
	 1	

GPS2 regulates mitochondria biogenesis via mitochondrial retrograde signaling and 

chromatin remodeling of nuclear-encoded mitochondrial genes 

 

Maria Dafne Cardamone1, Bogdan Tanasa2,3,#, Carly Cederquist1,4,#, Jiawen Huang1, 

Kiana Mahdaviani5, Wenbo Li2,6, Michael G. Rosenfeld2, Marc Liesa5,7 and Valentina 

Perissi1,* 

 

1Biochemistry Department, Boston University School of Medicine, Boston, MA 02118 

2Howard Hughes Medical Institute, Department and Molecular School of Medicine, 

University of California San Diego, La Jolla, CA 92093  

3Current address: Division of Hematology/Oncology, Department of Pediatrics, University 

of California San Francisco, San Francisco, CA 94158  

4Graduate Program in Cellular and Molecular Biology, Boston University School of 

Medicine, Boston, MA 02118 

5Department of Medicine, Boston University School of Medicine, Boston, MA 02118 

6Current address: Department of Biochemistry and Molecular Biology, UTHealth 

McGovern Medical School, Houston, TX 77030 

7Current address: David Geffen School of Medicine, University of California Los Angeles, 

Los Angeles, CA 90095 

 

#These authors have contributed equally. 

*Correspondence: vperissi@bu.edu (V.P.) 

 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 11, 2017. ; https://doi.org/10.1101/162297doi: bioRxiv preprint 

https://doi.org/10.1101/162297


	 2	

Summary 

As most of the mitochondrial proteome is encoded in the nucleus, mitochondrial 

functions critically depend on nuclear gene expression and bidirectional mito-nuclear 

communication. However, mitochondria-to-nucleus communication pathways are 

incompletely understood. Here, we identify G-Protein Pathway Suppressor 2 (GPS2) as a 

mediator of mitochondrial retrograde signaling and a key transcriptional activator of 

nuclear-encoded mitochondrial genes in mammals. GPS2 regulated translocation from 

mitochondria to nucleus is essential for the transcriptional activation of the nuclear stress 

response to mitochondrial depolarization and for supporting basal mitochondrial 

biogenesis in differentiating adipocytes and in brown adipose tissue from mice. In the 

nucleus, GPS2 recruitment to target gene promoters regulates histone H3K9 

demethylation and RNA Polymerase II (POL2) activation through inhibition of Ubc13-

mediated ubiquitination. Together, these findings reveal an unexpected layer of 

regulation of mitochondrial gene transcription as they uncover a novel mitochondria-

nuclear communication pathway.  

Introduction 

Normal mitochondrial function is vital to the well being of eukaryotic cells. Beyond ATP 

production, mitochondria generate key metabolites and biochemical signals central to 

apoptotic and metabolic regulatory pathways. Conversely, defects in mitochondrial 

functions have been associated with many human diseases, including not only primary 

inherited mitochondrial disorders, but also insulin resistance and Type 2 diabetes (T2D) 

(Altshuler-Keylin and Kajimura, 2017; Gorman et al., 2016; Hu and Liu, 2011; 

Kusminski and Scherer, 2012; Newsholme et al., 2012; Patti and Corvera, 2010; Wallace, 

2013). Even though mitochondria are semi-independent organelles containing multiple 

copies of their own genome, most of the mitochondrial proteome is encoded by nuclear 

genes and, thus, regulated by nuclear transcription factors (TFs) and associated cofactors 

including PGC1α, NRF1, GABPα, ATF5, ERRα and others (Brenmoehl and Hoeflich, 

2013; Fiorese et al., 2016; Hock and Kralli, 2009; Scarpulla et al., 2012; Whelan and 

Zuckerbraun, 2013; Wu et al., 1999). Thus, the biogenesis of mitochondria and the 

maintenance of mitochondrial homeostasis critically depend on nuclear transcription and 
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on the presence of signaling pathways that inform the nucleus of mitochondrial 

dysfunctions and changes in cellular metabolism (Finley and Haigis, 2009; Guha and 

Avadhani, 2013; Hu and Liu, 2011; Kotiadis et al., 2014; Vafai and Mootha, 2012; Yun 

and Finkel, 2014). This is partly achieved through regulation of nuclear TFs and 

cofactors via cytosolic mediators (i.e. Ca2+, ROS, NAD/NADH ratio)(Bohovych and 

Khalimonchuk, 2016; Hock and Kralli, 2009; Quiros et al., 2016; Scarpulla, 2012; 

Scarpulla et al., 2012; Wu et al., 1999). However, much is still unknown about 

mitochondria-to-nuclear signaling pathways and about the physiological effects of 

impaired communication networks in the development of diseases (Chandel, 2015; Finley 

and Haigis, 2009; Guha and Avadhani, 2013; Vafai and Mootha, 2012).  

A direct mitochondrial retrograde response pathway was first described in response to 

mtDNA depletion in S. Cerevisiae. Key players in this pathway are the DNA 

transcription factors Rtg1-Rtg3, and the regulatory factor Rtg2, which drives Rtg1-3 

translocation to the nucleus in response to changes in ATP availability and mitochondrial 

membrane potential (MMP)(Jazwinski and Kriete, 2012; Jia et al., 1997; Liao and Butow, 

1993; Rothermel et al., 1995; Rothermel et al., 1997; Sekito et al., 2000).  Partially 

overlapping functions of Rtg1/Rtg3 with mammalian transcription factors (such as 

FOXOs, NFkB, ERα and Myc) speak to the functional conservation of this pathway, 

even in absence of clear mammalian orthologues of the yeast Rtg genes (Germain, 2016; 

Jazwinski, 2013; Quiros et al., 2016). Investigating mito-nuclear communication 

strategies in response to proteotoxic stresses (UPRmt) in worms also led to the 

characterization of a transcriptional response program coordinated by transcription factor 

ATFS-1 upon nuclear translocation, further supporting the notion that direct 

communication strategies might be employed across species (Lin et al., 2016; Nargund et 

al., 2015; Nargund et al., 2012). However, it is currently unknown whether direct 

mediators of retrograde signaling, yet to be identified, exist in mammals. 

GPS2 is a multi-functional protein that recently emerged as an important regulator of 

inflammation and lipid metabolism, processes tightly linked to mitochondrial functions 

(Cardamone et al., 2012; Cardamone et al., 2014; Jakobsson et al., 2009; Toubal et al., 

2013; Venteclef et al., 2010). The nuclear GPS2 protein content is tightly controlled 
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through protein stabilization/degradation (Huang et al., 2015) and GPS2 deficiency in 

mice is embryonic lethal (Guo et al., 2014), indicating the physiological importance of 

GPS2. Previous work from us and other laboratories indicate that nuclear GPS2 acts as a 

transcriptional cofactor playing a dual role as corepressor and coactivator for a number of 

transcription factors (Cardamone et al., 2014; Cheng and Kao, 2009; Guo et al., 2014; 

Jakobsson et al., 2009; Peng et al., 2001; Venteclef et al., 2010; Zhang et al., 2008). 

Furthermore, in addition to the nuclear functions, we recently reported a number of 

distinct, but possibly coordinated, functions for GPS2 in the cytosol as regulator of 

insulin signaling and pro-inflammatory response pathways (Cardamone et al., 2012; 

Cederquist et al., 2017; Lentucci et al., 2016). While the molecular mechanisms 

underlying GPS2 genomic and non-genomic functions have not been fully elucidated, our 

work suggests that both nuclear and cytosolic functions are linked to GPS2-mediated 

inhibition of lysine 63 (K63) ubiquitination events (Cardamone et al., 2012; Cardamone 

et al., 2014; Cederquist et al., 2017; Lentucci et al., 2016). This raises a number of 

important questions regarding GPS2 function and regulation in the cell. First, does GPS2 

shuttles between different intracellular locations? Second, is its extra-nuclear residence 

important for informing and modulating GPS2-mediated transcriptional regulation? Third, 

do the opposing functions of GPS2 and the K63 ubiquitin conjugating enzyme Ubc13 

serve a key role for the coordinated regulation of metabolic and inflammatory pathways? 

The current study addresses these questions by demonstrating that GPS2 regulated 

translocation from mitochondria to nucleus represents a novel mitochondria retrograde 

signaling pathway, which is required for promoting the transcriptional reprogramming 

induced by mitochondria depolarization and for supporting mitochondria biogenesis 

during adipocyte differentiation. Mechanistically, our results indicate that GPS2-

mediated inhibition of Ubc13 activity on target promoters is required for promoting the 

dimethylation of repressive histone mark H3K9me3 and the activation of POL2-mediated 

transcription, thus suggesting that modulation of non-proteolytic ubiquitination represents 

an unappreciated hub for integrating metabolic pathways modulating the balance between 

lipid storage and energy expenditure in the adipose tissue.  
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Results 

Dual mitochondrial/nuclear localization of transcriptional cofactor GPS2 

To better elucidate GPS2 complex role within the cell, we first sought out a more detailed 

description of its subcellular localization. In agreement with its proposed functions, GPS2 

was previously reported in both the nuclear and cytosolic compartments (Cardamone et 

al., 2012). A closer inspection of GPS2 intracellular localization by immunofluorescence 

revealed that the extra-nuclear staining was both diffused in the cytosol as well as 

concentrated in specific structures. In agreement with in silico prediction analyses using 

TargetP1.1 and Mitoprot (Claros and Vincens, 1996; Nielsen et al., 1997), co-staining 

with mitochondrial markers mtHSP70 and ATP5B indicated that the punctate cytosolic 

staining corresponded to GPS2 localization to mitochondria in both murine 3T3-L1 and 

human Hela cells (Fig. 1A). Specificity of the mitochondrial staining was confirmed in 

3T3-L1 cells by GPS2 downregulation with two independent siRNA (Supplemental Fig. 

S1A and S1B). Conversely, the expression of a HA-GPS2 fusion construct resulted in 

extensive HA mitochondrial staining in both 3T3-L1 and Hela cells (Supplemental Fig. 

S1C), confirming mitochondrial targeting of the fusion protein. Mitochondria localization 

of endogenous GPS2 was also confirmed by immunogold labeling coupled with electron 

microscopy in Hela cells (Supplemental Fig. S1D). These results together identify GPS2 

as a previously unrecognized mitochondrial protein.  

Next, we wished to define the domain responsible for GPS2 mitochondrial localization. 

