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High-throughput immunoprecipitation methods to analyze RNA binding protein – RNA in-

teractions and modifications have great potential to further the understanding of post-tran-

scriptional gene regulation. Due to the differences between individual approaches, each of

a diverse number of computational methods can typically be applied to only one specific se-

quencing protocol. Here, we present a Bayesian model called omniCLIP that can be applied

to data from all protocols to detect regulatory elements in RNAs. omniCLIP greatly sim-

plifies the data analysis, increases the reliability of results and paves the way for integrative

studies based on data from different sources.

1 Background

All RNA molecules are subject to post-transcriptional gene regulation (PTGR) mechanisms, in-

cluding sequence-, structure- and RNA-modification-dependent modulation of splicing, cleavage

and polyadenylation, editing, transport, stability, and translation. In the regulation of PTGR RNA-

binding proteins (RBPs) play an important role. Many RBPs are required for constitutive pro-
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cesses, such as pre-mRNA splicing, cleavage, and polyadenylation. Furthermore, cell-type spe-

cific RBPs and non-coding RNAs can regulate the flow of genetic information in more directed

manners, e.g. by regulating mRNA stability or translation. The complex orchestration of RBPs

upon their respective targets ultimately determines appropriate protein expression.

The complexity and importance of PTGR is underscored by the large number of RNA-

binding proteins (RBPs) that have been identified in recent genomics and proteomics studies 1

as well as the wide range of diseases that result from genetic alterations within RBPs and/or their

mRNA targets 2, 3. Despite this large number of human RBPs, neither targets nor function for

the vast majority are well understood. Uncovering the regulatory sequence elements and impor-

tant RNA-RBP interactions will be critical to interpret human genetic variation in regulatory RNA

regions and in the noncoding transcripts increasingly uncovered by genome-wide deep sequenc-

ing 4, 5.

Deep sequencing technologies have enabled the development of various new protocols for

mapping interaction sites between RNA-binding proteins and their RNA target sites as well as for

identifying RNA-modifications on a genome-wide scale. Therefore, it is now possible to resolve

interdependencies and redundancies of binding of RBPs and ribonucleoprotein particles (RNPs)

to mRNA molecules and evaluate the contribution of these interactions to gene regulation in the

context of cellular metabolism, organismal development or normal and disease states 6, 7. Ex-

perimental approaches to study genome-wide RNA-RBP interactions include different variants

of cross-linking and immunoprecipitation (CLIP) protocols: high-throughput sequencing of RNA
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isolated by crosslinking immunoprecipitation (HITS-CLIP) 8, photoactivatable ribonucleoside en-

hanced cross-linking and immunoprecipitation (PAR-CLIP) 9, individual nucleotide resolution

cross-linking and immunoprecipitation (iCLIP) 10 or enhanced CLIP (eCLIP) 11. Similar prin-

ciples have also motivated the development of protocols to study transcript modifications such as

m6A-Seq 12 or Pseudo-seq 13. These protocols all have in common that they enable sequencing of

RNA-fragments that were bound by a specific RBP or carry a modification, via antibodies against

the native protein or tagged transgenic RBPs.

Due to particular aspects of RBP cross-linking, a crucial difference to protocols such as

chromatin immunoprecipitation (ChIP)-Seq 14 is that the resulting fragments contain conversions,

deletions or truncations at or near the cross-linked sites. These so-called diagnostic events are

therefore indicative of RNA-RBP interactions or RNA modifications and thus enable nucleotide-

level identification of the binding sites. For PAR-CLIP the most common diagnostic event type is

a T-C conversion, for iCLIP and eCLIP it is a truncation and for HITS-CLIP deletion. It should

be noted, however, that there can be also less abundant secondary diagnostic event types at the

interaction sites 15. Similar to ChIP-Seq, the resulting data from these protocols exhibits pileups

of reads (peaks) near interactions sites. The height of peaks is influenced by factors such as the

strength of binding, interaction or competition with other RBPs, local biases induced by differences

in cleavage and primer efficiencies. A fundamental difference to ChIP-Seq is that the coverage at

interactions sites, but to a smaller degree also at non-binding sites, is strongly influenced by the

wide magnitude of RNA expression levels, i.e. the relative abundance/availability of the transcript

that was bound. In order to estimate the extend of confounding of the peak height by factors
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apart from the binding strength, input or background libraries that include most steps of the CLIP

protocols except the IP can be generated. These libraries can subsequently be used to estimate

other overall effect of confounding factors on the peak height. Another challenge of the data is that

there are often spurious peaks at locations that do not show the typical characteristics of binding

sites (e.g. motifs). These can be due for example to spurious small RNAs (e.g. miRNAs) in

the sequencing libraries. In summary, the challenge of CLIP data analysis includes the proper

modeling of peak height and the diagnostic events, while accounting for confounding factors and

the modeling of technical and biological variance.

