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Abstract  
 
Engineered heterologous metabolic pathways can convert low-cost feedstock into high-value 
products, though it remains a significant challenge to reliably and efficiently maximize end-
product biosynthesis, particularly when many enzymes must be co-expressed together. When 
current approaches are applied to many-enzyme pathways, the construction and characterization 
process is highly iterative and laborious, while generating high-dimensional datasets that remain 
difficult to analyze for forward engineering efforts. To overcome these challenges, we developed 
a new algorithm that determines the highly non-linear and high-dimensional relationship 
between a pathway’s enzyme expression levels and its end-product productivity from common 
characterization of a small number of heterologous pathway variants. We combined kinetic 
metabolic modeling, elementary mode analysis, model reduction, de-dimensionalization, and 
genetic algorithm optimization into an automated procedure that parameterizes accurate kinetic 
metabolic models from sparsely characterized pathway variant libraries with varied enzyme 
expression levels. The resulting Pathway Maps are used to determine rate-limiting steps, predict 
optimal expression levels, identify allosteric interactions, rank-order enzyme kinetics, and 
prioritize protein engineering efforts. We demonstrate the Pathway Map Calculator algorithm on 
two experimental datasets, a 3-enzyme carotenoid biosynthesis pathway and a 9-enzyme 
limonene biosynthesis pathway, as well as a series of in silico pathway examples to rigorously 
demonstrate the algorithm’s accuracy, linear scaling, and high tolerance to measurement noise. 
By greatly reducing experimental efforts and providing quantitative forward engineering 
predictions, the Pathway Map Calculator has the potential to dramatically accelerate the 
engineering of many-enzyme heterologous metabolic pathways. 
 
Highlights  

• We developed an automated algorithm that uses a small number of characterized pathway 
variants to determine the pathway’s expression-productivity relationship. 

• The Pathway Map Calculator is accurate, scales linearly on many-enzyme pathways, 
distinguishes allosteric interactions, and tolerates substantial measurement noise. 
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• Pathway Maps are used to predict optimal enzyme expression levels, identify rate-
limiting steps, and prioritize protein engineering efforts 

Keywords  
pathway engineering, expression optimization, kinetic models, structured machine learning, 
biophysical models, design of experiments 

1. Introduction 

The metabolic engineering of organisms enables them to manufacture a wide variety of chemical 
products, but to achieve economic viability in a scaled-up process, the organism must have a sufficiently 
high yield, productivity, and titer. For commodities, specialty chemicals, and nutritional supplements, 
including 1,4-butanediol (Yim et al., 2011), isobutanol (Lan and Liao, 2011), succinic acid (Lee et al., 
2006), n-butanol (Lim et al., 2013), lactic acid (Kong et al., 2015), isoprene (Zurbriggen et al., 2012), 
chondroitin (Wang et al., 2015), riboflavin (Lin et al., 2014) and cobalamin (Biedendieck et al., 2010), 
strict competition with existing processes requires that both the organism’s endogenous metabolic 
network and its heterologous pathways must be optimally tuned to maximize product synthesis, eliminate 
byproduct formation, and maintain robust organism growth rates in the expected bioreactor growth and 
media conditions. Higher-value products, such as erythromyocin (Jiang and Pfeifer, 2013), artemisinin 
(Ro et al., 2006), opioids (Thodey et al., 2014), taxadiene (Ajikumar et al., 2010), limonene (Alonso-
Gutierrez et al., 2015), anthocyanins (Jones et al., 2017), and flavonoids (Trantas et al., 2009), often have 
more complex biosynthesis pathways, and therefore become more difficult to optimize because of the 
many enzymes needed to catalyze biosynthesis of the final product. In both cases, once a heterologous 
pathway has been introduced into an organism, and has been shown to minimally function, metabolic 
pathway optimization becomes an essential step to engineering an economically viable organism.   

Heterologous metabolic pathway optimization is currently carried out by constructing and characterizing 
many pathway variants, incorporating different regulatory genetic parts and enzyme coding sequences to 
vary the enzymes’ expression levels and their intrinsic kinetics (Lynch et al., 2016; Oliver et al., 2013; 
Redding-Johanson et al., 2011; Smanski et al., 2014). Through combinatorial cloning and DNA assembly 
techniques, it has been possible to construct libraries of pathways utilizing different promoters, ribosome 
binding sites, and plasmid origins of replication to simultaneously vary the expression of multiple 
enzymes, modulating transcription rates, translation rates, and plasmid copy numbers (Scalcinati et al., 
2012; Su et al., 2015; Watstein et al., 2015; Xu et al., 2013; Yu et al., 2016). Nowroozi et al. carried out 
pathway optimization on a nine-enzyme amorphadiene biosynthesis pathway in E. coli, characterizing 18 
pathway variants with designed ribosome binding sites, resulting in a final titer of 3.6 g/L, including 
media optimization (Nowroozi et al., 2014). Zhao et al designed 81 pathway variants of the 3 enzyme (+)-
catechin pathway, increasing transcription rates and using scaffolding proteins to increase titers by 128%, 
to a final titer of 910.9 mg/L (Zhao et al., 2015). Latimer et al used promoter libraries to construct and 
characterize 192 pathway variants of an 8-enzyme heterologous xylose utilization pathway in 
Saccharomyces cerevisiae for processing lignocellulose (Latimer and Dueber, 2017; Latimer et al., 2014). 

More recently, it has become practical and common to integrate pathway modules into the host genome, 
and carry out pathway optimization directly on genomic genetic parts. Ng et. al. optimized a 5-enzyme 
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Entner-Doudoroff pathway by combining the Operon Calculator and lambda red recombination to 
integrate rationally designed operons into the genome, followed by combining the RBS Library 
Calculator and MAGE genome mutagenesis to systematically vary enzyme expression levels, resulting in 
a 25-fold improvement in the NADPH regeneration rate (Ng et al., 2015). Li et al. utilized Cas9-assisted 
DNA repair to integrate a 14-enzyme β-carotene biosynthesis pathway into the E. coli genome, followed 
by construction and characterization of 103 pathway variants, 12 additional modifications to central 
metabolism, and media optimization to achieve a β-carotene titer of 2.0 g/L (Li et al., 2015). Through 
genome analysis and bioprospecting, libraries of homologous enzyme coding sequences have also been 
expressed and characterized with the goal of identifying enzymes with improved solubilities and kinetics 
in a destination host organism (Atsumi et al., 2010; Lanza et al., 2014; Shiue and Prather, 2014).  

Collectively, these state-of-the-art examples present an interesting design challenge, which can be solved 
via algorithmic analysis and model-based prediction. The challenge is to identify the enzyme expression 
levels of a heterologous pathway that will maximize its productivity, given only a small set of 
characterized pathway variants with varied enzyme expression levels and measured end-product 
productivities. We focus on end-product measurements, both because of their commonality, and the 
difficulty of measuring intermediate intracellular metabolite concentrations and reaction fluxes. We also 
focus on pathway data-sets where enzyme expression levels were quantitatively varied with known 
changes, for example, by inserting libraries of promoters with well-characterized transcription rates or 
libraries of ribosome binding sites with well-characterized or well-predicted translation rates (Figure 1).  