Because inspection of the GPS2 sequence did not reveal any classic mitochondria 

localization signal (MLS), we overexpressed different GPS2 deletion constructs and 

verified the protein subcellular localization by fractionation and WB. Because we had 

previously shown that N-terminal deletions lead to protein degradation, deletion of the 

first 60 aa was tested in association with point-specific mutations of the lysines targeted 

by protein ubiquitination (K254, 300, 327A)(Huang et al., 2015). In this stabilized form, 

deletion of the N-terminus did not affect mitochondrial localization, confirming the 

absence of an N-terminal mitochondrial import sequence. Likewise, the C’terminus 

domain was not required for mitochondrial localization (Fig. 1B). Deletion of aa.155-327, 

instead, severely impaired the expression of HA-GPS2 in the mitochondria, indicating 
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that mitochondrial localization of GPS2 is likely driven by an internal import signal 

between aa. 155 and 212 (Fig. 1B).  

GPS2 regulate mitochondrial function through transcriptional regulation of 

nuclear-encoded (neMITO) genes.  

To investigate the physiological relevance of GPS2 in the regulation of mitochondrial 

functions, we measured mitochondrial respiratory capacity in intact cells depleted of 

GPS2 by siRNA-mediated downregulation (GPS2-KD). For these experiments, we 

transiently downregulated GPS2 in either 3T3-L1 cells, using one of the murine siRNA 

validated above, or Hela cells, using a distinct human siRNA that was previously used to 

characterize GPS2 in 293T cells (Cardamone et al., 2012). In both systems GPS2 

downregulation caused a significant decreases in maximal respiratory capacity and ATP-

linked respiration (Fig. 1C and Supplemental Fig. S1E). Because of GPS2 well-

described role in transcriptional regulation, we asked whether the observed lower cellular 

respiration in absence of GPS2 was due to a defect in the expression of mitochondrial 

genes. In agreement with this hypothesis, GPS2 was consistently required for the 

expression of a variety of nuclear-encoded mitochondrial (neMITO) genes selected 

across different functional classes (Fig. 1D, for validation with distinct siRNA see 

Supplemental Fig. S1F). In contrast, the expression of mtDNA-encoded genes was not 

affected by GPS2 downregulation (Supplemental Fig. S1G). These results were 

confirmed by corresponding changes in protein levels of representative nuclear-encoded 

and mitochondrial-encoded enzymes (Fig. 1E). Also, rescue experiments with HA-GPS2 

restored the expression of neMITO genes, confirming the on-target specificity of this 

effect (Supplemental Fig. S1H). In addition, GPS2 downregulation caused a significant 

reduction in mitochondrial DNA copy number in both 3T3-L1 and 293T cells (Fig. 1F). 

This suggested that a decline in the amount of mitochondria, possibly caused by a global 

reduction in mitochondrial gene expression, rather than a specific defect in electron 

transport chain activity, might be responsible for the observed reduced respiration 

capacity of GPS2-KD cells. 

To further address the relevance of GPS2 as a global regulator of mitochondrial gene 

expression, we performed genome-wide RNAseq profiling of 3T3-L1 WT and GPS2-KD 
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cells. Considering the full transcriptome, we identified 1086 Differentially Expressed 

Genes (DEGs) upon GPS2 downregulation, including 439 genes down-regulated and 647 

genes up-regulated (Fig. 2A and Supplemental Table 1). Mitochondrial GO terms were 

among the most significantly enriched categories among down-regulated genes, whereas 

up-regulated genes associated with non-mitochondrial terms (Fig. 2A, EnrichR analysis 

of GO Cellular Pathways (Chen et al., 2013)). In agreement with the significant 

enrichment in mitochondrial terms observed among downregulated genes, approximately 

20% of the downregulated genes compared to 10% of the upregulated were mitochondrial 

genes (Fig. 2A). Furthermore, only downregulated genes were enriched for canonical 

mitochondrial pathways like “TCA cycle” and “Electron transport chain” (Fig. 2A, 

EnrichR analysis of WikiPathways (Chen et al., 2013)). Upregulated mitochondrial genes 

were more loosely associated with “Interleukin signaling pathways”, “SREBP signaling” 

and “NFkB signaling” (Fig. 2A), suggesting they could represent a secondary response to 

mitochondrial dysfunction or to the upregulation of AKT and pro-inflammatory pathways 

in the cytosol. Accordingly, total upregulated genes were enriched for “Focal adhesion”, 

“Regulation of actin cytoskeleton” and “PI3K/AKT pathway” (Supplemental Fig. S2A), 

as expected based on GPS2 regulating insulin signaling through AKT activation in the 

adipose tissue (Cederquist et al., 2017). Downregulated genes were instead enriched for  

“Cell cycle”, “Meiosis” and “Glutathione metabolism” functional pathways 

(Supplemental Fig. S2A, EnrichR analysis of KEGG Pathways (Chen et al., 2013)).  

Notably, comparable results were observed in a previously published transcriptomic 

analysis in human 293T cells (Cardamone et al., 2012)(Supplemental Table 2). The 

transcriptional signature of GPS2-deleted B cells also included a similar enrichment in 

the downregulation of genes associated with mitochondrial functions (Lentucci et al., 

2016). Thus, profiling of GPS2 transcriptional signature in different cell models confirms 

that GPS2 is broadly required for the activation of mitochondrial gene expression and 

reveal that its downregulation is associated with significant reprogramming of cell 

growth and metabolism. 

As these results suggested that GPS2 might be regulating mitochondrial gene expression 

as a nuclear cofactor, we next re-analyzed previously published GPS2 ChIPseq datasets 
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(Cardamone et al., 2012; Cardamone et al., 2014; Fan et al., 2016) by focusing on 

mitochondrial genes. Strikingly, GPS2 binding was observed on most mitochondrial 

genes in each cell model, including macrophages, adipocytes and embryonic kidney cells 

using three distinct antibodies (Fig. 2B). In each of these models, GPS2 binding sites 

genome-wide had been previously mapped to both promoter and distal regulatory regions 

on distinct and overlapping target gene programs (Cardamone et al., 2012; Cardamone et 

al., 2014; Fan et al., 2016). In contrast, GPS2 binding to neMITO genes was found 

concentrated on promoter areas, with the enrichment in GPS2 binding on mitochondrial 

promoters being highly significant for each cell model (Fisher’s test, p value < 2.2e-

16)(Supplemental Fig. S2B). In accord with GPS2 preferential binding to promoters 

rather than enhancer and other inter/intragenic regions, GPS2 peaks on mitochondrial 

genes in 3T3-L1 cells showed a significant enrichment in promoter-associated motifs 

(Supplemental Fig. S2C). Also, tag density plots representing the overlapping of GPS2 

ChIPseq profile with the positions of known nuclear partners of GPS2 (Cardamone et al., 

2014; Fan and Evans, 2014; Hock and Kralli, 2009; Lefterova et al., 2010; Raghav et al., 

2012) showed that the center of GPS2 binding was shifted towards the transcription start 

site (TSS) when compared to the binding of nuclear receptors and associated corepressors 

(Fig. 2C). This suggested that GPS2 recruitment on neMITO genes is distinct from what 

previously reported for other genomic targets (Cardamone et al., 2012; Cardamone et al., 

2014; Fan et al., 2016). In keeping with this conclusion, comparative analysis of GPS2 

binding with existing GROseq and H3K27Ac profiles in adipocytes (Harms et al., 2015; 

Step et al., 2014) confirmed that GPS2 binding was concentrated around the TSS of 

mitochondrial genes (Fig. 2D) where it overlapped with the binding profile of RNA 

Polymerase II (POL2)(Siersbaek et al., 2011)(Fig. 2E). Collectively, integration of 

RNAseq and ChIPseq data therefore reveal that GPS2 regulates mitochondrial function 

through direct transcriptional regulation of a vast nuclear-encoded mitochondrial gene 

program.  

GPS2-mediated inhibition of Ubc13 activity is required for H3K9 demethylation 

and expression of neMITO genes  
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To elucidate the specificity of this regulatory strategy, we next asked what constituted the 

molecular mechanism of GPS2-mediated regulation of transcription in the context of 

neMITO genes. As GPS2 is a potent inhibitor of the ubiquitin conjugating enzyme Ubc13 

and regulates the expression of selected PPARγ target promoters through stabilization of 

an H3K9 demethylase (Cardamone et al., 2012; Cardamone et al., 2014; Cederquist et al., 

2017; Lentucci et al., 2017), we first investigated whether H3K9 demethylation and local 

ubiquitination are involved in the regulation of mitochondrial genes. This proved correct 

as in 3T3-L1 GPS2-KD cells we detected: i) a significant increase in the level of non-

proteolytic ubiquitin chains on the promoters of mitochondrial genes Ndufv1 and 

Tomm20 by ChIP using an antibody specific for K63 ubiquitin chains (Fig. 3A); ii) a 

dramatic increase in H3K9me3 occupancy (Fig. 3B). In agreement with the regulation 

observed on specific PPARγ-bound promoters (Cardamone et al., 2014), the 

accumulation of H3K9me3 on the promoters of Ndufv1 and Tomm20 correlated with a 

significant decrease in binding of the H3K9 demethylase JMJD2A/KDM4A 

(Supplemental Fig. S3A). However, our previous genome-wide data indicated that 

KDM4A binding is limited to a small subset of mitochondrial genes (Cardamone et al., 

2014), whereas ChIPseq genome-wide analysis of H3K9 methylation status revealed that 

GPS2 downregulation caused a significant increase in H3K9me3 on the entire 

mitochondrial genes set (Fig. 3C). Notably, the increase in H3K9me3 in absence of 

GPS2 was specific to mitochondrial genes as revealed by comparison to the whole 

genome or to randomly selected group of genes of comparable size (Fig. 3C and 

Supplemental Fig. S3B). Also, intriguingly, the basal level of H3K9me3 in the area 

around neMITO genes was found significantly higher than for other genomic loci (Fig. 

3C and Supplemental Fig. S3B). These results together indicate that neMITO genes in 

WT cells are specifically marked by the exclusion of H3K9me3 from the proximal 

promoter area, which is lost, or at least significantly reduced, upon GPS2 downregulation.  

To our initial surprise, the accumulation of H3K9me3, which appeared concentrated 

downstream of the TSS, was associated with a significant increase in RNA Polymerase II 

(POL2) binding over mitochondrial promoters (Fig. 3D and Supplemental Fig. S3C). 

Notably, despite GPS2 binding to an extensive number of genes, a quantitatively 

significant increase in POL2 occupancy was observed only for the mitochondrial gene 
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subset and not for comparable groups of random genes, just as observed for the 

H3K9me3 mark (Supplemental Fig. S3D). This suggested that POL2 activity rather that 

its recruitment might be affected by the methylation status of H3K9.  

