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Abstract 
The ultimatum game (UG) is widely used in economic and anthropological research to 
investigate fairness by how one player proposes to divide a resource with a second player who 
can reject the offer.  In these contexts, fairness is understood as offers that are more generous 
than predicted by the subgame perfect Nash equilibrium (SPNE).  A surprising and robust result 
of UG experiments is that proposers offer much more than the SPNE.  These results have 
spawned many models aimed at explaining why players do not conform to the SPNE by showing 
how Nash equilibrium strategies can evolve far from the SPNE.  However, empirical data from 
UG experiments indicate that players do not use Nash equilibrium strategies, but rather make 
generous offers while rejecting only very low offers.  To better understand why people behave 
this way, we developed an agent-based model to investigate how generous strategies could 
evolve in the UG. Using agents with generic biological properties, we found that fair offers can 
readily evolve in structured populations even while rejection thresholds remain relatively low. 
We explain the evolution of fairness as a problem of the efficient conversion of resources into 
the production of offspring at the level of the group. 
 
 
Significance Statement 
Human generosity is widespread and far exceeds that of other social animals. Generosity is often 
studied experimentally with the ultimatum game, in which a proposer offers a split and a 
responder can either accept it or cancel the whole deal. A surprising result of ultimatum game 
experiments is that players are much more generous than predicted while only rejecting very low 
offers. This has presented a theoretical puzzle, since mathematical models have generally relied 
on high rejection levels—just below offer levels—to maintain generosity. Using evolutionary 
simulations, we explain both generous offers and the rejection of only low offers as a solution to 
the problem of how groups can efficiently convert resources into the production of offspring. 
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Introduction 

The ultimatum game (UG) is a simple bargaining game that is an extensively used 

paradigm for investigating fairness in humans [1-4] and other primates [5-7]. In the UG, two 

players, a proposer and a responder, are allotted a resource to divide. The proposer offers a 

portion of the resource to the responder, who can either accept or reject it. If accepted, the 

resource is divided as proposed. If not, both players receive nothing.   

Fairness in the UG can be understood in terms of Nash equilibrium strategies. A Nash 

equilibrium in the UG exists when the offer portion, p, is equal to the rejection threshold, q, 

below which a responder rejects all offers. For the UG, there are many possible Nash equilibrium 

strategies depending on the divisibility of a resource.  For example, a fairness strategy that 

evenly splits a resource can be a Nash equilibrium if responders only accept offers of at least half 

the resource (i.e., p = q = 0.5).  However, it can be shown that there is one Nash equilibrium 

strategy set if both players are completely rational: the subgame perfect Nash equilibrium 

(SPNE) for which rational responders accept the least positive offer possible from rational 

proposers.  Strategies in which offers are greater than predicted by SPNE are considered 

generous and viewed as more fair than the SPNE. 

Many experiments have been conducted using the UG to investigate whether human social 

decision making conforms to that of the idealized rational actor [1-4].  Results within and across 

cultures repeatedly show that the behavior of people playing the UG does not conform to the 

SPNE.  Indeed, the average offer made by proposers is often quite far from the SPNE. A meta-

analysis of UG experiments [2] found that proposers offer, on average, over 40% of a resource 

with a modal offer of 50%.  These surprising empirical results have motivated a number of 
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theoretical models that aim to explain why people behave more fairly than predicted by the 

SPNE. 

A recent review [8] of 36 UG models classified them into six categories: alternating role-

based models [9], reputation-based models [10-12], noise-based models [13,14], spite-based 

models [15-17] spatial-population-structure-based models [18-20], and empathy-based models 

[21].  All of these models provide theoretical explanations for large departures from SPNE that 

are at or close to an even-split Nash equilibrium fairness strategy (i.e., p = q = 0.5).  A common 

element that runs through all of these theoretical results is that responders reject offers that are 

well above offers predicted by the SPNE. In other words, the models aim to explain how fair 

Nash equilibrium strategies can evolve far from the SPNE.  If evolution favors the emergence of 

Nash equilibrium strategies, even those far from SPNE, then it follows that observed mean 

values for offers and rejection thresholds should be nearly identical. For example, mean offers of 

about 40% should imply that mean rejection thresholds will also be about 40%. However, this is 

not what the data reveal. 