For several reasons, this challenge becomes particularly difficult when optimizing many-enzyme 
heterologous pathways, such as natural product pathways. First, the enzyme expression levels of a highly 
optimized pathway can be very high or very low, across a 100,000-fold range, depending on the enzymes’ 
catalytic efficiencies. Second, because enzymes work together synergistically, a pathway’s overall 
productivity is only improved when multiple enzyme expression levels are collectively tuned. Third, the 
relationship between a pathway’s enzyme expression levels and its productivity is multi-dimensional and 
highly non-linear; changes in enzyme expression will only improve the pathway’s overall productivity if 
the enzyme’s catalysis is rate-limiting. Fourth, if a combinatorial approach is used to optimize a pathway, 
then the number of experimental measurements will vastly exceed the throughput of most analytical 
techniques, such as mass spectrometry. Characterizing a tiny fraction of these pathways will yield a low 
chance of finding the pathway’s optimal enzyme expression levels. Fifth, and finally, once the optimal 
pathway variant has been constructed and characterized, further strain modifications, changes to the 
growth media or the expression of additional enzymes can imbalance the previously optimized pathway, 
requiring additional rounds of optimization.  

Here, we describe and validate an algorithm, the Pathway Map Calculator, that determines the non-linear 
relationship between a pathway’s enzyme expression levels and its end-product productivities (Figure 
1A). Using this relationship, called a Pathway Map, we predict the relative enzyme expression levels that 
maximize the pathway’s end-product productivity. All predictions are quantitative, experimentally 
actionable, and re-usable for a variety of applications. The algorithm requires two types of inputs: first, an 
experimental data-set consisting of end-product measurements and relative enzyme expression levels for 
each characterized pathway variant (Figure 1B); and second, a candidate network that lists the enzymes’ 
reactions and the corresponding metabolite stoichiometries (Figure 1C). Inputted end-product 
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measurements may be assayed using any proportional measurement, such as LC-MS, GC-MS, enzyme-
linked assays, or fluorescent biosensors. Inputted relative enzyme expression levels may be derived from 
measurements (e.g. proteomics) or model predictions of the genetic parts’ activities (e.g. predicted 
translation rates). Using these inputs, the automated in silico workflow combines kinetic metabolic 
modeling, elementary mode analysis, de-dimensionalization, model reduction, and genetic algorithm 
optimization to identify the enzymes’ kinetic parameters that best reproduces the inputted pathway 
variants’ measured productivities, and correspondingly, create a Pathway Map that shows the entire non-
linear and high-dimensional relationship between the pathway’s enzyme expression levels and end-
product productivity (Figure 1B). The Pathway Map enables efficient optimization of the pathway’s 
enzyme expression levels, provides insights into the pathway’s rate-limiting steps, and facilitates 
prioritization of protein engineering efforts to improve the slowest enzymes’ kinetics.   

The development of the Pathway Map Calculator algorithm was inspired by previous kinetic metabolic 
modeling efforts (Matsuoka and Shimizu, 2015; Miskovic et al., 2015; Saa and Nielsen, 2016; Stanford et 
al., 2013) and by Ensemble Modeling in particular (Tan et al., 2011; Tran et al., 2008), though there are 
several notable distinctions. First, most kinetic metabolic models were developed to predict reaction 
fluxes through endogenous metabolic networks, constrained by reaction thermodynamics, isotopic 
metabolic flux measurements, and the outcomes of enzyme knock-out or over-expression experiments 
(Burgard et al., 2003; Khodayari and Maranas, 2016; Khodayari et al., 2014; Ranganathan et al., 2010). 
Here, our objective is to engineer and optimize heterologous metabolic pathways, utilizing the smallest 
possible set of characterized pathway variants with varied enzyme expression levels and end-product 
measurements. To our knowledge, an algorithm does not exist to solve this challenge. Second, while 
kinetic metabolic modeling and optimization have been recently combined to predict beneficial genetic 
interventions to endogenous metabolic networks, for example, using the k-OptForce algorithm 
(Chowdhury et al., 2014), the qualitative knock-out, knock-down, and knock-up predictions require 
interpretation to convert to experimentally actionable genetic part selections. Here, our developed 
algorithm predicts quantitative increases or decreases to specific enzyme expression levels to achieve 
desired productivity improvements, and these predictions are immediately convertible to the selection of a 
promoter or ribosome binding site sequence with a corresponding increase/decrease in transcription rate 
or translation rate (Alper et al., 2005; Mutalik et al., 2013; Salis et al., 2009). 
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Figure 1: The Pathway Map Calculator workflow and its validation on a carotenoid biosynthesis 
pathway. (A) A dataset of characterized pathway variants and a candidate reaction network are fed into 
the Pathway Map Calculator. The algorithm uses the dataset to parameterize a kinetic metabolic model, 
which is then used to predict the pathway’s end-product productivity (a Pathway Map) and its rate-
limiting steps (a Flux Control Coefficient Map) across all possible enzyme expression levels. (B) The 
workflow is illustrated on a 3-enzyme carotenoid (neurosporene) biosynthesis pathway, where 73 CrtEBI 
pathway variants were constructed and characterized, followed by using the Pathway Map Calculator to 
generate a Pathway Map and predict optimal enzyme expression levels. (C) A candidate reaction network 
for the 3-enzyme carotenoid biosynthesis pathway is shown. (D) The accuracy of the Pathway Map is 
initially tested by comparing predicted and measured neurosporene productivities across 73-pathway 
variant training set. (E) The accuracy of the Pathway Map is further tested by comparing predicted and 
measured neurosporene productivities across 19 characterized pathway variants with CrtEBI expression 
levels that overlapped with the training sets’ expression levels (interpolation test set #1) and across 
another 28 characterized pathway variants with CrtEBI expression levels that were higher than the 
training sets’ expression levels (extrapolation test set #2). Data points and error bars represent the means 
and standard deviations of 2 independent productivity measurements from Farasat et. al. (2014). 
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2. Theory and Calculations  
 
2.1 Overview of the Pathway Map Calculator Algorithm 
 
The Pathway Map Calculator algorithm has three inputs: first, a candidate reaction network ���,�,�,�, 

which establishes the list of substrates (index i), reactions (index j), reaction mechanisms (index m), and 
enzymes (index e), that participate in the metabolic network of interest; second, measured productivities 
�� of a small library of pathway variants (index l); and third, the corresponding measured/predicted 
enzyme expression levels ��,� for each pathway variant. Additional optional parameters include any 

measured/predicted substrate uptake rates ���,�, and any measured/predicted internal fluxes  ���	,�.  

 
In the first model construction phase, the algorithm automatically generates a system of de-
dimensionalized, reduced differential equations that quantify the relationship between the metabolic 
network’s enzyme expression levels and its metabolic fluxes. Model reduction minimizes the number of 
unknown model degrees of freedom by incorporating elementary mode constraints and enzyme mole 
balance constraints and by grouping together co-dependent model parameters to create bounded, unitless 
reaction reversibility parameters. In the second model parameterization phase, genetic algorithm 
optimization is used to determine the unknown model parameters, using the kinetic model, productivity 
measurements, and enzyme expression levels to evaluate the optimization’s objective function. Finally, 
the parameterized kinetic model is analyzed, including identification of optimal enzyme expression levels, 
rank-ordering of enzymes according to their kinetics, and visualization of the multi-enzyme expression-
productivity space.  
 