Various methods have been proposed to recover the interaction sites from sequencing data 16, 17.

PARalyzer, the first dedicated tool for PAR-CLIP data analysis, mapped sites via local maxima of

kernel-smoothed profiles of T-C conversion events, the most prevalent diagnostic event in PAR-

CLIP data. WavCluster 18 models the T-C conversions and sequencing errors using a binomial dis-

tribution and estimates a background threshold to identify peak boundaries. The binomial model

of T-C conversions is extended by BMIX 10) to also model sequence variants. Methods that do

not model the diagnostic events include Piranha 19, which determines bins of fixed size that have a

higher number of read starts than expected by chance. Piranha was the first method to model the

CLIP-reads using a Negative binomial distribution and principle also allows including covariates.

Another method that does not use the diagnostic events is Clipper 19, which models background

read-counts using a Poisson distribution and identifies regions that are higher than expected by

chance. However, all these methods suffer from at least one of the following shortcomings: (1)

They do not contain an explicit model for diagnostic events, or they can be only applied to only a
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specific CLIP protocols as the modeling of diagnostic events is restricted to one of the event types.

(2) They do not allow accounting for confounding factors, e.g. the gene expression. This can lead

to a high false positive rate of peaks in highly expressed genes, while at the same time missing

peaks for lowly expressed genes. (3) As many early datasets did not provide background or input

control libraries, many tools did not allow for integration of such data. Most tools also cannot

handle replicate data and thus cannot account for biological variance, leading to poorly calibrated

methods.

2 Results

Method overview and results To address the shortcomings of existing methods, we developed a

new Bayesian method (omniCLIP) to identify regulatory regions from all of the aforementioned

protocols. The basic principle of our model is to identify target sites via an unsupervised segmen-

tation of the transcriptome. omniCLIP learns the relevant diagnostic events directly from the data

and automatically uses it during peak calling. Furthermore, it explicitly accounts for confounding

factors as well as technical and biological variance (see Figure 1). To achieve this, we employ a

non-homogeneous hidden Markov model (NHMM) to segment the genome into peaks and non-

peaks. The emission probability of the NHMM is given by the product of the joint probability of

the coverage in all replicate CLIP and background libraries and the probability of the observed

diagnostic event frequency. To model coverage, we use a Negative Binomial based generalized

linear model that models both confounding by the gene expression, confounding of local effects

and also allows to account for excess variance. The diagnostic events are modeled using a mixture
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of Dirichlet-Multinomial distributions. The transition probabilities of the model are based on a

logistic transfer function that depends on the coverage. All parameters of the model are learned

from the data, making it easily applicable to data from various protocols.

To showcase the versatile abilities of omniCLIP, we demonstrate its application across data

from different CLIP protocols, for RBPs that enable an independent evaluation of the quality of

peak calls. First, we assessed its performance on PAR-CLIP 9 and eCLIP experiments for Pumilio 2

(PUM2), a binding factor with known and high sequence specificity. To this end, we compared the

predictions with those from other PAR-CLIP methods, including PARalyzer, WavCluster, Piranha,

and BMIX. On this PAR-CLIP dataset obtained from the human HEK293 cell line, omniCLIP fol-

lowed by PARalyzer called the highest number of peaks (n = 7, 900 and n = 5, 602, respectively)

followed by BMix (n = 4, 501), WavCluster (n = 2, 473) and Piranha (n = 678). As there is

no matching PAR-CLIP background dataset available for PUM2, we used two HEK293 ribo-zero