As GPS2 was reported associated with the negative elongation factor NELF and paused 

RNA polymerase II (POL2) on HIV long terminal repeats (Natarajan et al., 2013), we 

asked whether the expression of mitochondrial genes could be impaired in GPS2-KD 

cells as a result of increased POL2 proximal-promoter pausing. To interrogate the status 

of POL2 on GPS2-regulated genes, we measured nascent RNA by GROseq in WT and 

GPS2-KD 3T3-L1 cells. In accord with the transcriptomic analysis, transcription of 

mitochondrial genes was found dramatically reduced upon GPS2 downregulation, with 

divergent polymerase molecules driving sense and anti-sense transcription being equally 

impaired (Fig. 3E and Supplemental Table 3). However, the read density pattern of 

GROseq tags observed in GPS2-KD cells resembled what previously reported in cells 

treated with the initiation inhibitor Triptolide, rather than the pattern reported upon 

treatment with the pausing escape inhibitor Flavopiridol (Chen et al., 2015; Jonkers et al., 

2014). Thus, we conclude that the lack of significant accumulation of nascent RNA 

detected over the first 50-100bp of mitochondrial genes indicates that GPS2 

downregulation does not promote an increase in POL2 pausing, but rather inhibits POL2 

activation (Fig. 3E). In accord with this conclusion, profiling the phosphorylation status 

of Ser2 and Ser5 sites on the C-terminal domain (CTD) of POL2 by ChIP confirmed that 

neither POL2 phosphorylation event was detectable on representative mitochondrial gene 

promoters in GPS2-KD cells, despite the increase in POL2 accumulation (Fig. 3F). 

Notably, the transcription of mitochondrial genes up-regulated in GPS2-KD cells by 

RNAseq was also found impaired by GROseq (Supplemental Fig. S3E). This result 

confirms our initial hypothesis that GPS2 is globally required for the transcriptional 

activation of neMITO genes and suggests that the increased mRNA levels observed for a 

subset of mitochondrial genes by RNAseq profiling result from a secondary response, 

possibly involving post-transcriptional mechanisms of RNA stabilization. In conclusion, 

integration of our ChIPseq and GROseq experiments reveals that GPS2 depletion causes 

a robust accumulation on the promoters of neMITO genes of a hypo-phosphorylated and 

unproductive form of POL2, which is unable to escape from the core promoter and 
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promote productive transcription, likely because of the altered chromatin environment 

aberrantly enriched in the repressive histone mark H3K9me3.  

Lastly, we investigated whether GPS2 regulates chromatin remodeling and POL2 

activation through modulation of Ubc13-mediated ubiquitination. In support of this 

hypothesis, inhibition of Ubc13 enzymatic activity in GPS2-KD cells with the specific 

inhibitor NSC697923 (Liao et al., 2015; Mallipattu and He, 2015; Pulvino et al., 2012; 

Small et al., 2011), or downregulation of the ubiquitin ligase RNF8 via siRNA 

(Cardamone et al., 2014), were sufficient for rescuing the aberrant accumulation of 

H3K9me3, K63 ubiquitin chains and the stalling of POL2 on target mitochondrial 

promoters (Fig. 3G and 3H). Thus, our results collectively support the existence of a 

regulatory strategy, specific for neMITO genes, which is based on GPS2 being required 

for preventing the accumulation of the repressive mark H3K9me3 and the stalling of 

POL2, via inhibition of Ubc13-mediated synthesis of K63 ubiquitin chains.  

Retrograde translocation of GPS2 upon mitochondria depolarization 

These results establish that GPS2 is required to sustain the synthesis of nuclear-encoded 

mitochondrial components through its essential role in promoting gene expression of 

mitochondrial proteins encoded in the nucleus. However, GPS2 does not appear to be 

required for the expression of genes encoded in the mitochondrial DNA, thus raising the 

question of what is the function of GPS2 physical presence in the mitochondria. As the 

expression of neMITO genes has to be regulated in response to the functional needs of 

mitochondria, we became intrigued by the possibility that mitochondrial GPS2 might 

play a role in integrating signals from the mitochondria with the regulation of nuclear 

transcription, a function known as mitochondrial retrograde signaling (Guha and 

Avadhani, 2013; Jazwinski, 2012; Whelan and Zuckerbraun, 2013). To explore the 

hypothesis that GPS2 functions as a mediator of mitochondria retrograde signaling, we 

first used the uncoupling agent carbonilcyanide p-triflourometho-xyphenylhydrazone 

(FCCP) to depolarize the mitochondria. Mild treatment with FCCP induces 

mitochondria-to-nucleus signaling to promote the activation of an integrated stress 

response program that include the transcriptional activation of nuclear-encoded 

mitochondrial genes as needed for sustaining the metabolic reprogramming of 
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depolarized cells and the biogenesis of new mitochondria (Catic et al., 2013; Quiros et al., 

2017; Yun and Finkel, 2014). After 3 hours treatment with FCCP, we observed a 

significant decrease in GPS2 localization in the mitochondria, as shown by loss of co-

staining with mtHSP70, and a corresponding increase in nuclear staining for GPS2 (Fig. 

4A). As expected based on known GPS2 association with nuclear receptors and 

corepressors transcriptional functions (Cardamone et al., 2012; Cardamone et al., 2014; 

Guo et al., 2014; Toubal et al., 2013), non-stressed cells already presented a significant 

amount of basal nuclear staining (Fig. 4A). Thus, to best appreciate the increase in 

nuclear GPS2, we examined GPS2 localization through subcellular fractionation and 

western blotting. While total GPS2 protein levels did not change upon mitochondria 

depolarization (Supplemental Fig. S4A), blotting of fractionated extracts confirmed a 

significant redistribution of GPS2 from the mitochondria to the nucleus (Fig. 4B).  

Unexpectedly, this approach revealed that GPS2 id differentially modified in the various 

cellular compartments, with the specificity of each band being confirmed by GPS2 

downregulation through two independent siRNAs (Supplemental Fig. S4B). In 

particular, most of the endogenous mitochondrial GPS2 (mtGPS2) was found to run 

significantly higher than the expected MW of 36kD, which indicated that mtGPS2 might 

be specifically marked through a specific post-translational modification, likely distinct 

from those observed in the nucleus (Fig. 4B and Supplemental Fig. S4B). Furthermore, 

comparing the pattern of degradation observed for mtGPS2 and known markers of the 

different compartments when subjecting isolated mitochondria to digestion with 

increasing amounts of proteinase K (PK) actually revealed the existence of two pools of 

mtGPS2 (Fig. 4C). One pool one was localized to the matrix and consisted of unmodified 

GPS2. The other pool was localized to the outer mitochondrial membrane (OMM) and 

consisted of the post-translationally modified GPS2 (PTM-GPS2)(Fig. 4C). Localization 

of these two pools was further confirmed by differential trypsin digestions sensitivity of 

isolated mitochondria (Mt) or mitoplast (MP) lacking the OMM (Supplemental Fig. 

S4C).  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 11, 2017. ; https://doi.org/10.1101/162297doi: bioRxiv preprint 

https://doi.org/10.1101/162297


	 13	

Regulation of GPS2 intracellular localization through sumoylation/desumoylation 

Because the intracellular re-localization of GPS2 observed upon depolarization involved 

a decrease of PTM-GPS2 in the mitochondria associated with an increase in unmodified 

GPS2 in the nucleus (see Fig. 4B), we reasoned that mitochondria-to-nuclear 

translocation of GPS2 could be modulated by post-translational modifications. Based on 

the size of the shift, on previous reports of GPS2 being sumoylated on residues 

K45/K71(Bi et al., 2014; Huang et al., 2015), and consistent with the important role 

played by SUMO enzymes in the regulation of mitochondrial function and dynamics 

(Braschi et al., 2009; Fu et al., 2014; Prudent et al., 2015; Zunino et al., 2007), we asked 

whether GPS2 sumoylation accounts for the PTM observed in the mitochondria. This 

hypothesis was confirmed by the following experiments: i) downregulation of the sumo-

conjugating enzyme UBC9 was sufficient to observe a significant decrease in the amount 

of PTM-GPS2 present in mitochondrial extracts (Fig. 4D); ii) sumoylation of endogenous 

GPS2 in the mitochondrial fraction was observed in IP/sumoylation assay with HA-

SUMO1 (Fig. 4E), iii) sumoylation of the overexpressed GPS2, in presence of HA-

SUMO1, was abrogated by specific mutation of K45 and K71 (K45,71R mutant (Huang 

et al., 2015), Fig. 4F). Together, these results indicate that sumoylation on K45/K71 

accounts for the shift in GPS2 size in mitochondria. In addition, as downregulation of 

UBC9 did not affect GPS2 higher molecular weight bands in the nucleus (Fig. 4D), our 

results indicate that sumoylation is restricted to the mitochondria (see also Fig.4E), 

whereas nuclear GPS2 is modified by other means, including ubiquitination as previously 

reported (Huang et al., 2015). On the contrary, there was a small but consistent increase 

in nuclear unmodified GPS2 upon UBC9 downregulation (Fig. 4D). This observation 

suggested that GPS2 sumoylation status could be important for determining its 

intracellular localization, with sumoylation promoting GPS2 localization out of the 

nucleus. This hypothesis was supported by the decrease in SUMO-GPS2 observed upon 

FCCP-induced relocalization of GPS2 (see Fig. 4B). Thus, we asked whether GPS2 

desumoylation was required for its nuclear translocation upon FCCP treatment. Indeed, 

downregulation of the SUMO protease SENP1, which was previously reported to 

desumoylate GPS2 (Bi et al., 2014), was sufficient to promote not only the stabilization 
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of SUMO-GPS2, but also its retention in the mitochondria (Supplemental Fig. S4D and 

Fig. 4G), confirming the role of sumoylation in regulating GPS2 subcellular localization.  

GPS2 is required for the transcriptional activation of a stress response nuclear 

program upon mitochondria depolarization 

These results together confirm that, upon loss of mitochondrial membrane potential, 

GPS2 translocates from mitochondria to nucleus in a desumoylation regulated fashion. 