2.2 Automated Calculation of the Elementary Modes 
 
We use elementary mode analysis to enumerate the candidate reaction network’s elementary flux modes, 
and to convert all known metabolic fluxes into model constraints. Under steady-state conditions, the net 
fluxes through each reaction must satisfy the following mole balance: 
� � �	��	 
 0            (1) 
where the stoichiometric matrix ��,� is determined from the candidate reaction network and �	��	  is the 

� � 1 vector of net reaction fluxes. By calculating the null space of the stoichiometric matrix, the net 
reaction fluxes are then decomposed as a linearly independent set of reaction fluxes (Wagner, 2004), 
called elementary flux modes (���), such that 
�	��	 
  ∑ ���
���             (2) 

allowing us to equate the measured/predicted fluxes, such as the pathway productivities ��, to sets of 
individual reaction fluxes within the model. For example, a linear, unbranched pathway will have one 
elementary flux mode, and therefore requires only one productivity or substrate uptake 
measurement/prediction to specify the pathway’s net reaction flux. For more complicated metabolic 
networks, there will be a larger number (N) of elementary flux modes, requiring N flux 
measurements/predictions to fully specify all net reaction fluxes. Importantly, if there are insufficient flux 
measurements/predictions, then the remaining unspecified net reaction fluxes are considered degrees of 
freedom in the model parameterization. In cases where fluxes leaving the system, such as intermediate 
accumulation or competition with a different pathway are known, these fluxes should be included in the 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 9, 2017. ; https://doi.org/10.1101/161372doi: bioRxiv preprint 

https://doi.org/10.1101/161372


 

 

formulation of the reaction network, providing an elementary flux mode that accounts for the removal or 
build-up of metabolic flux at that point.  

 
2.3 Automated Generation of the Kinetic Metabolic Model 
 
We automatically generate the kinetic metabolic model, formulated as a system of ordinary differential 
equations, to quantify the rates of all reactions in terms of their metabolite and enzyme concentrations. 
First, each enzyme-catalyzed reaction is broken down into a set of reversible first-order and second-order 
reactions according to the enzyme’s reaction mechanism. We then quantify the reactions’ rates using 
elementary mass action kinetics according to the user-specified reaction mechanism. Over 30 reaction 
mechanisms are available for selection, including random-sequential, ordered-sequential, or ping-pong 
metabolite binding as well as several forms of allostery, including competitive, uncompetitive, and non-
competitive inhibition.  
 
For example, the reactions and fluxes for a mono-substrate, mono-product enzyme-catalyzed reaction are: 

� � ��
��,,�

����,�,�
���

��,,�
����,�,�

 �� � �          (3a) 

where  ��, and  ��,�  are the forward and reverse reaction fluxes for the jth enzyme-catalyzed reaction using 

the eth enzyme. The rates of these reactions are written as: 
��,,� 
 ��,,�������� ��,�,� 
 ��,�,������ ��,,� 
 ��,,������ ��,�,� 
 ��,�,�������� ,  (3b) 
where ��,,�, ��,�,�, ��,,�, and ��,�,� are kinetic rate constants, [�] is the concentration of substrate X, [Y] 

is the concentration of product Y, [��] is the concentration of the eth enzyme, and [���] is the 
concentration of enzyme-substrate complex. In another example, the elementary reactions and fluxes for 
the jth bi-substrate, bi-product ordered-sequential reaction are: 

�� � �� � ��
��,,�

����,�,�
���� � ��

��,,�
����,�,�

 ������  
��,,�

����,�,�
 ���� � ��

��,,�
����,�,�

 �� � �� � ��   (4a) 

��,,� 
 ��,,��������� ��,�,� 
 ��,�,������� ��,,� 
 ��,,����������� ��,�,� 
 ��,�,��������� (4b) 
��,,� 
 ��,�,��������� ��,�,� 
 ��,�,����������� ��,,� 
 ��,,������� ��,�,� 
 ��,�,��������� (4c) 
We then generate a system of ordinary differential equations for each metabolite, free enzyme, and bound 
enzyme complex in the reaction network, summing together all of the rate equations, yielding: 
���

�	 
 ∑ ��,�,,���,,� � ��,�,�,���,�,��          (5) 

where the expanded stoichiometric matrices ��,�,,� and ��,�,�,� describe the elementary reactions that 

produce or consume the ith metabolite in the network, respectively, using the index n to count the number 
of elementary reactions to describe each reaction mechanism. 
 
2.4 Automated De-dimensionalization of the Kinetic Metabolic Model 
 
In the next step, we carry out automated de-dimensionalization to convert all metabolite and enzyme 
concentrations into dimensionless quantities. To do this, we select a reference pathway variant from the 
pathway library, which is any pathway variant that has particularly well-characterized end-product 
productivity measurement (smallest error bars) performed closest to steady-state conditions. We then 
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multiply and divide all rate equations by the reference pathway’s corresponding metabolite and enzyme 
concentrations, following by regrouping and simplification. For the example of a mono-substrate, mono-
product enzyme-catalyzed reaction, this procedure yields the following: 

��,,� 
 ��,,�������� 
 ���,,���������,	�	
�� �� � ���

�������  ����
���,���

��� �! 
 "#�,,�  ��$����%�    (6a) 

��,�,� 
 ��,�,������ 
 &��,�,�'��,	�	
�� ()  �����

���,���
��� �! 
  "#�,�,� ���*% �      (6b) 

where ����� is the concentration of metabolite X in the reference pathway, ���,	�	
�� � is the concentration 

of the eth enzyme in the reference pathway, and "# is the apparent kinetic rate parameter for each 
elementary step. All re-arrangements are carried out analytically. De-dimensionalized rate expressions are 
substituted into Equation (5).  
 
Through de-dimensionalization, all metabolite and enzyme expression levels share the same relative 
scale, enabling us to (i) experimentally vary enzyme concentrations using several types of genetic 
modifications, e.g. changing promoters, ribosome binding sites, or plasmid copy numbers without 
algorithm modifications; and to (ii) compare relative changes in model-simulated metabolite 
productivities to relative changes in measured pathway productivities across different pathway variants. 
This approach was inspired by the ensemble modeling of kinetic metabolic models (Tan et al., 2011; Tran 
et al., 2008), which also performs de-dimensionalization of its metabolite and enzyme concentrations. 
 