The meta-analysis by Oosterbeek [2] showed that the average proposer offer was over 40% 

of a resource, while the average rejection threshold by responders was 16% or less, and not the 

40% predicted if people are using Nash equilibrium strategies to play the UG. Henrich and 

colleagues [4] found very similar results in a large cross-cultural study of the UG: a mean offer 

of 39.6% and a mean rejection threshold of 16%.  Thus, not only are offers far from SPNE but 

people are also not using Nash equilibrium strategies.  Instead, many people appear to be using 

strategies consisting of generous offers paired with low rejection thresholds (i.e., rejection 

thresholds much lower than they are willing to offer).  
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People also behave more fairly than expected by assumptions of self-interested rationality 

in simpler a game called the dictator game (DG) [22,4].  The DG is like the UG except that the 

responder cannot reject the proposer’s offer and therefore has no leverage.   The obvious solution 

to the DG is for proposers to offer nothing to responders, but often that is not what they do in 

behavioral experiments [22,4]. In a previous paper on the DG [23], we used an agent-based 

model to show how multilevel selection can favor fairness at the level of the group when 

population structure is allowed to self-organize in low population density conditions.  Our results 

demonstrated, for a range of biologically plausible parameter values, that populations could 

evolve levels of fairness consistent with empirical data from the DG experiments and could do so 

in opposition to individual selection operating against fairness.  The underlying mechanism 

favoring non-zero offers in the dictator game is the efficient conversion of resources into the 

production of offspring at the level of the group. That is, when there are constraints on the 

conversion of resources into the production of offspring, resources can nonetheless be efficiently 

used at the level of the group. This can be accomplished by sharing resources that cannot 

immediately be converted into offspring due to those constraints on the reproductive process 

(e.g., gestation of offspring). They can then convert those resources into offspring and overcome 

the inefficiency that results from the constraints. 

The basic argument is one of multilevel selection. When groups of relatively small size 

compete, groups that can most efficiently allocate resources among their members will increase 

in number through a process similar to risk pooling [24]. That is, fair resource allocation in 

groups results in more offspring than in groups with less fair allocation, but differs from risk 

pooling when resources are scarce [23]. The boundaries between groups need not be clear or 

precise; only statistical separation of interactions is required (as when group members interact 
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preferentially, but not exclusively, with other members). Successful resource allocation 

manifests as a decrease in the variance in resources among group members, and in the context of 

the UG, is facilitated by more generous offers. As we previously showed in the case of the DG 

[23], high rejection thresholds are not required for selection to favor generosity; offers in the DG 

readily evolved to empirically observed levels of 28% [22]. The added presence of rejection 

thresholds can, as we will see, increase offers beyond rejection thresholds while these threshold 

values lag far behind offers—exactly what is observed empirically.   

Here we show that efficient resource conversion at the level of the group can explain the 

empirical results of UG games, by extending the DG model in [23] to the UG. In this model, 

agents possessing generically biological properties repeatedly play the UG for resources to 

reproduce.  No other theoretical assumptions about agents are built into the model. Agents are 

cognitively simple. They have no complex psychological features such as memory, empathy, or 

spite. Rather, their behavior in the UG is determined entirely by a fixed strategy (p, q) of how 

much to offer when proposing and a minimum offer to accept when responding.  Our approach 

was to run virtual evolutionary experiments for a variety of parameter values and to discover 

what kinds of strategies would evolve. 

Agent-based model 

We created an agent-based model in which agents are imbued with generic properties 

common to most organisms that engage in social behavior and in the exchange of resources, as 

described in [23]. These properties include mobility (important for engaging other agents in 

space), aggregation (a basic condition for social behavior), lifespan, resource accumulation 

(such that they can only successfully reproduce when they have sufficient resources), 

reproduction of heritable traits (including a mechanism for introducing variation), and parental 
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investment (in which resources are transferred to offspring). Another important property of the 

model is population structure, in the form of groups or clusters of agents, which emerges 

endogenously from spatial aggregation and local reproduction of agents [23,26]. Group selection 

is not programmed into the model but rather multilevel selection processes emerge as population 

structure self-organizes from the aggregative and reproductive behaviors of agents. 

Agents play the UG with spatial neighbors for resources, use those resources to reproduce 

offspring with their same UG strategy, move when unable to find a game partner, and die of old 

age.  The model was coded in Java and implemented using the MASON multi-agent simulation 

environment [26]. Values and descriptions of the parameters described below are listed in Table 

S1. Figure S1 provides a flow chart of an agent’s decisions and key events at each simulation 

step. 