RNA-Seq libraries as background 7. To evaluate the quality of the called peaks, we analyzed the

enrichment of high-scoring PUM2 motifs, which we take as indicators of high-affinity binding

sites. As the number of peaks called by different methods varied by an order of magnitude, we

compared the enrichment only in the top 1,000 peaks of each method. For methods where no rank-

ing criterion was provided, we used a random sub-selection of peaks. omniCLIP and PARalyzer

had the highest enrichment of high-scoring PUM2 motifs in the peaks (see Figure 3(a)), and the

difference to the other methods was especially strong for peaks that had a high motif score. The

enrichments are not due to chance (see Supplemental Figure 1).
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We then applied omniCLIP to a PUM2 eCLIP dataset from the human K562 cell lines that

we obtained from ENCODE. Here, we compared omniCLIP with Clipper and Piranha. We applied

Piranha with and without providing it the background as a covariate. Applying Clipper results

in on average 43, 594 peaks per replicates, whereas omniCLIP found 57, 634 peaks and Piranha

only 17, 587 peaks, with omniCLIP exhibiting the highest enrichment of high scoring motifs in

the top 1000 peaks (see Figure 3(b)). Again the enrichment of high scores in the top 1000 peaks

was not due to chance (see Supplemental Figure 3). To determine how gene expression influenced

the ability to detect peaks (sensitivity) as well as the quality of the detected peaks, we binned the

top 1,000 peaks based on the expression level of the transcript in which they were identified (see

Figure 3(c)). We further classified the peaks by whether they had a PUM2 motif with a weak score

(x < 4.0), medium score (4.0 < x < 8.0), or high score (x < 8.0).With increasing gene expression

levels, the sensitivity of peak calling increased, i.e. more peaks were found. However, the rate of

peaks without strong motifs also depended on gene expression levels: For peaks in genes with less

than 10, 000 counts, omniCLIP, Piranha and Clipper peaks contained 87% (860 of 983), 52% (434

of 824) and 43% (346 of 792) high scoring motifs, respectively. This was very different for peaks

in genes with more than 10, 000 counts: Here, 76% (13 of 17), 6% (11 of 176) and 9% (18 of 208)

of omniCLIP, Piranha and Clipper peaks had high scoring motifs. This suggests that omniCLIP

has a better calibration for the peak quality than Clipper and Piranha.

Available eCLIP data for SLBP allowed for a different independent validation of peak calls,

as it is known to bind specifically the 3’-ends of histone-gene mRNAs. Thus, peaks in histone

transcripts should have a higher score than those found in other transcripts. Therefore, we com-
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bined the scores of all peaks in a gene and measured via the area under the precision-recall curve

(auPRC), how well the scores allow distinguishing of histones from other genes. Here, omniCLIP

achieved an auPRC of 0.50, Clipper an auPRC of 0.21, and Piranha an auPRC of 0.03 and 0.02

with and without using the background CLIP data, respectively (see Figure 3(d)).

To demonstrate that omniCLIP can also be used to analyze HITS-CLIP data, we applied it

on libraries for the Drosophila RBP CNBP (CG3800), which we had previously identified as an

unconventional RBP 20. CNBP binds mainly to mature mRNA sequences in Drosophila and hu-

man 20, 21. Within these sequences, CNBP shows a slight preference for binding of start and stop

codon proximal regions, relative to input (see Figure 4(a)) Both Drosophila CNBP HITS-CLIP

replicates come with size matched UV-crosslinked input control of digested total RNA, collected

prior to immunoprecipitation. Importantly, input RNA fragments undergo a library cloning proce-

dure very similar to CLIP, including RNA fragment size selection and adapter ligation, resulting

in highly accurate backgrounds. Application of omniCLIP resulted in 34, 224 peaks. The peaks

show increasing annotation to start and stop codon categories with increasing site scores (see Fig-

ure 4(b)). This is in agreement with human CNBP, which was recently shown to bind preferentially

to regions close to start codons 21. We identified the highly significant GGAGGA motif relative to

dinucleotide shuffled background (see Supplemental Table 1) in omniCLIP peaks annotated to be

mature mRNA sequences (see Figure 4(c)). This confirms the reported kmer-enrichment relative to

input in concurrent in vitro and in vivo studies of the human CNBP ortholog 21, 22. We saw a strong

connection of the motif residing in proximity to the peaks summit (see Figure 4(d)), suggesting

that omniCLIP can reliably resolve biologically relevant interaction sites in HITS-CLIP data, even
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with lower frequencies of diagnostic events.