2.5 Automated Model Reduction using Enzyme Balances and Reaction Reversibilities 
 
For a typical multi-enzyme pathway and candidate reaction network, the resulting system of de-
dimensionalized differential equations will contain several unknown parameters. However, many of the 
parameters are co-dependent in that their values must collectively satisfy a set of mole balance and flux 
balance constraints. We therefore apply model reduction to eliminate all co-dependent parameters without 
altering the solution of the model equations. As a result, model reduction greatly reduces the number of 
pathway productivity measurements needed to identify the best-fit model, and accelerates model 
parameterization by placing sharp bounds on the parameter space. For example, for a 3-enzyme 
unbranched pathway with mono-substrate reaction mechanisms, there will be 22 unknown model 
parameters, including 12 kinetic rate constants, 9 metabolite/enzyme concentrations, and one net reaction 
flux. After model reduction, there will only be 10 unknown model parameters, including 6 bounded 
kinetic rate constants, 3 bounded metabolite/enzyme concentrations, and one net reaction flux.  
 
First, we reduce the model by using the following set of enzyme mole balance constraints: 

���%� � ∑ ����% ����  = 1 for e = 1 … E        (7) 

where the de-dimensionalized concentrations of the free enzyme and enzyme-substrate complexes will 
always sum to one. For a pathway with E enzymes, these constraints will reduce the number of unknown 
parameters by E. 
 
Second, we reduce the model by using the following set of reaction flux balance constraints: 

��,� 
 �	,�,� �	,�,�

�	,�,�!�	,�,�

 �
��,	,�

�	,�,�!�	,�,�
   for n = 1… N       (8a) 
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where ��,� is the reaction reversibility of the nth elementary reaction within the jth enzyme-catalyzed 

reaction. A reaction reversibility is a dimensionless parameter that describes the net extent of a reversible 
reaction. If the reaction proceeds fully in the forward (reverse) direction, its reaction reversibility is one 
(negative one). Accordingly, we can re-formulate the forward and reverse reaction fluxes using a single 
reaction reversibility parameter, according to 

��,,� 
 �
��,	,


� �1 � �
"	,


�          (8b) 

��,�,� 
 �
��,	,
 

� � �
"	,


� 1�          (8c) 

where all ��,� are bounded by [-1,1]. Furthermore, if the thermodynamic favorability of a net reaction is 

known, then the values of the reaction reversibilities can be further constrained, using a variation of the 
flux force rule (Noor et al., 2014). 

� ∆$	

"% 
 ∑ �!"	.


� "	,



�            (9) 

where ∆,�  is the free energy change for the jth enzyme-catalyzed reaction, � is the ideal gas constant, and 

- is the temperature. When applied to the reference pathway, the relationships between the reaction 
reversibilities and the enzymes’ apparent kinetic parameters become: 

"#�,,� 
 �
��,	,
,���

���&�
���

�1 � �
"	,
,���

�          (10a) 

"#�,�,� 
 �
��,	,
,���

����& �
���

� �
"	,
,���

� 1�          (10b) 

where these expressions become simplified because, for the reference pathway, ��$� becomes one.  By 
combining Equation 7 and Equation 10, we illustrate how the apparent kinetic parameters of a mono-
substrate enzyme-catalyzed reaction will depend on the enzyme’s de-dimensionalized concentration and 
the two reaction reversibilities, according to: 

"#�,,� 
 �
��,	,���

���&�
���

�1 � �
"	,�,���

� "#�,,� 
 �
��,	,���

���&�
���

�1 � �
"	,�,���

�       (11a) 

"#�,�,� 
 �
��,	,���

�'� ��&�
���

( � �
"	,�,���

� 1� "#�,�,� 
 �
��,	,���

�'� ��&�
���

( � �
"	,�,���

� 1�      (11b) 

Therefore, the simplest N-enzyme pathway will require specification of only 3N unknown parameter 
values to determine the kinetic constants of the flux-constrained kinetic metabolic model. For more 
complex pathways, the number of unknown parameters will at most increase linearly with the number of 
enzymes. 
 
2.6 Automated Parameterization of the Kinetic Metabolic Model 
 
In the last step, we utilize the expression-productivity data-set to parameterize the kinetic metabolic 
model. Parameterization is composed as a many-variable scalar minimization problem, where the model’s 
degrees of freedom are the inputs and the objective function is the output to be minimized. The objective 
function O is an L1 norm that compares the pathways’ simulated net reaction fluxes and measured 
productivities, using the reference pathway’s corresponding quantities for normalization, according to: 

. 
  ∑ / )���.�

)���,���
� )������,�

)������,���
0*���         (12) 

where ����,�  is the simulated productivity of the lth pathway variant and �+,	-+�,� is the actual, measured 

productivity of the lth pathway. Specifically, ����,� is the sum of net reaction fluxes that produce the 
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product-of-interest, evaluated at the predicted/measured enzyme expression levels for the lth pathway 
variant. By using simulations and measurements of the reference pathway to normalize these quantities, 
we may directly compare them on the same dimensionless scale.  
 
We then accelerate the parameterization by carefully selecting the optimization algorithm and the model’s 
degrees of freedom. Individually, the characterized pathway variants will have different enzyme 
expression levels, and accordingly, different reaction reversibilities, reaction fluxes, and net fluxes 
through their elementary modes corresponding to the pathway variants’ measured productivities. 
Collectively, the enzymes in all pathway variants will exhibit the same apparent kinetic rate constants, 

"#�,,� and "#�,�,�. However, we do not select the kinetic rate constants as our model degrees of freedom 

because they are unbounded, forcing the optimization algorithm to search a large parameter space for a 
best-fit solution. Instead, as our model degrees of freedom, we select the reference pathway’s reaction 
reversibilities and de-dimensionalized enzyme concentrations, which greatly reduces and bounds the 
variable space. The reaction reversibilities are strictly bounded between -1 and 1, while the reference 
pathway’s enzyme concentrations vary between 0 and 1. We then use Equation 11 to inter-convert 
between these reference quantities and the enzymes’ apparent kinetic parameters. 
 
We use genetic algorithm optimization to efficiently search this bounded space and identify sets of 
parameter values that best minimize the objective function in Equation 12. Our genetic algorithm 
implementation uses Gaussian-distributed mutation of variables and a uniformly random 2-point 
crossover for recombination, a mutation probability of 0.65, a cross-over probability of 0.35, a population 
size of 25 members. The algorithm is iterated at least 100 times. There are several aspects to this 
optimization problem where using a genetic algorithm will offer an advantage. The measured pathway 
productivities will always contain some level of experimental noise, which will convert a theoretically 
smooth objective function into a highly rugged space. With their ability to combine sub-optimal solutions 
via a recombination operator, genetic algorithms are particularly good at quickly converging to a global 
minimum even when many local minima exist. The rate of convergence and the quality of the fit can be 
readily improved by increasing the genetic algorithm’s population size and its number of iterations. The 
algorithm is also highly parallelizable with near 100% utilization of independent processors (cores) up to 
the size of the population. Moreover, we directly test the uniqueness of the parameterization process by 
utilizing a non-dominated selection operator, such as NSGA-II (Deb et al., 2002), to calculate the sets of 
model parameters that all equally minimize the objective function. Once optimization has been 
completed, we automatically confirm that the enzyme mole balance constraints and reaction flux balance 
constraints have been satisfied.  
 