We next sought to investigate whether GPS2 relocalization is important for regulating the 

nuclear transcription response to mitochondrial stress. Recently, integrative analysis of 

Hela cell proteomic, transcriptomic and metabolic profiling has defined a comprehensive 

stress response activated in response to long term exposure to a number of mitochondrial 

stressors, including FCCP (Quiros et al., 2017).  To discriminate between primary and 

secondary events within this response and assess to which extent GPS2 retrograde 

translocation is required for the activation of a nuclear transcriptional program, we 

analyzed the early transcriptional events induced upon FCCP treatment by GROseq in 

WT and GPS2-KD 3T3-L1 cells.  Using an FDR of 5%, we identified 1486 upregulated 

genes and 1060 downregulated genes upon 3 hours of FCCP treatment, (Fig. 5A and 

Supplemental Table 3). Mitochondrial genes were similarly represented among both up- 

and down-regulated groups (205 upregulated mitochondrial genes and 163 

downregulated mitochondrial genes). In agreement with the published work, FCCP 

stimulation induced the activation of genes associated with “Folate metabolism”, “tRNA 

aminoacylation”, “Aminoacid metabolism”, “Carbon metabolism” and “Ubiquitin-

mediated proteolysis” (Fig. 5A, Supplemental Fig. S5A and Supplemental Table 

3)(Quiros et al., 2017).  In comparison, downregulated genes instead associated with 

“Cell cycle”, “Cholesterol and Lipid Metabolism”, “Glucose metabolism” and 

“Apoptosis” (Fig. 5A, Supplemental Fig. S5A and Supplemental Table 3). Among 

downregulated mitochondrial genes we also observed a number of genes associated with 

“Oxidative phosphorylation” and “Mitochondrial Ribosomal Proteins”, categories found 

decreased by proteomic analysis at later times (Quiros et al., 2017), however the 

enrichment did not reach statistical significance. Together these results indicate that the 
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early response to mitochondrial depolarization promotes cellular reprogramming through 

the regulation of a vast transcriptional program.  

Comparing this signature between WT and GPS2-KD cells revealed that the basal 

transcription of both upregulated and downregulated genes, as well as the activation of 

the upregulated genes upon FCCP required GPS2 (Fig. 5B). This indicates that GPS2 

translocation to the nucleus was broadly required for supporting the transcriptional 

response to mitochondrial stress. In fact, the list of DEGs upon 3h of FCCP included 

known targets of both the ATF4-dependent integrated stress response and ATF5-

dependent mtUPR response (Fiorese et al., 2016; Nargund et al., 2012; Quiros et al., 

2016; Quiros et al., 2017), in addition to proteins important for mitochondrial protein 

import and TFs previously associated with retrograde signaling and mitochondria 

biogenesis (Arnould et al., 2015; Biswas et al., 1999; Than et al., 2011; Vankoningsloo et 

al., 2006)(Fig. 5C). Because the activation of genes within all these groups was either 

completely lost or significantly impaired in GPS2-KD cells, we checked GPS2 binding to 

their promoters and found peaks on each promoter, in agreement with GPS2 playing a 

broad role in the transcriptional regulation of a nuclear stress response to mitochondrial 

depolarization by FCCP in mammalian cells (Supplemental Fig. S5B).  

To our initial surprise, the GROseq did not reveal any significant upregulation of 

NCoR/CREB mitochondrial target genes previously reported as activated in response to 

FCCP through regulation of NCoR stability (Catic et al., 2013). However, further 

characterization by ChIP following FCCP treatment confirmed a significant increase in 

GPS2 binding to representative promoters of AKAP1 and Ndufv1 neMITO genes after 3h 

of FCCP treatment (Fig. 5D). This was followed by a GPS2-dependent, corresponding 

increase in gene expression at later time points (Fig. 5E). Also, ChIP analysis confirmed 

that FCCP-induced activation of both AKAP1 and Ndufv1 genes associated with the 

dismissal of NCoR, whereas in GPS2-KD cells repressed genes were marked by 

increased NCoR binding (Fig. 5F). Most importantly, the upregulation of these neMITO 

genes upon depolarization depended on GPS2 retrograde translocation from the 

mitochondria as GPS2 recruitment to the promoters of NDufv1 and AKAP1 genes was 

blocked by downregulation of the SUMO protease SENP1 (Fig. 5G). These results, 
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together, confirm that GPS2 is a mediator of mitochondria retrograde signaling and 

reveal that its regulated translocation from mitochondria to the nucleus is required for 

promoting the transcriptional activation of an extensive transcriptional program that 

includes both stress response genes as well as mitochondrial genes, as required for 

responding to the mitochondrial damage through cellular reprogramming and 

mitochondria biogenesis. Accordingly, the increase in mitochondrial content induced 

during the recovery response to FCCP depolarization was dramatically impaired in 

GPS2-KD cells (Fig. 5H). 

Retrograde translocation of GPS2 during adipogenesis 

Based on these results, we reasoned that mitochondria-to-nucleus translocation of GPS2 

might not be limited to stress-response events. To explore the role of GPS2 in the 

activation of mitochondrial gene expression under physiological conditions, we 

investigated GPS2 nuclear function and retrograde translocation during 3T3-L1 

adipogenic differentiation, a process known to elicit significant mitochondrial biogenesis 

(Raghav et al., 2012; Wilson-Fritch et al., 2003; Yu et al., 2005). Our prediction was that 

GPS2 would translocate from mitochondria to the nucleus during the differentiation of 

3T3-L1 cells in order to support mitochondria biogenesis through transcriptional 

activation of the mitochondrial gene program. Consistent with this prediction, we 

observed: i) a 50% increase in GPS2 binding to the promoters of mitochondrial genes 

when comparing GPS2 ChIPseq data from 3T3-L1 cells at day0 and day6 of 

differentiation (Cardamone et al., 2014)(Fig. 6A); ii) a significant reduction in the 

activation of a number of adipo-specific mitochondrial genes in GPS2-depleted, PPARγ-

expressing pre-adipocytes  (Fig. 6B). Accordingly, the increase in mitochondrial content 

normally observed during the early phase of differentiation was almost completely 

abrogated upon GPS2 downregulated (Fig. 6C).  

As observed in the case of FCCP-treated cells, GPS2 engagement for the expression of 

neMITO genes was associated with a rapid decrease in SUMO-modified GPS2 in the 

mitochondria parallel to a corresponding increase in unmodified GPS2 in the nucleus 

shortly after induction of differentiation with a classic adipogenic cocktail (Fig. 6D). 

Furthermore, in keeping with the hypothesis that desumoylation is required for the 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 11, 2017. ; https://doi.org/10.1101/162297doi: bioRxiv preprint 

https://doi.org/10.1101/162297


	 17	

nuclear translocation of mitochondrial GPS2, the downregulation of the desumoylation 

enzyme SENP1 was sufficient to inhibit both the translocation from mitochondria to 

nucleus and the resulting increase in mitochondria content (Fig. 6E and 6F). Therefore, 

we conclude that GPS2 shuttling between mitochondria and nucleus is a regulatory 

strategy important for promoting the nuclear expression of mitochondrial genes not only 

in response to mitochondrial stress, but also during the physiological metabolic 

reprogramming associated with cell differentiation, in this case of adipocytes.  

Reduced mitochondrial content in the BAT of GPS2-AKO mice  

Finally, to confirm the in vivo relevance of this regulatory strategy, we analyzed the 

brown adipose tissue (BAT) of adipo-specific GPS2-AKO mice. Adipose tissue-specific 

GPS2 deletion promotes obesity associated with constitutive insulin signaling, increased 

lipid deposition in the white adipose tissue (WAT) and improved systemic insulin 

sensitivity (Cederquist et al., 2017). In agreement with the altered ratio of 

lipogenesis/lipolysis observed in the WAT, inspection of the BAT revealed that GPS2 

deletion promoted whitening of the brown depot (Fig. 7A). A significant increase in the 

size of lipid droplets was also observed in brown adipocytes differentiated in vitro from 

the stroma vascular fraction (SVF) of GPS2-AKO mice compared with WT littermates 

(Fig. 7B). To investigate whether this phenotype reflected a defect in mitochondria 

biogenesis, we measured mtDNA copy number in BAT from wild type and GPS2-AKO 

mice, and found that GPS2-deficient mice had only 50% mtDNA levels compared to their 

WT littermates (Fig. 7C).  However, respiration measured in isolated mitochondria from 

the BAT tissue was not impaired in absence of GPS2 (Fig. 7D). These results indicate 

that mitochondria functionality is not impaired in GPS2-deficient BAT, but rather there is 

a decrease in mitochondrial mass, which was confirmed by measuring the amount of 

mitochondrial proteins in the tissue (Fig. 7E and 7F). Also in agreement with this 

conclusion and with our in vitro studies, we observed a significant downregulation of 

neMITO genes in the BAT tissue (Fig. 7G). Mechanistically, ChIPseqs analysis of 

H3K9me3 performed on the BAT from WT and GPS2-AKO littermates confirmed a 

significant increase in H3K9me3 on the promoters of neMITO genes in the GPS2-

deficient depot (Fig. 7H). Furthermore, the increase in H3K9 trimethylation correlated 
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with aberrant accumulation of POL2, as measured by ChIP on the promoters of 

mitochondrial genes Ndufv1 and Tomm20 (Fig. 7I), thus fully confirming in vivo the 

molecular mechanism described in vitro in 3T3-L1 cells. 

Discussion 

Mitochondrial mass and functions differ considerably among tissues and are dynamically 

regulated in response to different physiological cues, including nutrient availability, cold 

exposure and endurance exercise (De Pauw et al., 2009; Hock and Kralli, 2009). 

Mitochondrial biogenesis and remodeling are also critical for embryonic and adult stem 

cells differentiation (Wanet et al., 2015). Because the majority of mitochondrial proteins 

are encoded in the nuclear genome, the assembly of new mitochondria and the regulation 

of the metabolic functions of existing mitochondria critically depends on the 

transcriptional regulation of mitochondrial gene expression in the nucleus (anterograde 

signaling) and feedback signaling from the mitochondria to the nucleus (retrograde 

signaling)(Finley and Haigis, 2009; Jazwinski, 2013; Kotiadis et al., 2014; Whelan and 

Zuckerbraun, 2013). A major conclusion of this work is that it adds GPS2 to the existing 

network of transcription factors and cofactors regulating the expression of mitochondrial 

gene expression in the nucleus. Our results in fact link the nuclear actions of GPS2, and 

its ability to inhibit the K63 ubiquitination machinery, to chromatin remodeling events 

controlling the transcriptional activation of neMITO genes by RNA POL2. Notably, the 

fact that GPS2-mediated regulation occurs at the level of nuclear core promoters, adds a 

novel layer to the known mechanisms regulating the transcriptional control of 

mitochondrial genes. Indeed, our data suggest that the complexity and specificity of 

mitochondrial gene expression is achieved through multiple levels of regulation mediated 

not only by distal regulators of transcription (i.e. nuclear receptors and associated 

cofactors like PGC1α and PGC1β(Fan and Evans, 2014; Hock and Kralli, 2009; Lin et al., 

2005)), but also by proximal regulators of transcription, such as GPS2. Future studies will 

be required to address how these layers of regulation are coordinated to maintain cellular 

homeostasis. 