For most available datasets, we do not have meaningful, high-quality benchmark data, as

many RBPs have been studied comparatively recently and motif descriptions or knowledge of the

precise set of target transcripts are frequently lacking. Often, we do not even know yet which

specific PTGR processes they control. To still apply omniCLIP in a more comprehensive study,

we made use of ENCODE data and investigated whether splicing rates of splicing events near

RBP-binding sites changed upon knock-down of the RBP 23. To this end, we focused on a set of

splicing related RBPs for which corresponding shRNA RNA-Seq knockdown experiments were

available (see Supplemental Table 2). Despite a smaller advantage of omniCLIP over Clipper (see

Figure 5) compared to the above in-depth studies, the predictive value (area under the precision-

recall curve) for differential splicing was consistently higher (0.25 versus 0.24). The performance

difference was present at all different types of splicing events that we studied (see Supplemental

Figure 2).

3 Conclusions

The ability to understand the mechanisms of RNA-processing and their role in development or

diseases requires understanding RBP-RNA interactions and functional consequences of these in-

teractions. This relies on reliably identifying RBA-RNA interaction sites. However, determining

the interaction sites from CLIP-Seq data is challenging due to the presence of many confounding

factors.
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Here, we present omniCLIP, a Bayesian approach to identify regulatory elements from CLIP

data. Our model presents a principled framework for RNA interaction assays and takes into ac-

count several important new aspects. First, we quantitatively model the observed coverage in all

replicates. This allows both, for including information from replicates and also accounting for var-

ious confounding factors. Second, we use an empirical Bayesian approach to identify and model

important diagnostic events and sequencing errors. Finally, we take both biological and technical

variance in to account in our model. We show that omniCLIP can be applied to data from a wide-

range of CLIP-protocols and is straightforward to adapt to new protocols, as all parameters are

learned from the data. For instance, as CLIP-Seq protocols are conceptually similar to RNA mod-

ification sequencing, omniCLIP should be easily adapted to identify RNA modifications. Finally,

omniCLIP models the data in a principled way, i.e. each of its components has a clear Bayesian

interpretation. This enables an easy integration of other probabilistic models in omniCLIP, such as

for binding motif, structure, for various biases or explicit models of additional confounding factors.

In omniCLIP, the data used for the background modeling data plays a crucial role for mea-

suring global and local biases. It is also used to calibrate the diagnostic event model. In general we

recommend using an input as a background dataset. Yet, in many especially early published CLIP

studies, these data were not acquired. In this situation, less specific data such as RNA-Seq data

can serve as a substitute to some extent, but local biases cannot be modeled using this data and

also the diagnostic event model may be less accurate. In the case when a specific background or

input dataset is not available, we recommend to trim reads prior to alignment to match CLIP-read

lengths in order to increase the similarity to CLIP-data. In general, an important factor for a reli-
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able detection of RBP-RNA interactions is having a high quality alignment. For this, we suggest

to remove multi-mapping reads and to use a stringent cut-off on the number of mismatches.

In summary, we have evaluated omniCLIP on various datasets for which either high-quality

motifs are available, for which the target genes are known, or for which we have knock-down data.

In all of these scenarios, we show that the omniCLIP performance is at least comparable or better

than each method that we have compared it against. This is insofar remarkable as most competi-

tor methods are tuned for specific protocols, and underlines omniCLIP’s potential for integrative

transcriptome studies.

4 Methods

Diagnostic event model To represent diagnostic events and sequencing errors, we use the follow-

ing model. We assume that peaks are a mixture of several classes of positions that have distinct

rates of diagnostic events. In our model we have found that 10 classes are typically enough. For

each of the classes we model the counts using a Multinomial-Dirichlet hierarchical model. In this

model the diagnostic events, in all replicates at a given position, are assumed to be distributed

according to a multinomial distribution with parameter p. Here p models the rate of diagnostic

events. This parameter is at each position identical in all replicates. To allow variation in the rates

between positions in the same class as well as for technical variance, we model p to be drawn

from a Dirichlet distribution with parameter α. The resulting model is described in the follow-

ing. Denote by N j the number of reads covering a position p in replicate i ∈ {1, . . . , I} of the
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CLIP-libraries. Denote furthermore by kj1, . . . , k
j
M the number of occurrences for each of the M

diagnostic events (all possible conversions, deletions of all bases and reads ends) in the reads at

position p in replicate j. If we define kj = (kj1, . . . , k
j
M , N

j −
∑M

i=1 k
j
i ), then the probability of

observing p(k1, . . . , kR) is given by:

p(k1, . . . , kR) =
10∑
s=1

µs

∫
p

(
R∏

j=1

M(kj|p))D(p|αs),

where the parameters αs ∈ RM+1 and M and D denote the multinomial and Dirichlet distribu-

tion, respectively. The parameters are learned by maximizing the likelihood. Parameters for the

peak state are fitted on the foreground dataset on the peak positions whereas parameters for the

background states are fitted on the background dataset on the peak positions. Positions that are in

regions where two or more genes overlap are ignored for learning the diagnostic event parameters,

as diagnostic events are strand specific and overlapping genes on the opposite strand could dilute

the learned signal. To speed up the fitting we estimate the parameter on a subset of 1, 000, 000

randomly sampled positions with coverage. Furthermore, to increase the stability of the fitting,

we use four random initializations from a uniform distribution and the solution of the previous

iteration at each iteration of the EM-algorithm.

Coverage profile model We jointly model the coverage in all replicates of the CLIP- and background-

dataset. For our model, we assume that the coverage at each position of the genome follows a

Negative Binomial (NB) distribution that is determined by the library size, the gene expression,

and whether the position is a peak. We model this dependence using a generalized linear model

(GLM) in the following manner. Assume that we have I CLIP and J background datasets. Then,
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we model the read count Y i
p in the CLIP-library i for each position p in a gene g as follows:

log(Y i
p ) =



li + tg + β, if state = P

li + tg − β, if state = B1

li + tg, if state = B2

li + γ, if state = N

Here, li models the library size. The variable β models the average enrichment of CLIP-signal

with respect to backgrounds in peaks, tg is modeling the gene expression and γ models regions

with little coverage (e.g. intergenic or intronic regions).

We model the coverage in the background libraries in a similar way. The read count Y j
p in

the background-library y for each position p in a gene g is as follows:

log(Y i
p ) =



lk + tg − β, if state = P

lk + tg + β, if state = B1

lk + tg, if state = B2

lk + γ, if state = N

Modeling the coverage jointly across libraries allows accounting for the effect of local biases that

affect the CLIP as well as the background library. For the GLM, we assume that the mean-variance

relationship is described by:

σ2 = µ+ βµ2

Estimation of the parameters is performed by alternately estimating the GLM-parameters li, tg, β
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and γ and the over-dispersion parameter β. In order to ensure an equally good fit of the GLM for

all states of the model, we weight the observations in each state by the inverse of the total number

of observations in the state. Estimation of the GLM-parameters li, tg, β and γ is performed using

iteratively reweighted least-squares (IRLS) 24. In order to speed up the computation and make

the solution computable in memory, we implemented an IRLS where all relevant components are

sparse. For this we constrained the design matrix of the GLM such that the weighted pseudo-

inverse has a sparse LU-factorization during parameter updating. This factorization in turn can

be used to solve for the updated parameters. Thereby we can circumvent the computation of the

pseudo-inverse, which is in general non-sparse and costly to compute.

Modelling of the spatial dependence To link the position-wise models for the diagnostic events

and coverage profiles, we use a Non-Homogeneous Hidden-Markov model with four states. The

transition-probabilities are computed based on the coverage Yp in all replicates. The probability

pi,j of a transition from state i to state j we use:

pi,j =


f(Y p), if i = j

1−f(Y p)
3

, otherwise

Here, we chose f to be the logistic function. The parameters of f are learned using stochastic

gradient descent. To improve convergence of the GLM parameter for the background state γ, we

set the gene expression parameter tg in the computation of the emission probabilities such that

all states have a higher expression rate than the background state. This is achieved by setting

tg = γ + |β|+10−5. Adjusting these parameters is typically only necessary in the initial iterations

and only for genes with few reads.
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Read filtering To make the modeling of diagnostic events more robust, we filtered reads and

masked certain positions. In order to prevent mis-mapping read ends from diluting diagnostic

event profile estimation, we ignore conversions that occur in the first or last two bases of a read,

and we discard reads that have more than two mismatches. Furthermore, we mask positions that

are likely to be SNPs for diagnostic event modeling and calling. To this end, we use information

from the background dataset to determine whether a position has a SNP. For positions to be called

a SNP, we require that they have at least 20 reads and that at least 20% have a conversion event in

the background.