Agents are located on unique cells on a 2-dimensional discrete grid with periodic 

boundaries. Time proceeds in discrete steps, and each agent (in random order) executes the 

following actions each time step (see figure S1). The agent first attempts to maintain contact with 

at least one other agent in its Moore neighborhood (radius M = 1; that is, it checks the eight 

closest cells for the presence of at least one other agent).  We refer to such agents as neighbors. If 

the agent does not have any neighbors, it searches for other agents nearby, in a slightly larger 

Moore neighborhood (M = 2; that is, the 24 closest cells).  If there is at least one other agent in 

this search area, it chooses one at random and moves toward it; otherwise, it moves to a new cell 

using one step of a random zigzag walk (as described in [27]).  This sort of cohesion rule is 

common in models of social behavior such as flocking, herding, or schooling [28]. Only one 

agent can occupy a given cell at a time: so if an agent attempts to move into an occupied cell, the 

attempt fails and the agent remains in its initial location. 
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Each agent i is defined by a strategy tuple (pi, qi), denoting its offer (0 ≤ pi ≤1) when 

playing as proposer, and its rejection threshold (0 ≤ qi ≤1) when playing as responder, 

respectively. An agent can only obtain resources for reproduction by playing the UG with a 

neighbor who has not yet played during that round of play.  If such a neighbor is available, the 

focal agent initiates a round of the UG, in which the focal agent is the proposer. For a game in 

which agent i is the proposer and agent j is the responder, i receives (1 – pi)RG and j receives 

piRG if pi ≥ qj, otherwise both agents receive a payoff of zero. Here, RG is the resource available 

for game play, and is drawn from a Gaussian distribution with mean Rm and standard deviation 

sR. In order to model limitations to an agent’s ability to accumulate resources, an agent’s total 

resources cannot exceed a resource cap, RC. Values used for Rm and standard deviation sR were 

based on the our previous analysis in [23] (see table S1 for the values used). 

When an agent i’s accumulated resources, Ri, reaches or exceeds the reproduction 

threshold, RT, it can reproduce if (i) Ri ≥ RT, (ii) the current population size, N, is less than the 

environmental carrying capacity, K, and (iii) there is an empty cell in the reproducing agent’s 

Moore neighborhood (M = 1).  An offspring inherits the offer proportion, pi, and rejection 

threshold, qi, of its parent i. Mutations are randomly and independently introduced into an 

offspring o’s po and qo at rate r.  Mutations are randomly drawn from the uniform distributions 

with the range [-mr, mr].  Both the offer po and rejection threshold qo are constrained to the range 

[0,1], and so mutations outside this range are truncated. 

A parent agent invests a proportion P of its resources in its offspring at the time of 

reproduction, so that the offspring’s starting resource level Ro = PRi. While an agent can have at 

most one offspring per round, it may have offspring on successive rounds depending on the 

values for the reproductive threshold, RT, the amount of parental investment, P, the resource cap, 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 12, 2017. ; https://doi.org/10.1101/162313doi: bioRxiv preprint 

https://doi.org/10.1101/162313
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
8 

RC, and its total resources, Ri. For example if RT = 100, P = 0.25, RC = 150, and Ri = 145, an 

offspring’s initial resources would be Ro = 36.25, leaving the parent with Ri – Ro = 108.75, such 

that it space is available the agent can reproduce again on the next time step. 

Each agent i has a fixed lifespan of Li time steps, which is assigned at birth.  When the 

agent’s age (the number of time steps since birth) reaches its lifespan, it dies and is removed 

from the simulation. Lifespan varies for each agent and is defined as Li = L + z, where z is drawn 

from a Gaussian distribution with a mean of zero and standard deviation sL and then rounded to 

the nearest integer.  

Results 

Mean offers evolved that were well above the SPNE and were consistent with data from 

UG experiments. The evolved mean offers were most consistent with the empirical data up to a 

density of d = 0.4 with a density d = 0.2 producing the overall best mean fit (see figure 1a). As 

population densities increased beyond 0.4, the mean evolved offers were less consistent with the 

empirical data (figure 1a). In contrast, in the individual-only conditions, when the effects of 

population structure were eliminated by randomly swapping locations of agents, offers were 

much lower but still far from the SPNE (figure 1a).   