2.7 Automated Analysis of the Kinetic Metabolic Model 
 
Once the best-fit kinetic metabolic model has been identified, we automatically carry out three types of 
analysis. First, we create a Pathway Map that quantifies the relationship between the pathway’s enzyme 
expression levels and its overall productivity. To do this, we carry out several in silico simulations using 
combinations enzyme expression levels that uniformly span the multi-dimensional expression space 
across a 100,000-fold range. We then use the reference pathway to convert the units of these simulated 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 9, 2017. ; https://doi.org/10.1101/161372doi: bioRxiv preprint 

https://doi.org/10.1101/161372


 

 

fluxes into measurable productivities, multiplying them by 
)������,���

)���������,���
. The Pathway Map shows how 

the pathway’s enzyme expression levels control the pathway’s productivity.  
 
Second, we automatically create a FCC Map that quantifies the rate-limitingness of each enzyme and 
identifies the optimal enzyme expression levels that will yield maximum pathway productivity. Flux 
control coefficients (FCCs) are the first derivatives of pathway productivity with respect to each enzyme 
expression level (Fell, 1998). An enzyme is most rate-limiting when its FCC is one, and is not limiting 
when its FCC is zero. Importantly, the rate-limitingness of an enzyme is not intrinsic to the enzyme itself, 
but also depends on the other enzyme expression levels, according to: 

�112��3 
 4 . /01 )
. /01  ����5���

      (13) 

The global minimum of the FCC Map is the location where a pathway’s enzymes are least rate-limiting, 
and therefore where the pathway experiences its maximal productivity. We automatically designate these 
optimal enzyme expression levels, both on the Pathway Map and on the FCC Map. More 
comprehensively, the FCC Map can be used to identify the enzyme expression levels that yield balanced 
pathways and optimally balanced pathways. In a balanced pathway, all of the pathway’s enzymes are 
equally rate-limiting, carrying the same amount of reaction flux, and having the same FCCs. In contrast, 
an optimally balanced pathway is a special case where all of the enzymes have zero FCCs and where the 
only rate-limiting step is the precursor biosynthesis rate or substrate uptake rate. There are multiple 
combinations of enzyme expression levels that will yield balanced pathways, and with some types of 
allosteric regulation, multiple optimally balanced pathways can exist. It is also possible that implementing 
the optimally balanced pathway will exceed the host’s expression capacity, and therefore it becomes 
relevant to consider implementing the balanced pathways instead.  
 
Third, we utilize the kinetic constants in the best-fit kinetic metabolic model to determine the enzymes’ 
apparent kcat and KM kinetic parameters in both out-of-pathway and in-pathway scenarios. These kinetic 
parameters are independent of the enzyme’s expression level, but do depend on its solubility and any 
acceleration of mass transfer, for example, via substrate channeling. To prioritize protein engineering 
efforts, we then automatically rank the pathway’s enzymes according to their in-pathway catalytic 
efficiencies (kcat/KM). To do this, we automatically generate a kinetic metabolic model that only contains 
the reactions catalyzed by the enzyme of interest, creating the corresponding system of differential 

equations. As before, these equations are de-dimensionalized in terms of substrate concentrations ��3# �, 
product concentrations ��3#�, free and complexed enzyme concentrations, and lumped forward and reverse 

kinetic parameters, "#,�  and "#�,� . As an example, the following differential equations describe a mono-

substrate, mono-product enzyme-catalyzed reversible reaction: 

  
���4�

�	 
 �"#,� ��$����%� � "#�,�  ����% �     (14a) 

�����& �
�	 
 "#,� ��$����%� � �"#�,� �  "#,� �����% � � "#�,� ��$����%�  (14b) 
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 1       (14d) 
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The rate law for the reaction is then automatically determined by first assuming a partial steady-state for 
the complexed enzyme concentrations, followed by substitution and simplification, yielding 

��)4�
�	 
 56�,�7��4� ����

�� ��
8

56�!��4�!�� �,�
�� �,�

�)4�
         (15) 

where "#� 
 56�,�!56�,�

56�,�
 and "#�9 
 56�,�56�,�

56�,�56�,�
.  Here, we note that reaction is reversible and the rate of the 

reaction explicitly depends on the product’s concentration. If the product’s concentration is zero, the rate 

law is simplified, yielding an apparent "#: 
 "#� and  �,+	 
 "#,�. However, if we consider the enzyme’s 

kinetics as they operate within the pathway, then the product’s concentration will not be zero. Instead, we 
define a useful scenario where the in-pathway’s substrate and product de-dimensionalized concentrations 

have reached a non-equilibrium steady-state, such that ��$� 
 ��$�. In this scenario, simplification of the 

rate law yields an apparent "#: 
 "#� �1 � "#�,� "#,�6 �6   and �,+	 
 "#,�
;� � 56��⁄ =

;�!56�,� 56�,�> =. The same formalism 

is used to determine the apparent kinetic parameters for other types of reactions and reaction mechanisms 
under the two product concentration conditions (out-of-pathway and in-pathway scenarios).  

 
Results  
3.1 Model Construction and Experimental Validation 
The Pathway Map Calculator has been implemented in the Python programming language (v2.7) and uses 
the DEAP genetic algorithm package (Gagn, 2012) and the MPI for Python parallelization package 
(Dalcín et al., 2005). Unless otherwise noted, genetic algorithm runs were run with 25 members for 100 
generations, and the results represent the best of three independent runs of the algorithm. 

We first confirmed that the Pathway Map Calculator can generate predictive and accurate models of a 
pathway’s expression-productivity relationship, using a set of previously characterized 3-enzyme pathway 
variants from Farasat et al (2014). 73 pathway variants were constructed with rationally designed 
mutations to the ribosome binding sites controlling CrtEBI expression levels, employing the RBS Library 
Calculator to design the targeted mutations. The effects of these mutations on enzymes’ relative 
expression levels were then predicted using the RBS Calculator v2.0 (Figure 1B). Neurosporene titers 
and productivities were measured using absorbance assays and quantified with a calibration curve. We 
inputted the variants’ relative enzyme expression levels and neurosporene productivities into the Pathway 
Map Calculator, along with a candidate reaction network for neurosporene biosynthesis and biomass 
formation (Figure 1C). The resulting Pathway Map predicted the pathway’s 4-dimensional expression-
productivity relationship, including the optimal enzyme expression levels that maximize the pathway’s 
neurosporene productivity. We then tested the Pathway Map’s accuracy by comparing predicted and 
measured pathway productivities, first for the training set of 73 characterized pathway variants, and then 
for a test set of 47 additional characterized pathway variants. The test set contains pathway variants that 
have unique combinations of expression levels either within the expression space of the training set 
(interpolation) or outside the training set’s sampled expression space (extrapolation).  
 