Peak scores The scores for a peak are computed as the log-likelihood ratio of the peak state versus

the other states in NHMM at the peak location. P-values for a peak are computed in the following

way. We first compute for each position of peak the expected total coverage and variance of the

CLIP-reads. For this we sum the expected mean and variance at each position of the peak. We

then compute based on the CDF of a negative binomial with the computed mean and variance, the

p-value of the observed total coverage of the CLIP-reads. For our analyses we only consider peaks

that have Bonferroni corrected p-value ≤ 0.05.

Model fitting We fit the parameters of the model using the EM-algorithm. Specifically, we iterate

between estimating the parameters of the diagnostic event model, the expression modeling and

the NHMM. For the analyses this is done for at least 5 iterations. The model was run until full

convergence was reached. As we observed that the parameters only changed minimally after 10

iterations, we stopped the model fitting after 10 iterations in order to speed up the data processing.
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Masking of miRNA genes As a default option, we treat positions in genes that overlap annotated

microRNA genes as if they had no coverage or diagnostic events.

Data acquisition PAR-CLIP data for PUM2 was downloaded from SRA (SRP002487). eCLIP,

shRNA-Seq and RNA-Seq data for the eCLIP analysis where downloaded from the ENCODE

website (https://www.encodeproject.org). HITS-CLIP data was obtained from SRA

(SRP070745). Ribo-zero data for HEK293 was obtained from SRA(SRP080811).

Read processing Reads for PAR-CLIP analyses where processed using PARpipe (Available from

https://github.com/ohlerlab/PARpipe). Reads and quantification (e.g. site calls) for

ENCODE eCLIP and shRNA-Seq data were obtained from the ENCODE website (https://www.encodeproject.org).

HITS-CLIP reads were quality-filtered using the fastx-tool kit using the parameters -q 10 -p

95 25 and trimmed adapters using cutadapt 26 using the parameters --overlap=3 -m 24 dis-

carding untrimmed reads. Subsequently, reads were transformed to fasta format and collapsed

still including the 4 randomized nucleotides at both end of the reads. Randomized adapter ends got

trimmed after read collapsing and added to the read identifier and treated as unique molecular iden-

tifiers (UMIs). Reads for the HITS-CLIP dataset were aligned using STAR (v.2.4.2a) 27. Reads

were first aligned and removed against the rRNA genome parts using the following parameters

for D.melanogaster: --alignEndsType EndToEnd --outFilterMultimapNmax 10

-outFilterIntronMotifs RemoveNoncanonical --outReadsUnmapped Fastx

--alignSJoverhangMin 12 --outFilterMatchNmin 15 --outFilterMismatchNmax

1 --outFilterMismatchNoverLmax 0.05
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--outFilterMultimapScoreRange 3 --alignIntronMax 20000

--seedMultimapNmax 200000 --seedPerReadNmax 30000.

The reads that did not align to the rRNA were then aligned against the D. melanogaster genome

BDGP6 (Ensembl v81) using STAR with the following parameters: --alignEndsType

EndToEnd --outFilterMultimapNmax 10

--outFilterIntronMotifs RemoveNoncanonical --alignSJoverhangMin 12

--outFilterMatchNmin 15 --outFilterMismatchNmax 1

--outFilterMismatchNoverLmax 0.05 --outFilterMultimapScoreRange 3

--alignIntronMax 20000 --seedMultimapNmax 200000

--seedPerReadNmax 30000 Reads with mismatches within the first and last two nucleotides

were filtered out. Next, we removed reads with mismatches relative to the genome reference, which

were likely introduced during sequencing and thus represent sequencing errors and not diagnostic

events. To this end, we grouped alignments based on genomic coordinates (Chr, start, end, strand)

and their UMIs. In case alignments overlapped entirely and shared the same UMI, while differing

from each other and/or the reference sequence, we sorted by copy number (retained from read

collapsing) and removed reads with relative lower copy number and a hamming distance one to

the higher copy number reference read. For alignment of RNA-Seq reads to the human genome,

reads were aligned against the human genome GRCh37 using STAR with the following parame-

ters: --alignEndsType EndToEnd --chimSegmentMin 40

--chimJunctionOverhangMin 40 --outFilterMultimapNmax 2

--outFilterIntronMotifs RemoveNoncanonical --alignSJoverhangMin 16
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--outFilterMatchNmin 30 --outFilterMismatchNmax 2

--outFilterMultimapScoreRange 0 --alignIntronMax 20000 PAR-CLIP reads

for PUM2 were aligned against the human genome GRCh37 using Bowtie 28 with the following

parameters:-v 1 -m 10 --all --best --strata -p 4 -S

To remove reads mapping to multiple locations in our analysis, we only kept the best align-

ment of a read if the second best alignment had more than one mismatch more than the best

alignment. Furthermore, we discarded reads that had more than two mismatches.