The current study also indicates that neMITO genes are specifically sensitive to the 

methylation status of H3K9, revealing an unexpected role for H3K9me3 in the 
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transcriptional regulation of active genes in addition to the well known roles in gene 

silencing and heterochromatin organization. As histone demethylases JMJD-1.2 and 

JMJD-3.1 have been recently described as key mediators of lifespan extension and 

mtUPR response in worms (Merkwirth et al., 2016), these results suggest that 

mitochondrial gene expression is specifically sensitive to a conserved regulatory strategy 

based on the modulation of H3K9 histone methylation/demethylation. Our data indicate 

that in mammalian cells, demethylation is partially achieved, but not limited to the action 

of the histone demethylase JMJD2/KDM4A. Other demethylases that are known to play a 

role in the regulation of mitochondrial functions are likely to contribute (Duteil et al., 

2016; Hino et al., 2012; Liu and Secombe, 2015; Merkwirth et al., 2016; Tian et al., 

2016). In fact, the use of specific demethylases might be important for providing 

specificity to the regulation of different subsets of mitochondrial genes. 

Another fundamental finding of this study is that GPS2 fulfills the role of a direct 

mediator of mitochondrial retrograde signaling in mammalian cells. Its transcriptional 

activity is in fact directly regulated and informed by the mitochondria functional status 

through regulated mitochondria-to-nucleus translocation. The mitochondria retrograde 

signaling pathway was initially identified in S. Cerevisiae as an adaptation mechanism 

that allows yeast cells to respond to mitochondrial dysfunctions by activating a 

transcriptional program that includes both metabolic and stress response genes 

(Bohovych and Khalimonchuk, 2016; Guha and Avadhani, 2013; Jazwinski and Kriete, 

2012; Whelan and Zuckerbraun, 2013). In yeast, the retrograde factors responsible for 

signaling through the retrograde pathway are the DNA-binding transcription factors 

Rtg1-3 and a regulatory subunit, Rtg2, which senses changes in mitochondrial membrane 

potential, regulates the nuclear import of Rtg1-3 and directly contributes to the 

transcriptional regulation of the retrograde gene program in the nucleus by participating 

in the SLIK chromatin remodeling complex (Jazwinski, 2005; Jazwinski and Kriete, 

2012; Liao and Butow, 1993; Miceli et al., 2011; Sekito et al., 2000). While the extensive 

search for homologs of the yeast retrograde genes in higher organism has revealed 

possible overlapping functions of Rtg1/Rtg3 with mammalian transcription factors, no 

homolog has thus far been identified for Rtg2 (Jazwinski, 2013). Based on the results 

reported here, we propose that GPS2 act as a functional homolog of Rtg2 in mammalian 
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cells. As with Rtg2, GPS2 represents a direct link between the nuclear transcription 

factors regulating mitochondrial gene expression and the mitochondria itself. In a similar 

manner to Rtg2 regulation, GPS2 function and nuclear translocation is triggered by 

mitochondria depolarization. Also, in accordance with Rtg2 contribution to the chromatin 

remodeling related to the yeast SLIK (SAGA-like) complex, GPS2 directly binds to and 

modulates the chromatin environment of target gene promoters. Intriguingly, it does so 

by preventing the accumulation of H3K9me3, which could be inhibitory against H3K9ac, 

a mark of active transcription deposited by Gcn5/PCAF, the catalytic subunit of the 

SAGA complex. In addition, Rtg2-mediated regulation of Rtg1-3 nuclear import via 

modulation of an inhibitory phosphorylation cascade closely resembles GPS2-mediated 

regulation of NFkB activity, as well as our recent finding of GPS2 promoting FOXO1 

stabilization and its nuclear functions via inhibition of AKT ubiquitination and activation 

(Cardamone et al., 2012; Cederquist et al., 2017; Lentucci et al., 2016). Lastly, our in 

vivo data indicate that GPS2 plays a critical role in the regulation of lipid metabolism and 

energy expenditure in the adipose tissue, just as RTG2 has proven to be an essential 

factor for the regulation of nutrient metabolism in yeast cells. In both cases, the 

phenotypic output is achieved through the coordinated regulation of an extensive 

transcriptional program, including genes involved in mitochondrial biogenesis, lipid 

metabolism and possibly other functions required for the metabolic reprogramming 

related to changes in mitochondrial function.  

While these parallelisms are striking, they also raise numerous additional questions, 

including what is the nature of the relationship between GPS2 and the SAGA complex on 

nuclear target genes? What is the identity of GPS2 interacting partners in the 

mitochondria? And, how is sumoylation, possibly together with other regulatory 

strategies, modulating GPS2 tethering to the mitochondria and its shuttling between 

nucleus and mitochondria? In addition, future studies will be required for dissecting 

GPS2 role in integrating multiple pathways regulating cell growth, inflammation, 

metabolism, and stress resistance through regulation of ubiquitin signaling. This is going 

to be particularly relevant in the context of the adipose tissue as GPS2 was found 

significantly downregulated in human adipocytes from obese patients (Toubal et al., 

2013). The loss of GPS2-mediated regulation of gene repression is in fact currently 
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thought to contribute to the chronic inflammatory status of the obese adipose tissue. 

However, the studies reported here, together with our recent characterization of GPS2 

role in regulating insulin signaling (Cederquist et al., 2017), add to the significance of 

GPS2 in the adipose tissue suggesting that it might serves a more general function in 

integrating the regulation of lipids mobilization from TG storage with their utilization via 

mitochondrial oxidative metabolism. As therapeutic and lifestyle interventions designed 

for improving insulin sensitivity often rely on increased mitochondria biogenesis and 

oxidative metabolism (Hu and Liu, 2011; Kusminski and Scherer, 2012; Newsholme et 

al., 2012; Patti and Corvera, 2010; Zamora et al., 2015), unraveling the molecular 

mechanisms regulating mitochondria biogenesis and function in response to energetic and 

metabolic demands is not only important for our basic understanding of cell biological 

processes, but also have the potential of leading to the development of novel therapeutic 

approaches for obese and diabetic patients.  
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Figure 1. GPS2 localizes to mitochondria and regulates mitochondrial function 

through nuclear-encoded mitochondrial gene expression. 

(A) Mitochondria localization of endogenous GPS2 by IHF staining in murine 3T3-L1 

and human Hela cells. Co-staining of endogenous mtHSP70 serves as a mitochondrial 

marker.  

(B) Identification of minimal mitochondria localization domain by western blotting of 

fractionated extracts in 293T cells transfected with full length GPS2 (wt), GPS2 with the 

first 60 aa deleted (Δ60-CtKsR), GPS2 fragment 1-155 and 1-212. WBs for HDAC2 and 

mtHSP70 respectively serve as control for nuclear (Nuc) and mitochondrial (Mito) 

extracts.  

(C) Decreased respiration and oxygen consumption, as measured by Seahorse, in 3T3-L1 

cells upon GPS2 transient downregulation.  

(D) RT-qPCR analysis of the expression of different classes of nuclear-encoded 

mitochondrial genes in 3T3-L1 cells transfected with siCTL or siGPS2.  

(E) Western blot analysis of mitochondrial proteins expression with relative 

quantification (siGPS2 vs siCTL).  

(F) Mitochondrial content measured by PCR as a ratio of mtDNA/nDNA in WT and 

GPS2-KD 3T3-L1 and 293T cells.  

Results in (C), (D), and (F) represent the sample mean of three independent experiments; 

error bars represent s.e.m. (n=3). * indicate p-value<0.05; ** indicate p-value<0.01.  
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Figure 2 Cardamone at al. 2017
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Figure 2. GPS2 binds to the core proximal promoter of nuclear-encoded 

mitochondrial genes to regulate their transcriptional activation. 

(A) DEGs genes between WT and GPS2-KD 3T3-L1 cells as identified by RNAseq (two 

independent biological replicates, FDR<0.05). Mitochondrial genes are enriched among 

downregulated genes. Central plot represents the 10 most significant GO terms associated 

with total upregulated (orange) and downregulated (green) genes (EnrichR, GO cellular 

component). Right plot represents the 10 most significant pathways associated with 

upregulated (yellow) and downregulated (blue) mitochondrial genes (EnrichR, 

WikiPathways). GO terms and Pathways are listed based on a combined score between p-

value and Z-score (EnrichR). 

(B) Heatmaps of GPS2 binding on mitochondrial genes by ChIPseq. GPS2 binding 

profile in 3T3-L1 and 293T cells were generated using an antibody against aa 307-327 

(Ct) (GSE57779 and GSE35197). GPS2 binding in RAW macrophages was generated by 

Fan and colleagues (Nature Medicine, 2016) using distinct antibodies against the N 

terminus (N) and C terminus (C) of GPS2 (GSE66774). Represented in the heatmaps are 

all mitochondrial genes (2086 murine genes and 2296 human genes).  

(C) Tag density plot of GPS2 binding on mitochondrial genes compared to the binding 

for RXR, PPARγ, NCoR and SMRT (GSE13511 and Array Express E-MTAB-1031) in 

differentiating 3T3-L1 (profiled at either day 0 or day 6 of differentiation). 

(D) Tag density plots of GPS2 peaks on mitochondrial genes in 3T3-L1 cells compared to 

GROseq tags (GSE56745) and ChIPseq tags for H3K27Ac (GSE36965) reveal GPS2 

binding over the transcriptional start site (TSS) area.  

(E) Tag density plot of GPS2 binding on mitochondrial genes compared to POL2 binding 

(GSE13511) in undifferentiated 3T3-L1. 
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Figure 3 Cardamone at al. 2017
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Figure 3. GPS2-mediated inhibition of K63 ubiquitination is required for H3K9 de-

methylation, POL2 processivity and transcription of mitochondrial genes.  

(A)(B) Increased K63 ubiquitination (A) and H3K9me3 (B) in 3T3-L1 cells transfected 

with siGPS2 as measured by ChIP on the promoters of representative neMITO genes 

Ndufv1 and Tomm20.  

(C) Tag density plot of H3K9me3 ChIPseq data showing a significant increase in 

H3K9me3 specific to mitochondrial genes (2086 genes) compared to the full genome 

(20950 genes in mm8 with length>1kb). P-values were computed using the Wilcoxon test 

based on the difference in normalized counts +/-200bp around the TSS.  