Mean rejection thresholds evolved that were above the rejection thresholds predicted by 

the SPNE, but were not consistent with the evolution of Nash equilibrium strategies (figure 1a).  

Evolved mean rejection thresholds were the highest for the very lowest population densities (d = 

0.02, 0.04).  Unlike evolved mean offers, evolved mean rejection thresholds declined to about 

11% by d = 0.2 and then declined to a little below 10% for higher densities. Because there is so 

much variation in estimated rejection threshold in the empirical data, all of the evolved mean 
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rejection thresholds are consistent with the data, (though were biased downward) except at the 

lowest population densities (d = 0.02, 0.04). 

 

 
Figure 1.  Graphs depicting the evolved mean offers (black lines) and mean rejection thresholds (blue 
lines) for the UG simulations averaged over all combinations of parental investment and resource caps 
(P ´ RC) plotted over population density (see figures S2, S3, S4 for individual plots for all 
combinations). The top figure (a) illustrates the results from the multilevel simulations, the middle 
figure (b) depicts the results for the individual-only simulations, and the bottom figure (c) is the 
difference between figures (a) and (b).  The vertical interval bars depict the range of means for the 12 
(P ´ RC) for simulation results in (a) and (b) and the vertical interval bars in (c) represent the range of 
differences for (a) and (b). The dark-dashed horizontal line is the empirical mean of offers from 
Oosterbeek and colleagues’ [2] meta-analysis of UG experiments and the gray shaded area represents 
the estimated standard deviation of offers. The blue-dashed horizontal line is the mean of the rejection 
thresholds from Oosterbeek and colleagues’ [2] meta-analysis and the blue shaded area represents the 
estimated standard deviation of rejection thresholds.  Simulation mean offers and mean rejection 
thresholds that fall within the standard deviations of the meta-analysis data were considered consistent 
with UG experimental results. 
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Figure 1b illustrates the results for the individual-only conditions in which agents 

randomly swapped locations on each round of play.  For all but the lowest densities (i.e., d = 

0.02, 0.04) offers drop to about 20% and rejection thresholds drop to 6% on average.  Although 

mean offer strategies do not drop to the predicted SPNE, by comparing Fig. 1a with 1b (see 

figure 1c) it is clear that population structure has a dramatic effect on evolved offer strategies 

especially for the lower population densities for d = 0.02, 0.1. 

Figure 1c plots the differences between multilevel and individual-level simulations (see 

figure S4 for all individual difference plots).  The greatest differences are found for population 

densities d = 0.04, 0.1. Differences for the lowest density, d = 0.02, are dramatically lower than 

for slightly higher population densities d = 0.04, 0.1.  This effect was especially pronounced for 

rejection thresholds at d = 0.02 where for P = 0.75 and RC = 150, the evolved mean rejection 

threshold for the individual-only condition was greater than the multilevel condition (see figure 

S4). The lowest density, d = 0.02, was simulated with populations of 50 agents in which small 

population size effects reduced the differences between multilevel and individual level 

simulations (figures S4).   

Parental investment and resource caps influenced the evolution of mean offers and to a 

lesser extent mean rejection thresholds (see figure S3). Parental investment of 25% and resource 

cap of 100 (figure S3) resulted in the lowest mean offers. In general, parental investment of 50% 

or more and resource caps greater than 100 (figure S3) evolved higher mean offers. 
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Figure 2. Example dynamics from a single run of 750,000 rounds with a maximum population size of 
K = 12,500, population density of d = 0.2, parental investment of P = 0.5, and resource cap of RC = 
150. Both multilevel and individual-level simulations are depicted using the same color scheme as 
figure 1. The solid lines are from the multilevel simulation and the dotted lines are from the 
individual-only simulation. After 50,000 rounds of play, the population in the experimental condition 
reached mean offers of about 40% and thereafter fluctuated close to this value.  The mean rejection 
thresholds rose more slowly and then fluctuated close to 12%. Horizontal dashed lines represent the 
mean offers (black) and mean rejection thresholds (blue) from Oosterbeek and colleagues’ [2] meta-
analysis.  