Application of methods for PAR-CLIP analysis We called peaks with PARalyzer (v1.5), Wav-

Cluster (downloaded from

https://github.com/FedericoComoglio/wavClusteR), Piranha(v.1.2.1) and

BMIX (downloaded from https://github.com/cbg-ethz/BMix) using default parame-

ters. For PAR-CLIP, peak calling with Piranha data yielded less than 10 peaks. Thus, we applied

it without using a background dataset.

Motif prediction We predict motifs using biopython 29 using the pssm scoring scheme. For the

motif calling a threshold score of 3.0 was used and only the forward strand was considered. Addi-

tionally a small pseudo count of 5 ∗ 10−5 was added to remove potential zeros in the PWM. The

RBFOX2 position weight matrix (PWM) was obtained from 11 and the PUM2-PWM from 30.

* De novo motif discovery and visualization For de novo motiv discovery all peaks (n = 29556)

that can be annotated by mature mRNA annotation categories (3’utr, 3’utr-intron, 5’utr, 5’utr-
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coding, 5’utr-intron, coding, coding-3’utr ,coding-5’utr, coding-intron, intron-3’utr, intron-5’utr,

intron-coding, start-codon, stop-codon) were selected. For this analysis the expressed transcripts

per gene with highest RSEM isoform percentage from two total RNA-Seq experiments in Drosophila

S2 cells (personal communications Hans-Hermann Wessels) were selected. Subsequently HOMER2

(v.4.9.1) 31 was used for de novo discovery using dinucleotide shuffled background sequences. For

HOMER2 the following parameters were used: len 6 -strand + -p 4. The shuffled back-

ground was generated using uShuffle (v.0.2) 32 using the following parameters: -k 2 -n 10

-r 10004. To plot the motif position relative to peak summits, we used the Bioconductor pack-

age GenomicRanges (v.1.22.4) 33 to center in a + - 50nt window around the peak summit and

searched for the motif PWM using the patternMatrix function from Genomation (v.1.2.2) 34 using

the following parameters min.score=0.8, prior.params = c(A=0.25, C=0.25,

G=0.25, T=0.25). To obtain a suitable background, we randomly shuffled the PWM posterior

probability from the retrieved GGAGGA motif for each nucleotide position randomly, but left the

individual values unchanged to keep the overall PWM positional preference.

Scoring for gene-based analyses To combine peaks in for a gene we proceeded as follows. For

omniCLIP we summed the scores. For Clipper and Piranha we summed the log p-values from

peaks in both replicates for each gene.

Splicing analysis Transcript quantification for the RNA-Seq and shRNA RNA-Seq datasets of

splicing related genes (see Supplemental Table2) were obtained from ENCODE. We applied SUPPA

(v2.0) to determine the inclusion levels for splicing events (exon skipping, alternative 5 and 3’
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splice sites, mutually exclusive exons, retained intron, alternative first and last exons) and multiple

testing corrected p-values for the events 35. We then used a corrected p-value cutoff of 0.2 > p to

define the true positives and 0.2 ≤ p to define the true negatives for the computation of the auPRC.

Software availability The software for omniCLIP can be obtained from:

https://github.com/philippdre/omniCLIP
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Figure 1: Examples of peak finding across protocols. Peak calling for the two transcripts ZNF12

and PRICKLE1 for PUM2 eCLIP libraries with a matched input from K562 cells, and for PUM2

PAR-CLIP libraries from HEK293 cells with an RNA-Seq background. On the top of each panel,

Gencode v19 transcript isoforms are illustrated, as well as UCSC hg19 100way PhastCons conser-

vation scores (green). Peak calls for omniCLIP (yellow), PARalyzer (black), WavCluster (green),

BMix (purple), Clipper(turquoise) and Piranha (brown) are shown below the coverage profiles.