(D) Tag density plot of POL2 ChIPseq data showing a significant increase (p-

value<2.99e-09) in POL2 binding on mitochondrial genes in 3T3-L1 cells transfected 

with siGPS2.  

(E) Tag density plot of GROseq data showing nascent transcription being impaired in 

GPS2-KD cells for both sense (+Tag) and anti-sense (-Tag) transcription.  

(F) ChIP analysis of POL2 phosphorylation (Ser5 and Ser2) in 3T3-L1 cells transfected 

with siCTL or siGPS2.  

(G) Accumulation of H3K9me3 upon GPS2 downregulation is rescued either by treating 

cells with the Ubc13 inhibitor drug NSC697923 or by transient downregulation of 

ubiquitin E3 ligase RNF8. 

(H) Accumulation of K63 ubiquitin chains and POL2 binding upon GPS2 

downregulation are rescued by treatment with the Ubc13 inhibitor drug NSC697923. 

ChIPseq data is representative of two independent biological replicates. Hand ChIPs data 

are representative of three independent experiments, bar graphs represent the sample 

mean of three technical replicates +/- SD. * indicate p-value<0.05; ** indicate p-

value<0.01, *** indicate p-value<0.001. 
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Figure 4. Mitochondria-to-nucleus regulated translocation of GPS2 in response to 

mitochondria depolarization.  

(A) Co-localization of GPS2 and mtHSP70 by IHF staining of 3T3-L1 cells shows 

reduced GPS2 localization to the mitochondria and corresponding increased nuclear 

staining (see inset and arrows) upon 3h of FCCP. 

(B) Translocation from mitochondria to nucleus as shown by western blotting of 

fractionated extracts in wild type 3T3-L1 cells treated with FCCP for 1h. Distinct post-

translationally modified band are indicated on the side of the blot. WBs for HDAC2 and 

mtHSP70 respectively serve as control for nuclear (Nuc) and mitochondrial (Mito) 

extracts.  

(C) Proteinase K (Pk) assay showing localization of GPS2 and post translational 

modified GPS2 (PTM-GPS2) in the mitochondria matrix and outer membrane 

respectively. The degradation patterns of TOM20, AIF1 and HSP70 are shown as 

respectively markers of the OMM, the IMM and the mitochondrial matrix compartments. 

(D) GPS2 post-translational modification in mitochondria is reduced with 

downregulation of the SUMO E2 enzyme Ubc9 (siU9).  

(E) In vivo Sumoylation assay in 293T cells showing specific sumoylation of GPS2 with 

HA-SUMO1 in mitochondrial extrcts.  

(F) Mitochondria localization of overexpressed wild type HA-GPS2-Flag and the HA-

GPS2-Flag K45,K71R Sumo mutant (SM) by WB of fractionated extracts in 293T cells. 

(G) Impaired translocation of GPS2 in depolarized-treated cells transfected with siSENP1 

(siS1) to block the desumoylation of GPS2.  
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Figure 5 Cardamone at al. 2017
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Figure 5. Impaired nuclear response to mitochondrial stress upon GPS2 depletion.  

(A) DEGs defined by GROseq between untreated and FCCP-treated 3T3-L1 cells (3h), 

including analysis of 10 most enriched pathways among upregulated and downregulated 

genes (EnrichR, KEGG Pathways). 

(B) Tag density plot of GROseq data showing transcriptional activation of DE 

upregulated genes upon FCCP is abrogated in GPS2-KD cells. Transcription of FCCP-

downregulated genes is already reduced in GPS2-KD cells. 

(C) Activation of representative genes of the ATF4-mediated integrated stress respose, 

ATF5-mediated mitochondrial unfolded protein response, mitochondria import 

machinery and regulators of mitochondria retrograde signaling depends on GPS2 as 

measured by GROseq. 

(D) ChIP analysis of GPS2 recruitment to mitochondrial genes and NCoR targets AKAP1 

and NDUFV1 upon 3h of FCCP.  

(E) Relative expression of mitochondrial genes and NCoR targets AKAP1 and NDUFV1 

upon 6h of FCCP as measured by RT-qPCR in WT and GPS2-KD3T3-L1 cells. 

(F) Dismissal of corepressor NCoR from target genes AKAP1 and NDUFV1 upon 3h 

FCCP treatment is impaired upon GPS2 downregulation by ChIP.  

(G) Increased GPS2 binding to nuclear-encoded mitochondrial genes upon 3 hours of 

FCCP stimulation is impaired in cells transfected with siSENP1 (siS1).  

(H) Increased in mitochondrial DNA content upon long term FCCP treatment (48h) is 

impaired in GPS2-KD 3T3-L1 cells as measured by PCR (ratio of mtDNA/nDNA). 

ChIP results in (D), (F) and (G) are representative of three independent experiments, bar 

graphs represent the sample mean of three technical replicates +/- SD.  Results in (E) and 

(H) represent the sample mean of three independent experiments; error bars represent 

s.e.m. (n=3). * indicate p-value<0.05; ** indicate p-value<0.01.   
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Figure 6. GPS2 retrograde translocation supports mitochondrial biogenesis during 

adipogenesis. 

(A) GPS2 binding to nuclear-encoded mitochondrial genes as measured by ChIPseq 

increases upon differentiation (GSE57779). 

(B) RT-qPCR analysis of the expression of adipo-specific mitochondrial genes in 

differentiating 3T3-L1 adipocytes (day0 and day6 of differentiation).  

(C) Decreased mitochondrial biogenesis during 3T3-L1 adipogenesis in GPS2-KD cells 

as measured by increase in mitochondrial DNA content (ratio of mtDNA versus genomic 

DNA).  

(D) GPS2 translocation from mitochondria to nucleus as measured by western blotting in 

subcellular fractionated extracts 3h after induced adipogenesis. 

(E)(F) GPS2 desumoylation and translocation from mitochondria to nucleus (E) and 

mitochondrial biogenesis (F) during adipogenesis is impaired in cells transfected with 

siSENP1 (siS1).  

Results in (A), (B) and (F) represent the sample mean of three independent experiments; 

error bars represent s.e.m. (n=3).  * indicate p-value<0.05; ** indicate p-value<0.01.  
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Figure 7. GPS2 regulates mitochondrial biogenesis in vivo in Brown Adipose Tissue.  

(A) H&E of BAT from WT and KO littermates mice showing increased lipid deposition 

in the adipose tissue of GPS2-AKO.  

(B) Oil Red O staining of in vitro differentiated adipocytes using SVF isolated from the 

brown adipose tissue of WT and KO littermates.  

(C) Decreased mitochondrial DNA content in the BAT of GPS2-AKO mice compared to 

WT littermates. 

 (D) Quantification of oxygen consumption rates (OCR) in BAT isolated mitochondria 

from chow-fed WT and GPS2-AKO littermates under the different respiratory states. 

State 2 quantifies respiration driven by proton leak, state 3 quantifies respiration linked to 

maximal ATP synthesis and MAX respiration represents maximal electron transport 

chain activity induced by FCCP. Results represent average ± SEM for complex I-driven 

respiration (pyruvate-malate, n=6 mice per group), complex II-driven respiration 

(succinate-rotenone, n=6 mice per group).  

(E) Reduced mitochondrial protein content in BAT isolated from GPS2-AKO compared 

to WT littermates mice.  

(F) Western blot analysis of mitochondrial protein expression in BAT from GPS2-AKO 

compared to WT mice. Western Blot using two different antibodies against GPS2 is 

shown as a control of GPS2 deletion in GPS2-AKO mice. The deletion, driven by 

Adipoq-Cre, is specific to the mature adipocytes not other cell types in the tissue.  

(G) RT-qPCR analysis of representative nuclear-encoded mitochondrial genes in the 

BAT of WT and KO mice.  

(H) Tag density plot of H3K9me3 ChIPseq performed on BAT from WT and KO 

littermates showing a significant increase in H3K9me3 on the promoters of mitochondrial 

genes in GPS2-AKO mice.  
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(I) ChIP for H3K9me3, POL2 and GPS2 showing increased promoter occupancy by 

POL2 and H3K9me3 in GPS2-AKO BAT on representative genes Ndufv1 and Tomm20.  

Results in (C), (E) and (G) represent the sample mean of five independent experiments; 

error bars represent s.e.m. (n=5). ChIPs data are representative of four independent 

experiments, bar graphs represent the sample mean of three technical replicates +/- SD. * 

indicate p-value<0.05; ** indicate p-value<0.01.  
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METHODS 
 
Reagents, Antibodies and siRNA. Anti-GPS2 antibodies were generated in rabbit 

against specific peptides representing aa 307-327 (Ct) and aa 1-11 (Nt). Representative 

ChIPs and IFs shown in the paper have been done using the Ct antibody, WBs using the 

Nt antibody, however it should be noted that all type of experiments have been carried 

out in the laboratory using either antibody with no difference noticed. Anti-N-CoR 

previously described1,2. The following antibodies were obtained from Santa Cruz 

Biotechnology: anti-HDAC2 (H54), TOM20 (F-10) and Ucb9 (N-19). Additionally, 

HSP70 (JG1-Thermo Scientific), beta-Tubulin (Sigma), ATP5B (A21351-Molecular 

Probes), Pol-II (ac-055-100-adgenode) K63-linkage-specific (HWA4C4- Enzo Life 

Science), KMD4A-ab47984, OXPHOs mix-ab110413, Pol-II phospho-ser5-ab5131, Pol-

II phospho-ser2-ab24758 (Abcam), H3K93me (6F12-H4-Enzo Life Science) and mouse 

anti-HA (Upstate Biotechnology) were used in immunoblotting and immunostaining 

experiments. The siRNAs specific for GPS2, RNF8 and SENP1 were purchased from 

Invitrogen (Silencer® Select siRNAs), siRNA specific for GPS2 and RNF8 had been 

previously validated3. 2µM Ubc13 inhibitor NSC697923 (Sigma) and 10µM or 25µM 

Carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP-TOCRIS) was used for 

cell treatments. Oligomycin A and Antimycin were purchased from Sigma.    

Animals studies. Fat-specific GPS2 knockout mice (GPS2-AKO) were generated using a 

cre/lox approach and maintained on a mixed 129sv/C57BL6J background4. Briefly, 

conditional Gps2 floxed mice were generated by inGenious Targeting Laboratory and 

adipose tissue specific deletion was achieved by crossing Gps2flox/flox mice with 

heterozygous Adipoq-Cre C57BL/6J transgenic mice expressing Cre recombinase under 

control of the adiponectin promoter5. Male mice and littermate controls were used for all 

experiments. Mice were maintained on standard laboratory chow diet in temperature-

controlled facility on a 12-hour light/dark cycle. All animal studies were approved by the 

Boston University Institutional Animal Care and Use Committee (IACUC) and 

performed in strict accordance of NIH guidelines for animal care. 