First, we found that the Pathway Map’s predicted productivities were accurate to within 29.3%, on 
average, for the training set (Figure 1D), which was a lower fitting error over the previous modeling 
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effort described in Farasat et. al. (2014). For the test set of pathway variants, we then found that the 
Pathway Map accurately predicted the pathways’ productivities to within 19.3%, on average, when 
predictions interpolated within the trained expression space (N = 19) (Figure 1E, red). Notably, the 
Pathway Map’s accuracy was retained or improved when productivity predictions extrapolated beyond 
the trained expression space with an overall accuracy of 14.9% (N = 28) (Figure 1E, green). The 
successful mapping of the CrtEBI pathway at a wide range of expression levels, both inside and outside 
the originally sampled expression space, confirms the Pathway Map Calculator’s ability to parameterize 
predictive kinetic metabolic models from a small number of characterized pathway variants.  
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Figure 2: The Pathway Map Calculator is applied to an 9-enzyme limonene biosynthesis pathway with 23 
characterized pathway variants as described in Alonso-Gutierrez et. al. (2015). (A) The candidate reaction 
network for limonene biosynthesis is shown, including three known allosteric interactions (dashed lines). 
(B) The generated Pathway Map predicts how changing enzyme expression levels will alter limonene 
productivity. The optimal expression levels are labeled (white circles). 2D slices of the 7D space are 
shown; the expression levels of the remaining 5 enzymes are kept constant at their optimal levels. idi and 
GGPS expression levels are fixed at measured values. (C) The generated Flux Control Coefficient Map 
shows how changing enzyme expression levels alters the rate-limitingness of the selected enzymes. A 
positive (negative) FCC indicates that expression of more (less) enzyme will lead to higher productivity. 
An enzyme’s optimal expression level will coincide with an FCC of zero. Allosteric interactions can lead 
to multiple local minima and maxima in expression-productivity space as indicated by multiple zero 
points in the FCC Map. 
 
As another example, we then applied the Pathway Map Calculator to a previously engineered 9-enzyme 
limonene biosynthesis pathway as developed by Alonso-Gutierrez et. al. (2015) where 23 pathway 
variants were constructed and characterized. 7 of the pathway’s enzyme expression levels were altered by 
inserting different promoters and vectors and by varying inducer concentration. In this example, the 
relative expression levels were directly measured using targeted proteomics, and the limonene titers and 
productivities were quantified using GC/MS according to a calibration curve. We then inputted the 
pathway variants’ measured enzyme expression levels (Figure S1) and limonene productivities (Figure 
S2) into the Pathway Map Calculator along with the candidate reaction network (Figure 2A). The 
resulting Pathway Map (Figure 2B) and FCC Map (Figure 2C) predict how changing the enzymes’ 
expression levels will affect the pathway’s overall limonene biosynthesis rate, including the optimal 
expression levels that are predicted to maximize limonene production (Figure 2B, white circles). Six 
informative two-dimensional plots are shown here; all 21 Pathway Map 2D plots and 42 FCC Map 2D 
plots are shown in Figure S3, Figure S4, and Figure S5. 
 
In agreement with Alonso-Gutierrez et. al. (2015), the Pathway Map predicts that limonene synthase (LS) 
is a key rate-limiting enzyme in the pathway, and that it should be expressed at a very high level. 
Specifically, the optimal LS expression level is 0.18 on the Pathway Map’s proportional scale, which 
varies from 10-5 to 1.0; increasing LS expression beyond this point is not predicted to increase limonene 
titer. Similarly, the Pathway Map predicts that the PMK and PMD expression levels should be maximally 
high (1.0 on the scale) because, besides increasing overall pathway flux, maximally increasing PMK and 
PMD expression will further reduce the concentrations of mevalonate-5P and mevalonate-5PP, which 
decrease MK- and PMD-catalyzed reactions via allosteric inhibition. However, because of the apparent 
differences in enzyme kinetics and the presence of allosteric inhibition, the optimal AtoB, HMGS, MK, 
and HMGR expression levels are predicted to be 235-fold, 235-fold, 38-fold, and 2-fold less than optimal 
LS expression level, respectively. Qualitatively, the analysis in Alonso-Gutierrez et. al. (2015) agreed that 
decreasing HMGS expression can lead to greater limonene biosynthesis.  
 
Moreover, the Pathway Map provides a visual guide to understanding how small changes in enzyme 
expression level will affect the overall pathway’s flux. For example, varying MK expression around its 
optimal level is not predicted to significantly change limonene synthesis, whereas precise tuning of AtoB 
and HMGR expression is expected to be necessary to achieve maximal productivity. Enzyme expression 
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sensitivities are quantified according to their flux control coefficients (Methods), which are visualized 
using the FCC Map (Figure 2C). A positive (negative) FCC indicates that expression of more (less) 
enzyme will lead to a higher pathway productivity, whereas a zero FCC indicates that the enzyme’s 
expression exists at a minima or maxima in expression-productivity space. Enzymes with large swaths of 
high (red) or low (blue) FCCs are key modulators of pathway productivity. Moreover, when product 
biosynthesis competes with organism growth, the FCC Map predicts how evolutionary processes are 
likely to break the pathway to improve growth rate; here, after the pathway has been optimized, lowering 
HMGR expression will have the most negative impact on limonene biosynthesis. Altogether, the Pathway 
Map and FCC Map provide actionable, readily implemented predictions to maximize limonene 
biosynthesis, for example, by inserting new promoters and ribosome binding sites designed to tune 
enzyme expression towards targeted optimal levels.  
 

 
Figure 3: Pathway Map Accuracy versus Pathway Length. The productivities of four pathways with 
(blue) three, (green) five, (yellow) seven, and (red) nine enzymes were simulated with constant kinetic 
parameters, randomly assigned expression levels, and 10% simulated measurement noise. Productivities 
and expression levels from 100 in silico pathway variants were used to parameterize Pathway Maps, 
followed by comparisons between Pathway Map-predicted and in silico-generated productivities. Data 
points and error bars represent the means and standard deviations of three in silico simulations with varied 
enzyme expression levels and simulated experimental measurement noise. 
 
3.2 Comparing Pathway Map Accuracy and Pathway Length 

Industrially important pathways vary considerably in size and complexity, and therefore it becomes 
necessary to rigorously test the Pathway Map Calculator on many examples. To do this, the following 
sections describe rigorous accuracy and scaling tests carried out on a series of in silico simulated multi-
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enzyme pathways. To mirror the experimental construction and characterization procedure on realistic 
pathways, each pathway example has randomly generated enzyme kinetic parameters sampled from a 
physiological range. The end-product productivities of pathway variants are then simulated using 
randomly sampled enzyme expression levels across a 10,000-fold range, while keeping the enzyme 
kinetic parameters fixed. We also introduce simulated experimental measurement noise by multiplying 
the calculated productivities by a log-normally distributed random number with a median of one and a 
standard deviation of 0.10 (10% simulated measurement noise ). These in silico pathway variants provide 
a realistic simulation of the sparse datasets acquired when experimentally characterizing libraries of 
pathway variants.  
 
We first tested the predictive accuracy of the Pathway Map Calculator when faced with increasingly long 
unbranched pathways, from 3 to 9 enzymes, utilizing 100 in silico simulated pathway variants to 
parameterize Pathway Maps. For each of the progressively longer pathways, the algorithm was able to 
generate accurate Pathway Maps; compared to the training sets’ in silico calculated productivities, the 
Pathway Maps had fitting errors of 3.9%, 6.2%, 4.9%, and 6.5% for the 3, 5, 7, and 9-enzyme pathway, 
respectively. Small variations in fitting error are expected, due to the random generation of kinetic 
parameters for each pathway example, and the randomness of the enzyme expression level sampling. We 
then tested the accuracies of the Pathway Maps on interpolation and extrapolation test sets, and found that 
the prediction errors on the 3 to 9 enzyme pathways varied from 5.6% to 11.7% when predicting pathway 
productivities with expression levels that fell within the training sets’ space (Figure S6), and from 3.9% 
to 5.4% when predicting maximal productivities with optimal expression levels beyond the training sets’ 
space (Figure S7). Overall, we found that the Pathway Map Calculator was able to utilize only 100 
characterized pathway variants to predict the optimal enzyme expression levels of unbranched pathways 
with at least 9 enzymes. 