PUM2-motifs with score higher than 8.0 are shown under the peak calls (in red).
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Figure 1: a The 3’UTR of ZNF12. omniCLIP can be used to robustly calls peaks on PUM2

CLIP data to determine cell type specific binding events, despite the data being generated by dif-

ferent specialized CLIP protocols and in across cell types. For PAR-CLIP data, individual read

alignments (grey bars) are depicted to illustrate PARCLIP specific T-C conversions (organge ticks)

relative to the reference genome. Due to their low depth the two PAR-CLIP libraries have been

merged for the visualization. omniCLIP does not call a peak for the leftmost read cluster. This

shows that the accurate modelling of diagnostic events as well as incorporation of the local back-

ground enables a better distinction of true high-confidence from low-confidence binding sites. b

The 3’UTR of PRICKLE1. omniCLIP calls ‘true’ binding sites in regions with sparse data, high-

lighting the benefit of using replicate information and having a well calibrated gene expression

model.
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Figure 2: Method overview. (a) Coverage as well as diagnostic events. Here, the diagnostic events

are subtracted from the CLIP coverage. The emission probability is computed as the product of

two components. (b) The coverage model is based on a GLM and a model for the diagnostic

events (shown in ((c)) that is based on a Mixtures of Dirichlet-Multinomial (DMM) distributions.

(d) The transition probability is computed from a logistic function of the coverage. The emission

and transition probabilities are used in a Non-homogeneous Hidden Markov Model to segment the

sequence in to peak regions (P) and non-peak regions (N, B1, B2).
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Figure 3: Performance evaluation. (a) Distribution the PUM2 motif scores of the top 1,000 called

peaks for PARalyzer, Piranha, WavCluster, BMix and omniCLIP on a HEK293 PUM2 PAR-CLIP

dataset. (b) PUM2 motif scores distribution for the top 1,000 called peaks for omniCLIP, Clipper

and Piranha on a HepG2 PUM2 eCLIP dataset. (c) Gene expression distribution for the top 1,000

peaks on the HepG2 PUM2 eCLIP dataset as well as the expression of 1, 000 randomly sampled

genes. Peaks are further classified into weak score (PUM2 PWM score x < 4.0), medium score

(4.0 < x < 8.0) and high score (x < 8.0). On the (right) side of the plot, peaks with a PUM2-

motif score of at least 4.0 are shown. On the (left), peaks without such a motif are shown. The gene

expression of 1, 000 randomly sampled genes with at least 1 read count is shown for comparison

in (purple). (d) Precision recall curves for Clipper and omniCLIP on a HepG2 SLBP dataset for

discriminating histone genes and non-histone genes from peak scores.
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Figure 4: Binding preferences of CNBP. (a) Metaplot depicting the average Z-score transformed

binned coverage across all genes (transcript with highest RSEM isoform percentage selected) with

omniCLIP peak. Median 5’UTR (8%), CDS (78%) and 3’UTR (14%) proportions were extracted

from all expressed genes in Drosophila S2 cells (TPM> 0) from regular total RNA-Seq exper-

iments. Shades around solid lines indicate the standard error. (b) omniCLIP peak annotation

grouped by strength into 10 peak SiteScore bins. (Left) Simplified annotation categories, to en-

able comparison to expected annotation distribution. Here, 5’UTR contains the start codon and

3’UTR the stop codon, respectively. The expected peak annotation distribution was calculated

according to the feature distribution shown in (a), for all peaks tat are annotated as mature tran-

scripts. Peaks classified as ‘other’ were ignored. (Right) Peak annotation categories grouped by

peak score. Peaks annotated with start or stop codon do overlap such features. (c) CNBP motif

calculated using HOMER2 for all peaks annotated to mature transcripts (n = 29556), relative to

10x dinucleotide shuffled background sequences. (d) Recovery of the CNBP motif and shuffled

PWM relative to peak summit of all peaks used (n = 29,433). PWM match required 80% similarity.

Indicated percentages reflect peak sequences with motif hit. The next highest recovered random

PWMs are variants of the identified motif. 29
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Figure 5: ENCODE splicing analysis. Shown is a comparison of omniCLIP and Clipper on

splicing associated RBPs using eCLIP and shRNA RNA-Seq data. Datapoints are the auPRCs of

omniCLIP and Clipper for predicting differential splicing events upon knock-down of a RBP based

on the eCLIP peaks for the respective RBP.
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