H&E staining. Upon harvesting, brown adipose tissue was incubated at 4°C in Z-fix 

solution (Anatech LTD) overnight. Tissues were then transferred to 70% ethanol, paraffin 
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embedded, sectioned, and stained with hematoxylin & eosin (Tuft Pathology 

Core/BNORC Adipose Biology Core). Imaging was performed as previously described4. 

Cell culture and cell stainings. Hela cell and 293T cell were grown in 10% FBS/DMEM 

supplemented with 0.1 mM MEM non-essential aminoacids, 2mM L-glutamine, 1mM 

sodium pyruvate. 3T3-L1 cells were grown in 10% BCS/DMEM supplemented with 0.1 

mM MEM non-essential aminoacids, 2mM L-glutamine, 1mM sodium pyruvate. For 

cells transfection, Lipofectamine 2000 was used following the manufacturer’s protocol 

(Invitrogen). Induction of adipogenesis was performed in 10% FBS/DMEM high glucose 

supplemented with 0.1 mM MEM non-essential aminoacids, 2mM L-glutamine, 1mM 

sodium pyruvate, 0.1% 1mg/ml insulin, 0.01% 1mg/ml dexamethasone, 0.2% 55,6mg/ml 

isobutylmethylxanthine. Immunostaining was performed following standard protocols on 

cells fixed in 4% paraformaldehyde/PBS using Rhodamine RedX (RRX)-conjugated 

secondary antibodies anti-rabbit and Fluorescein (FITC)-conjugated secondary antibodies 

anti-mouse (Jackson ImmunoResearch).  

For in vitro differentiated adipocytes, the stromal vascular fraction (SVF) was isolated 

from brown adipose tissue depots after collagenase type I/dispase II digestion in 4% BSA 

KRH buffer for 45 minutes then washed, filtered and spun down at 900 rpm for 10 

minutes. Cells were cultured in high glucose DMEM with 10% fetal bovine serum 

(Hyclone) and 1X pen/strep until confluence. Two days later, in vitro adipogenic 

differentiation was induced using standard insulin, IBMX (Sigma), DEX (Sigma) and T3 

(Sigma) cocktail for 2 days then changed to maintenance media containing high glucose 

DMEM with 10% fetal bovine serum, pen/strep, and insulin for 12 additional days before 

being fixed in 10% formalin to perform Oil Red O staining as described6. 

Protein extraction, Separate extracts preparation, Submitochondrial Localization, 

In Vivo Sumoylation assay and Immunoprecipitation. For whole cell extracts 

preparation, cells were rinsed in PBS, harvested and incubated for 20’ on ice in IPH 

buffer (50 mM Tris-HCl pH 8.0, 150 mM NaCl, 5 mM EDTA, 0.5% NP-40, 50 mM NaF, 

2 mM Na2VO3, 1mM PMSF and protease inhibitor mix). For cytoplasmatic, 

mitochondrial and nuclear extracts fractionation cells were rinsed in PBS, harvested and 

re-suspended in gradient buffer (10 mM HEPES pH 7.9, 1mM EDTA, 210 mM Mannitol, 

70mM Sucrose, 10mM NEM, 50 mM NaF, 2 mM Na2VO3, 1mM PMSF and protease 
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inhibitors cocktail) then homogenized via 10 passages through 25G syringe followed by 

low-speed centrifugation for 10 min. The nuclear pellet was incubated for 20 min in high-

salt buffer (10 mM Hepes pH 7.9, 20% glycerol, 420 mM NaCl, 1.5 mM MgCl2, 0.2mM 

EDTA, 0.5mM DTT, 10mM NEM, 50 mM NaF, 2 mM Na2VO3, 1mM PMSF and 

protease inhibitor mix) while the supernatant was recovered and subjected to high-speed 

centrifugation to separate the mitochondrial pellet from the cytoplasmic fraction. The 

mitochondrial pellet was incubated for 15 min in lysis buffer (50 mM Tris/HCl pH 8, 300 

mM NaCl, 1mM EDTA, 1% Triton X-100, 10mM NEM, 50 mM NaF, 2 mM Na2VO3, 

1mM PMSF and protease inhibitor mix). To examine submitochondrial localization, the 

isolated mitochondria fraction was treat with either Proteinase K (2, 5 or 10 ng) in ice for 

30 min or 50 µg/ml trypsin in ice for 30 min under either isotonic or hypotonic condition, 

reaction was terminated adding respectively 1mM PMSF or 10% TCA. Concentration of 

protein extracts was measured using the colorimetric BIORAD assay. Extracts were 

boiled in SDS sample buffer and loaded 10% Mini-PROTEAN TGX gels (Biorad), prior 

to transfer onto PVDF membranes (Millipore) and western blotting following standard 

protocols. For in vivo Sumoylation assay cells were transfected with HA-SUMO1 and or 

either HA-GPS2-Flag full length or HA-GPS2-Flag K45,75R then cytosolic, 

mitochondrial and nuclear extracts were separated by electrophoresis or subjected to 

immunoprecipitation as previously described7. 

RNA Isolation, RT-PCR Analysis and RNA-seq. RNA was isolated form cell or mice 

tissue following the manufacturer protocol for the RNeasy Kit (QIAGEN). First strand 

cDNA synthesis from total RNA template was performed using the Biorad IScript cDNA 

Synthesis System, followed by SYBR-green qPCR amplification. Normalization was 

performed using specific amplification of CyclophilinA and qPCRs were performed in 

triplicate for each biological experiment. Data are shown as sample mean between 

triplicate experiments +/- standard deviation. Significance was calculated by paired 

student’s T-test. Primers sequences used for each specific genes are available on request. 

For the RNA-seq, cells were subjected to standard RNA isolation prior to RNA library 

preparation following Illumina’s RNA-Seq Sample Preparation Protocol. Resulting 

cDNA libraries were sequenced on the Illumina’s HiSeq 2000. 
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ChIP assay and ChIP-seq. Chromatin immunoprecipitation (ChIP) was performed as 

described2. Briefly, approximately 107 cells were cross-linked with 1% formaldehyde at 

room temperature (~25 °C) for 10 min and neutralized with 0.125 M glycine. When 

Brown Tissue was used, tissue was minced with curved scissors (slurry like) and put in 

10ml tubes containing PBS 1% formaldehyde for crosslink for 15 min at RT and 

neutralized with 0.125 M glycine. Tissue was then shredded in Lysis Buffer using a 

Bullet Blender Homogenizer at max power for 5 min 4°C. After sonication, chromatin 

was incubated with 2µg of antibody at 4 °C overnight. Immunoprecipitated complexes 

were collected using sepharose beads A (Life Technologies). After extensive washes the 

DNA was extracted and purified by phenol/chloroform extraction. ChIP experiments 

were repeated at least three times and representative results are shown as samples mean 

between technical replicates +/- standard deviation. Significance was calculated by paired 

student’s T-test. Primers used are specific for the regions tested and their sequences are 

available on request. For ChIP-Seq, the extracted DNA was ligated to specific adaptors 

followed by deep sequencing on the Illumina’s HiSeq 2000 according to the 

manufacturer’s instructions.  

Gro-seq assay. GRO-seq experiments were performed as previously reported8. 

Briefly, 3T3-L1 cells were swelled in swelling buffer (10mM Tris-Cl pH 7.5, 2mM 

MgCl2, 3mM CaCl2) for 5min on ice and then lysed in lysis buffer (swelling buffer with 

0.5% IGEPAL and 10% glycerol, 4U/ml of superase in) in ice for 5 min then nuclei were 

pellet and re-suspended in 100µl of freezing buffer (50mM Tris-Cl pH 8.3, 40% glycerol, 

5mM MgCl2, 0.1mM EDTA). For the run-on assay, re-suspended nuclei were mixed with 

an equal volume of reaction buffer (10mM Tris-Cl pH 8.0, 5mM MgCl2, 1mM 

dithiothreitol (DTT), 300mM KCl, 20 units of Superase-In, 1% sarkosyl, 500µM ATP, 

GTP, Br-UTP and 2µM CTP) and incubated for 5min at 30°C. The nuclear-run-on RNA 

(NRO-RNA) was then extracted with TRIzol LS reagent (Invitogen) following the 

manufacturer’s instructions. After base hydrolysis on ice for 40min and followed by 

treatment with DNase I and antarctic phosphatase, the Br-UTP-labelled NRO-RNA was 

purified by anti-BrdU argarose beads (Santa Cruz Biotech) in binding buffer (0.5× SSPE, 

1mM EDTA, 0.05% Tween) for 3h at 4°C while rotating. Then T4 PNK (NEB) was used 

to repair the end of NRO-RNA. Subsequently, complementary DNA synthesis was 
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performed as reported8 with few modifications. The RNA fragments were subjected to 

the poly-A-tailing reaction by poly-A polymerase (NEB) for 30min at 37°C. Reverse 

transcription was then performed using superscript III (Invitrogen) with oNTI223 primer 

(available on request). The cDNA products were separated on a 10% polyacrylamide 

TBE-urea gel with the right product (~100–500bp) being excised and recovered by gel 

extraction. After that, the first-strand cDNA was circularized by CircLigase (Epicentre) 

and re-linearized by Ape1 (NEB). Re-linearized single-strand cDNA was separated by 

TBE gel and the products of the desired size were excised (~120–320bp) for gel 

extraction. Finally, the cDNA template was amplified by PCR using the Phusion High-

Fidelity enzyme (NEB) with primers oNTI200 and oNTI201 for deep sequencing 

(available on request) on the Illumina’s HiSeq 2000 system according to the 

manufacturer’s instructions.     