 
Figure 4: Pathway Map Accuracy versus Pathway Variant Training Set Size. (A) The (green) model error 
and (red) fitting error was determined when generating Pathway Maps of a 9-enzyme unbranched 
pathway with increasingly large pathway variant training sets. Error bars indicate the standard deviation 
of three independent algorithm solutions. (B) The corresponding Pathway Maps’ predicted optimal 
expression levels for each enzyme. Lines and circles represent the geometric mean of three independent 
runs of the algorithm. Diamonds represent the standard deviations. The true optimal enzyme expression 
levels are denoted. 
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3.3 Comparing Pathway Map Accuracy and Pathway Variant Training Set Size 
 
We next investigated the minimum number of characterized pathway variants needed to parameterize an 
accurate Pathway Map. We carried out simulations of the 9-enzyme unbranched pathway, generating in 
silico training sets with between 10 to 100 pathway variants. We then inputted these training sets into the 
Pathway Map Calculator, performing three independent algorithm runs, and comparing the Pathway 
Maps’ predicted productivities to the training set’s productivities (fitting error) as well as comparing the 
predicted productivities to a constant set of 125 pathway variants with in silico-generated productivities 
that broadly sampled the expression space (model error). We found that as the size of the training set was 
incrementally increased, the resulting Pathway Map’s overall model error dropped considerably with an 
apparent plateau when the training set size was 60 pathway variants (Figure 4A, green). Comparably, the 
fitting error stayed largely the same, regardless of the training set size, indicating that the Pathway Maps 
were not being overfit to the training set data (Figure 4A, red). As a point of reference for other 
pathways, the 9-enzyme pathway’s kinetic metabolic model has 27 unknown parameters; therefore, 
accurately parameterizing the model required about two times as many characterized pathway variants. 
 
We then assessed how the training set size affected the Pathway Maps’ predicted optimal enzyme 
expression levels, a key actionable prediction. The Pathway Map parameterized by the largest training set 
predicted optimal enzyme expression levels to within 2-fold of the true in silico determined values 
(Figure 4B, blue). As the size of the training set was reduced from 100 to 60, the predicted optimal 
enzyme expression levels did not appreciably change for seven of the enzymes (Figure 4B), though there 
was some variation in E5 and E6, due to the presence of a relatively flat plateau in the multi-dimensional 
expression-productivity space (Figure S8) that causes small changes in best-fit kinetics to have large 
changes in optimal E5 and E6 expression levels, though the predicted effect on pathway productivity was 
minimal. Overall, in this example, only 60 characterized pathway variants were needed to predict 
expression levels that achieve near-maximal pathway productivities.  
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Figure 5: Pathway Map Accuracy and Experimental Measurement Noise. The productivities of a 3-
enzyme, branched, two-product pathway were simulated using fixed kinetic parameters, randomly 
assigned expression levels, and log-normally distributed simulated measurement noise with standard 
deviations of (gray) 0%, (violet) 5%, (blue) 10%, (green) 20%, (yellow) 30% and (red) 50% of means. 
Pathway Maps were parameterized using training sets and their predicted productivities were compared to 
in silico-generated productivities. Data points and error bars represent the means and standard deviations 
of three independent algorithm runs. Plots with 30% and 50% simulated measurement noise show 
selected points for visual clarity. 
 
3.4 Comparing Pathway Map Accuracy and Experimental Measurement Noise 
 
We next investigated the Pathway Map Calculator’s ability to parameterize accurate Pathway Maps when 
trained on measurements with increasing amount of simulated experimental measurement noise. We 
carried out simulations of a 3-enzyme branched pathway with two end products, creating 104-pathway 
variant training sets. We then systematically varied the simulated multiplicative experimental 
measurement noise from 0 to 50% to generate different sparse datasets. We then inputted the training sets 
into the algorithm to parameterize Pathways Maps; the resulting differences in accuracy will reveal how 
measurement noise will affect Pathway Map accuracy (Figure 5). Without any simulated experimental 
measurement noise, the Pathway Map Calculator generated a Pathway Map with low model error (1.5% 
and 10% for products E and F, respectively). When the simulated measurement noise is typical of most 
analytical techniques (5 to 20%), the Pathway Map’s accuracy remained sufficiently low for actionable 
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predictions (10% and 27% for products E and F at 20% simulated error, respectively). However, when the 
simulated measurement noise exceeded 20%, parameterization of the Pathway Map yielded noticeable 
skewed predictions with substantially higher model error (34.5% and 87.9% for products E and F at 50% 
simulated error, respectively). Overall, these comparisons show that the Pathway Map Calculator can 
generate accurate Pathway Maps, while accommodating the experimental measurement noise that is 
commonly found in most high-throughput analytical techniques.  
 
3.5 Applying Pathway Mapping to Identify Allostery in Reaction Networks  

The presence of enzyme allostery inside a pathway creates a non-linear, non-local form of regulatory 
control that often makes it challenging to engineer pathways for maximum productivity, particularly when 
it is not known when such allosteric interactions exist. Here, we show that the Pathway Map Calculator 
can use a small number of characterized pathway variants to identify the presence of allosteric 
interactions. To do this, we carried out simulations of a 3-enzyme pathway where the end-product inhibits 
the enzyme E2 via competitive inhibition (Figure 6A). The fixed training set consists of 100 in silico 
pathway variants with 10% simulated experimental measurement noise. We then created three candidate 
reaction networks – one without allostery, one with an incorrect form of allostery (feedforward 
regulation), and one with the correct form of allostery (end-product feedback inhibition) – and carried out 
independent runs of the Pathway Map Calculator using the fixed training set and the different candidate 
reaction networks (Figure 6B).  
 
When the no-allostery candidate reaction network was used, the resulting Pathway Map has a high model 
error (23.4%) (Figure 6C). Without allostery, the pathway’s expression-productivity relationship has a 
large plateau, and the Pathway Map Calculator correctly determines that the training dataset can not be 
reconciled with the incorrect no-allostery candidate reaction network. However, when candidate reaction 
networks with allostery were used, the resulting Pathway Maps were accurate (model errors of 8.4% for 
feedback inhibition and 8.8% for feedforward regulation). Here, these different forms of allostery created 
very similar Pathway Maps (Figure 6C), and therefore the Pathway Map Calculator was only able to 
identify the correct candidate reaction network (with feedback inhibition) by creating a Pathway Map 
with a marginally lower amount of model error. Overall, by using model error as a proxy for the 
correctness of the candidate reaction network, the Pathway Map Calculator can distinguish between 
correct and incorrect candidate reaction networks, for example, with and without allostery. Importantly, 
when correct and incorrect candidate reaction networks both generate similar Pathway Maps, the Pathway 
Map Calculator can not readily distinguish them. However, in this scenario, the actionable predictions 
(optimal enzyme expression levels) to improve the pathway’s productivity are also similar. 
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Figure 6: Identification of Allosteric Interactions using Pathway Mapping. (A) The same pathway variant 
training set is used with three different candidate reaction networks to parameterize Pathway Maps. (B) 
The Pathway Maps’ predicted pathway productivities are compared to the in silico-generated pathway 
productivities when using a candidate reaction network with either (red) no allostery, (blue) feedback 
allostery, or (green) feedforward allostery. (C) The parameterized Pathway Maps for the three candidate 
reaction networks, showing the differences in the expression-productivity relationship when different 
forms of allostery are assumed. 
 
