA
( f * ploidycancer + (1- f )*2) f

Coverage_depthmtDNA Coverage_depthgDNA

Ploidycancer

f Ploidycancer
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measure considered not only the expression correlation between two partner genes but also 

how many ‘friends’ the two genes shared. The weights ranged from 0 to 1, which reflects 

the strength of the connection between the two genes. To identify mitochondria-related 

pathways, we performed GSEA26 on the basis of the full set of nuclear protein-coding 

genes, ranked on the basis of their weights of the edge connecting the mitochondrial genes, 

and detected significant pathways at FDR = 0.05. To construct the mitochondria-centric 

network, we focused on the top 500 neighboring genes that showed the strongest 

connections with the mitochondrial genes, with a minimum weight of 0.05. Among these 

neighboring genes, we detected the clinically actionable genes (defined as FDA-approved 

therapeutic targets and their relevant predictive markers48) in at least one of the cancer 

types we surveyed. We examined the correlations of mtDNA gene expression levels with 

mtDNA copy numbers using Spearman Rank correlations. 

 

TCMA data portal construction 

We stored the pre-calculated mtDNA molecular data (including mtDNA mutation, nuclear 

transfer, copy number and expression) in a database of CouchDB. The Web interface was 

implemented by JavaScript; tables were visualized by DataTables; the co-expression 

network visualization was implemented by Cytoscape Web. 
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Figure Legends 

Figure 1. The mtDNA mutational landscape across different cancer tissues 

(a) The landscape of mtDNA somatic substitutions identified, with the outer circle (blue) 

displaying all variants with variant allele frequency (VAF) > 1%, and the inner circle (red) 

displaying those with VAF >3%. (b) An overview of the mutation frequency of the 13 

mtDNA coding genes across cancer tissue types. The size of each pie chart is proportional 

to the overall mutation frequency, with different color slices corresponding to different 

variant types. (c) Highly consistent mtDNA mutational signatures across 21 cancer tissue 

groups. The average numbers of somatic substitutions per sample are shown with bars on 

the right. (d) Replicative strand-specific mutational spectrum of mtDNA substitutions. The 

relative mutation frequencies (# of observed / # of expected) by 96 trinucleotide contexts 

are shown (top) for the H strand (bottom) for the L strand. (e) The proportion of C→T 

substitutions at dipyrimidine contexts (where UV light frequently generates mutations). No 

significant differences were observed between melanoma and other cancer types. 

 

Figure 2. A hypermutated mitochondrial genome 

(a) Somatic mutations are clustered in a 2kb region near the replication origin. (b) The 

T→C substitutions are dominant in this sample. (c) A proposed model of mutation 

acquisition. 

 

Figure 3. The mtDNA truncating mutation patterns 

(a) The distinct VAF accumulation curves of truncating mutations between kidney/ 

colorectal/thyroid cancers and other cancer types. For comparison, similar curves were 

generated for silent and missense mutations in other cancer types (which are overall 

functionally neutral) after normalization of mutation numbers. Generally, fewer truncating 

mutations were observed in higher allele-frequency levels, presumably because those 

truncating mutations provide selective disadvantages to the mitochondria (or cells) that 

carry them. (b) Kidney chromophobe, kidney papillary, colorectal and thyroid cancers 

accumulated excessive high-allele-frequency (VAF >60%) truncating mutations. (c) 

Different distribution patterns of truncating mutations in ND5. (d) A heatmap 

representation of mtDNA truncating mutations with recurrent somatic mutations in cancer 
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gene in kidney chromophobe and kidney papillary. (e) A heatmap representation of 

signaling pathways enriched by nuclear genes upregulated in in cancer samples with 

truncating mutations. A dot indicates FDR < 0.05   

 

Figure 4. Somatic transfer of mitochondrial DNA into the cancer nuclear genome 

(a) The frequency of SMNT in different cancer tissues. (b) The numbers of SV breakpoints 

in samples with and without SMNT. (c) Distance from SMNT breakpoints to the nearest 

SV breakpoints are shorter than random expectation for all and each type of SVs. (d) A 

Circos plot representing three independent somatic mtDNA nuclear transfer events in a 

bladder cancer genome. Twenty-three human chromosomes are shown in the outer layer. 

Copy numbers of nuclear cancer genomes are represented by black dots in the inner layer. 

Chromosomal rearrangements are shown with gray curves and mtDNA nuclear transfers 

are represented by red curves. The summary of three nuclear transfers is depicted below 

the Circos plot with breakpoints. (e) A mtDNA nuclear transfer found in a HER2-positive 

breast cancer genome, leading to a tandem duplication process of ERBB2 exons 10–23. 

The novel exon junction is supported by the RNA reads from the corresponding RNA-seq 

data of the patient sample. 

 

Figure 5. A pan-cancer view of mtDNA copy number 

(a) The distributions of mtDNA copy number by cancer tissue type. (b) Distinct mtDNA 

copy number distributions for cancer types derived from kidney and brain. (c) mtDNA 

copy numbers with and without truncating mutations in mtDNA genes. (d) Paired copy 

number comparison in tumor samples and their matching normal tissue samples. (e) 

Correlation of mtDNA copy numbers with the patient age in prostate cancer. (f) Correlation 

of mtDNA copy number with patient stage in chronic lymphocytic leukemia.  

 

Figure 6. Co-expression patterns of mtDNA gene across different cancer types 

(a) An overview of the expression levels of the 13 mtDNA genes of 13 cancer types in a 

heatmap (left) and the sample sizes in a barplot (right). (b) The commonly enriched 

pathways identified by the co-expression with mtDNA genes in different cancer types. The 

borders of the cells with FDR < 0.05 are highlighted in yellow. (c) An mtDNA gene-centric 
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pan-cancer co-expression network. The colors of the pie chart at each node indicate the 

occurrences of the node in corresponding cancer types. The size of the node is proportional 

to the number of the direct neighbors (connectivity) of the node. The thickness of the edge 

is proportional to the frequency of this edge being observed across all cancer types. Further, 

the edges are colored according to the connection type: mtDNA gene–mtDNA gene 

connection in gray, mtDNA gene–nuclear gene connection in magenta. 
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