Bioinformatics analysis of ChIP-seq, RNA-seq and GRO-seq datasets. For the 

bioinformatics analyses, we have build comprehensive lists of mouse and human 

mitochondrial genes by combining the sets of mitochondrial genes from MITOMINER 

database9 with the sets of genes that are annotated as mitochondrial from NCBI, AMIGO, 

and ENSEMBL databases. The ChIP-seq bioinformatics analyses were performed as 

previously described3,7. The GPS2 ChIP-seq datasets were downloaded from NCBI GEO 

database (GSE351973, GSE577777 and GSE6677410), PPARγ, RXR, and POL2 ChIP-seq 

datasets were downloaded from NCBI GEO series GSE1351111, NCoR and SMRT ChIP-

seq datasets were downloaded from ArrayExpress E-MTAB-10312. The alignment of 

POL2 and H3K9me3 ChIP-seq samples was performed by using Bowtie213 to mm8 

assembly of the mouse genome, and sets of equal number of reads were randomly 

extracted from siCTL and siGPS2 aligned samples. We have normalized the ChIP-seq 

datasets on specific genomics regions by using TMM normalization procedure in edgeR14, 

and the normalized counts were obtained by using cpm() function.  HOMER software 

suite15 was used to call the ChIP-seq peaks and to compute the heatmaps, the read density 

profiles, the motif density profiles on promoters, and to find the enriched motifs. The 

heatmaps of ChIP-seq datasets were displayed by using R packages pheatmap and gplots, 

and the boxplots were displayed in ggplot2.  
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The RNA-seq fastq files (siCTL, siGPS2) were aligned by using Tophat16 and the 

sequencing reads were counted over transcripts by using Cufflinks17, FeatureCounts18 and 

HOMER15. Differential expressed genes across two independent RNAseq replicate 

experiments were identified by edgeR14 using FDR<0.05. GO/pathway enrichment was 

computed with DAVID19,20, ToppFun, and in enrichR21,22. The boxplots and scatterplots 

were displayed in R standard libraries, in ggplot2, and in limma. 

The GRO-seq fastq files (siCTL, siGPS2) were aligned to mouse genome mm8 by using 

bowtie2; we have used the same number (4.2 millions) of randomly extracted reads for 

computing the gene expression levels. The aligned reads were counted over the RefSeq 

gene bodies (after excluding a TSS 400bp-proximal region, and TTS 400bp-distal region) 

by using bedtools23. The statistically significant differentially expressed genes were 

defined by edgeR14 for a BCV of 0.01. We have also used a GRO-seq dataset from NCBI 

GEO (GSE5674724) for computing the read density profiles on TSSes. All our dataset are 

available in NCBI GEO (GSE80994). 
Immunogold-Electron Microscopy. For preparation of cryosections cells were rinsed in 

PBS, harvested and fixed in 4% paraformaldehyde/PBS for two hour then cells were 

infiltrated with 2.3M sucrose/PBS/glycin 0.2M) and freezed in liquid nitrogen. Frozen 

samples were sectioned at -1200C and transferred to formvar-carbon coated copper grids 

and goaldlabeling wad carried out following standard protocols (Harvard EM Core). 

Mitochondrial content. Total DNA was extracted from cells using QuickExtract DNA 

Extraction Solution 1.0 (Epicenter) following manufacturer’s instructions. DNA 

amplification of the mitochondrial-encoded NADH dehydrogenase 1 (mt-ND1) relative 

to nuclear TFAM was used to determine mitochondrial DNA copy numbers. 

Mitochondrial Isolation and Mass. Brown Adipose Tissue was isolated from GPS2-WT 

and KO mouse and weighed. Isolated BAT was rinsed and minced in ice-cold PBS then 

homogenized in a  glass-teflon  dounce  homogenizer  containing  SHE pH=7.2 (250 mM 

Sucrose, 5mM HEPES, 2 mM EGTA, BSA 2%.) + BSA  buffer. After 9-10 strokes 

throught the tefflon pestle the homogenate was centrifuged at 900xg for 10 min at 4°C. 

The resulting supernatant was then centrifuged at 9000xg for 10 min at 4°C and the pellet 

was washed once and then re-suspended in SHE without BSA. Protein content was 
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measured by BCA. Mitochondiral Mass was calculated as ratio between protein 

concentrations expressed in µg and tissue weight expressed in mg. 

Respirometry. Cells were plated in Seahorse V.7 multi-well culture plates. The day after, 

media was replaced by running media (XF Seahorse Assay Media supplemented with 

5.5mM glucose, 0.5mM pyruvate and 1mM glutamine) and the plate was placed at 37°C 

for 1 h (no carbon dioxide). Oxygen consumption was measured at 37°C using a 

Seahorse XF24 Extracellular Flux Analyzer (Seahorse Bioscience, Billerica, MA). 

Mitochondrial stress test compounds (10 µM oligomycin, 2.5 µM FCCP and 10 µM 

antimycin A) were injected through ports A, B, and C, respectively, to measure 

mitochondrial respiration linked to ATP synthesis, leak, maximal respiratory capacity and 

non-mitochondrial oxygen consumption according to the manufacturer’s instructions. 

For mitochondrial activity, 4µg of mitochondrial protein fractions were loaded per well 

for complex I driven respiration (pyruvate+malate) and 2µg for complex II-driven 

respiration (succinate+rotenone) in 25 µl of Mitochondrial Assay Solution pH 7.2 (MAS: 

100mM KCl, 10mM KH2PO4, 2mM MgCl2,  5mM  HEPES,  1mM  EGTA,  0.1%  BSA  

and  1mM  GDP) per Seahorse XF96 well. The plate was centrifuged at 4°C, 5 min at 

3400 rpm. Then, 110 µl of MAS with the respective fuels were carefully added per well. 

Plate was warmed at 37°C for 4 min then respirometry assay within the XF96 was 

performed as described above for the XF24. Pyruvate was used at 5mM, malate 5mM, 

succinate 5mM and rotenone 2µM.  ADP was injected  at  port  A  (3.5mM), Oligomycin 

A at port B (3.5µM), FCCP at port C (4µM) and Antimycin A at port D (4µM).  
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Supplemental Figure S1. Related to Figure 1.  

(A) Mitochondria localization of endogenous GPS2 by IHF staining in murine 3T3-L1 cells, with 

two different siRNA against GPS2 used to confirm signal specificity. Co-staining of endogenous 

mtHSP70 serves as a mitochondrial marker. (B) siRNA efficiency measured by qPCR analysis in 

transiently transfected 3T3-L1 cells. (C) Mitochondria localization of overexpressed HA-GPS2 

by IHF staining in murine 3T3-L1 and human Hela cells. Co-staining of endogenous mtATP5B 

serves as a mitochondrial marker. (D) Mitochondria labeling by Immunogold EM for GPS2 in 

Hela cells. (E) Decreased basal respiration and bioenergetic profile in Hela cells upon GPS2 

downregulation. (F) RT-qPCR analysis of different classes of neMITO genes expression in 3T3-

L1 cells transfected with siCTL or siGPS2(b). (G) RT-qPCR analysis of the expression of 

representative mitochondria-encoded genes in 3T3-L1 cells transfected with siCTL or siGPS2. 

(H) Rescued expression of representative neMITO genes in GPS2-depleted 3T3-L1 cells by 

overexpressing HA-GPS2. Results in (B), (E), (F), (G) and (H) represent the sample mean of 

three independent experiments; error bars represent s.e.m. (n=3). * indicate p-value<0.05; ** 

indicate p-value<0.01.  
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Supplemental Figure S2. Related to Figure 2.  

(A) DEGs between WT and GPS2-KD 3T3-L1 cells by RNAseq. Analysis of the 10 most 

significant pathways associated with total upregulated (left) and downregulated (right) genes by 

EnrichR (KEGGPathways). (B) Percentage of GPS2 peaks on mitochondrial genes localized to 

promoter areas (+1kb/-200bp around TSS) in ChIPseq data sets from 3T3-L1 (GSE57779), 293T 

(GSE35197) and RAW (GSE66774) cells. (C) Cardinal DNA-binding motifs and other TFs 

binding motifs enriched around the GPS2 peaks in 3T3-L1 cells as calculated by HOMER 

Known Motifs enrichment analysis.  
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Figure S3 Cardamone at al. 2017
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Supplemental Figure S3. Related to Figure 3.  

(A) Decrease in JMJD2A/KDM4A recruitment to Ndufv1 and Tomm20 gene promoters by ChIP 

in GPS2-KD 3T3-L1 cells. (B) Tag density plot showing the increase in H3K9me3 binding on 

mitochondrial genes in GPS2-KD 3T3-L1 cells compared to randomly selected groups of 

comparable size (2086 genes). P-values were computed using the Wilcoxon test based on the 

difference in normalized counts +/-200bp around the TSS. (C) Representative ChIPseq tracks for 

POL2 binding to Ndufv1 and Tomm20 gene promoters on the UCSC browser. Validation of 

POL2 accumulation on target promoters in GPS2-KD 3T3-L1 cells by hand-ChIP. (D) Boxplots 

showing a significant increase in POL2 binding specific to the promoters of mitochondrial genes 

in GPS2-KD 3T3-L1 cells. P-values were computed using the Wilcoxon test based on the 

difference in normalized counts +/-200bp around the TSS (Replicate 1, p-value < 2.2e-16; 

Replicate 2 p-value<2.99e-09). (E) Boxplot showing decreased transcription by GROseq for 

both down- and up-regulated mitochondrial genes as defined by RNAseq in 3T3-L1 transfected 

with siCTL or siGPS2 (p-value<2.2e-16 for both groups). Hand-ChIP data are representative of 

three independent experiments, bar graphs represent the sample mean of three technical 

replicates +/- SD.  * indicate p-value<0.05; ** indicate p-value<0.01, *** indicate p-

value<0.001.  

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 11, 2017. ; https://doi.org/10.1101/162297doi: bioRxiv preprint 

https://doi.org/10.1101/162297


Figure S4 Cardamone at al. 2017
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Supplemental Figure S4. Related to Figure 4.  

(A) Total GPS2 protein levels not changing upon FCCP treatment as shown by WB of whole cell 

extracts. (B) Two different siRNA against GPS2 -siG and siG(b)- were used to show by western 

blotting of fractionated extracts the specificity of GPS2 bands. (C) Trypsin assay showing 

localization of GPS2 and post translational modified GPS2 (PTM-GPS2) in the mitochondria 

matrix and outer membrane respectively. Mt stands for isolated mitochondria, MP for mitoplasts. 

(D) SENP1 siRNA efficiency by qPCR analysis. Results represent the sample mean of three 

independent experiments; error bars represent s.e.m. (n=3). * indicate p-value<0.05; ** indicate 

p-value<0.01.  
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Supplemental Figure S5. Related to Figure 5.  

(A) Analysis of 10 most enriched pathways among mitochondrial genes upregulated or 

downregulated in response to FCCP depolarization as identified by GROseq (EnrichR, KEGG 

Pathways). (B) Representative ChIPseq tracks on the UCSC browser for GPS2 binding in 3T3-

L1 cells to genes representative of the pathways indicated in Figure 5C.  
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