3.6 Applying Pathway Mapping to Prioritize Protein Engineering Efforts 
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Protein engineering is frequently used to improve an enzyme’s intrinsic properties, such as solubility, 
turnover number (kcat), substrate selectivity, affinity (KM), and allostery, though the process of 
mutagenizing proteins and screening them for improvements can require a significant amount of time and 
resources. It therefore becomes important to first carry out protein engineering on the slowest enzymes, 
catalyzing the most rate-limiting steps in the pathway. Here, we show that Pathway Mapping identifies 
and ranks the apparent kinetic parameter values of a pathway’s enzymes, which can then be used to 
prioritize protein engineering efforts. We demonstrated this capability by carrying out simulations of a 3-
enzyme pathway where the reaction reversibilities for E1 and E2 were about 1000-fold higher than those 
of E3. We then utilized a 100-pathway variant training set to parameterize a Pathway Map, followed by 
calculation of the pathway’s flux control coefficient (FCC) map, the pathway’s optimal expression levels, 
and the enzymes’ kcat and KM parameters. We also investigate whether an enzyme’s apparent kinetic 
parameters can change when the enzyme catalyzes a reaction in isolation (out-of-pathway) or together 
with the other enzymes in the pathway (in-pathway).  
 
In this illustrative demonstration, we found that the pathway’s FCC map provides an ideal birds-eye view 
of the rate-limitingness of the pathway’s enzymes, showing the relationship between the enzymes’ 
expression levels and their flux control coefficients (Figure 7A). As before, we use the Pathway Map and 
FCC Map to predict the pathway’s optimal enzyme expression levels and we found that the enzyme E3 
required the highest expression level to maximize pathway productivity, immediately suggesting that E3 
should be prioritized for protein engineering efforts (Figure 7B).  
 
However, when we applied the Pathway Map Calculator to identify the enzymes’ kinetic parameters 
(Methods), we found a noticeable difference in the apparent kcat and KM when the enzyme was treated as 
either out-of-pathway or in-pathway (Figure 7C). In the out-of-pathway scenario, measurements of the 
enzymes’ kinetic parameters are typically performed in in vitro reactions, starting in a reaction buffer that 
contains a selected amount of substrate, but without any product. When the analysis is performed using 
the out-of-pathway scenario, the Pathway Map Calculator finds that the enzyme E3 actually has the 
highest apparent kcat/KM and E1 erroneously becomes the prioritized target for protein engineering. 
Instead, when the analysis is identically repeated using the in-pathway scenario, the Pathway Map 
Calculator correctly finds that the enzyme E3 has the lowest kcat/KM of the three enzymes. The in-pathway 
scenario correctly takes into account the reversibilities of the reactions catalyzed by E2 and E3, which 
becomes important as product accumulates inside the cell. Notably, the algorithm identifies that E3 has a 
high apparent substrate KM and a low apparent product KM, immediately suggesting that protein 
engineering efforts should modify the enzyme’s substrate binding pocket to decrease its substrate KM and 
increase its product KM. Therefore, analysis using the in-pathway scenario should be used if protein 
engineering efforts are meant to improve the pathway’s overall productivity. Instead, if the apparent 
kinetic parameters are to be compared to standard in vitro reactions, then the analysis should use the out-
of-pathway scenario. Importantly, this simple example reveals that measuring an enzyme’s kcat and KM in 
standard in vitro reaction conditions, in isolation of the pathway, can greatly mislead and misdirect 
protein engineering efforts when attempting to improve the overall pathway’s productivity. 
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Figure 7: Pathway Mapping to Identify Rate-limiting Steps and Rank Enzyme Kinetics. (A) Flux control 
coefficient maps for a 3-enzyme pathway are shown. Stars indicate the optimal expression levels that are 
predicted to maximize the pathway’s overall flux. (B) Optimal enzyme expression levels as predicted by 
the Pathway Map Calculator. (C) Lineweaver-Burke analysis is used to determine the enzymes’ apparent 
kcat and KM, using the kinetic metabolic model to simulate each enzyme’s reaction rate at varying 
substrate concentrations. Two scenarios are examined, where (left) the enzyme catalyzes its reactions by 
itself (out-of-pathway) or (right) the enzyme catalyzes its reactions within the overall pathway, reaching a 
non-equilibrium steady-state (in-pathway). The apparent kcat/KM parameters in both scenarios are shown. 

(out-of-pathway) ��$� 
 0, �,+	2��1, �2, �3�3 
 �805.8, 12.2, 4.6x10�� and ":2��1, �2, �3�3 

�13.8, 0.1, 176.4�. (in-pathway) ��$� 
 �*A�, �,+	2��1, �2, �3�3 
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":2��1, �2, �3�3 
 �12.8, 0.1, 48.4�. 
 

3. Conclusions 
 
The Pathway Map Calculator is a powerful computational algorithm with enormous potential to 
accelerate pathway optimization. We have demonstrated the algorithm’s capacity to accurately predict the 
expression-productivity relationship of many-enzyme pathways with limited and sparse experimental 
data, noisy end-product measurements, and containing allosteric regulation. The algorithm is broadly 
applicable to many industrially relevant pathways, and is agnostic to how the pathways are constructed 
and characterized, including the use of different types of genetic parts to vary enzyme expression, the 
expression of pathways in different organisms, and the measurement of metabolite productivities with 
different types of assays.  
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By regularly applying the algorithm to pathways of interest, we envision new modular mapping strategies 
whereby Pathway Maps of multiple pathways and networks are combined at the model level to predict 
more complex expression-productivity relationships, enabling precise tuning of expression to balance 
carbon, energy, and redox flows. Indeed, it is possible to combine Pathway Maps directly with the latest 
kinetic metabolic models of endogenous central metabolism (Chowdhury et al., 2014; Khodayari and 
Maranas, 2016; Khodayari et al., 2014) to predict how changes to endogenous enzyme expression levels 
will impact heterologous pathway productivities. When used in tandem with computational sequence 
design algorithms, such as the RBS Library Calculator and Operon Calculator  (Farasat et al., 2014; Tian 
and Salis, 2015), the Pathway Map Calculator can predict the specific DNA sequences needed to 
maximize end-product biosynthesis. An online implementation of the Pathway Map Calculator can be 
found at https://salislab.net/software/PathwayMapCalculator. 
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