 

 

 
Figure 3. Two snapshots of a population of 12,500 agents with the same parameters as in Fig. 2.  The 
offer strategy of each agent is represented by its color.  Red agents made very low offers.  As mean 
offers increased agents became increasingly purple.  As offers increased beyond 50%, agents became 
increasingly blue. At step 1, agents were placed randomly in space with no population structure.  As 
the population evolved, population structure (clusters of agents) emerged. As illustrated in the 
snapshot at step 50,000, clusters of agents were characterized by different offer strategies.  Most 
clusters are shades of purple with a number of clusters of red and some clusters of blue agents. 
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To investigate the stability of evolved offers and how these results scale with larger 

populations we ran simulations with 12,500 agents (25 times larger than the 500 agent 

populations with d = 0.2) in a 250 ´ 250 grid for 750,000 steps. Figure 2 illustrates the dynamics 

of example runs for the multilevel and individual-only conditions.  The mean offer strategy in the  

multilevel condition fluctuated over time near 40%, and the mean rejection threshold fluctuated 

just below 12%. Figure 3 consists of two snapshots of the same run at the start of a simulation 

and again at 50,000 steps by which point population structure has emerged and the population 

has reached a quasi-equilibrium state.  Agents with low offers are represented by red. As offers 

increase in proportion, agents become increasingly purple and when offers strategies exceed 50% 

of a resource, they begin to turn blue.  The range of colors in figure 3 indicates considerable 

variation in offer strategy.  Most agents are shades of purple but there are a number of clusters of 

red agents and a few clusters of blue agents.  These patterns gradually changed over time but the 

distribution of offers remained relatively stable.  

Discussion 

Using evolutionary simulations of the UG, we have shown how population structure can 

facilitate the evolution of fair offers far from the SPNE, especially under conditions of low 

population density, while simultaneously selecting for rejection thresholds well below evolved 

offers, and hence contrary to assumptions of Nash equilibrium strategies. Moreover, the fair 

strategies that did evolve were consistent with data from UG experiments.  Thus, we showed that 

apparently generous strategies with low rejection thresholds could robustly evolve when 

population structure emerges from the self-organizing behavior of agents. 

Offers were the highest and most consistent with the empirical data for low to moderate 

population densities, in the range of d = 0.4 or less.  As population density increased, evolved 
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offers gradually decreased due to increased crowding and the decreased persistence of isolated 

clusters of agents resulting from crowding (figure 1a).  Systematic variations in parental 

investment and resource storage capacity revealed that evolved offers and rejection thresholds 

were sensitive to these conditions as well. Evolved offers varied with population density, 

resource holding capacity, and parental investment, which is broadly consistent with cross-

cultural findings that offers in UG experiments vary with factors such as market integration, 

population size, and religiosity [4].  That is, population structure as well as cultural differences in 

parental investment and the capacity to store resources may influence differences in levels of 

fairness observed across cultures (see also [29] for a recent analysis focusing on the role of 

network structure in the evolution of fair strategies).  

Our model also predicts the considerable variation in the strategies used by participants in 

UG experiments. A wide range of strategies was found in simulated populations, with the precise 

distribution changing over time, but reflecting patterns consistent with empirical distributions. 

The modal offer in UG experiments is 50% with almost all other offers between 0% and 50% 

and a few offers above 50% [2,4].  As illustrated in figure 3, there was considerable variation in 

evolved offers, which changed over time but with a mean hovering near the empirical value of 

40%.  Most emergent clusters contained purple agents that make offers close to 50%.  Fewer 

clusters contained red agents that offer very little and even fewer clusters contained blue agents 

that made offers well over 50%.  

No population structure, but still no Nash equilibrium strategies 

When we eliminated the effects of population structure by swapping agent locations, mean 

evolved offers fell dramatically, but SPNE strategies did not evolve, nor did other Nash 

equilibrium strategies. In other words, offers remained substantially higher than rejection 
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thresholds. Why should this be? One explanation is that this effect is driven by a response to 

variation among rejection thresholds, forcing offers to increase as a bet-hedging strategy. As we 

shall see, this appears to be the case, but it is not the whole story. Binmore and Samuelson [13] 

used a learning model of agents playing the UG with a relatively high proportion of errors in 

agents rejecting offers, thus simulating variation. Their results was a deviation from the SPNE, 

but was still a nearly perfect Nash equilibrium with offers around 20%.   

In the individual-only version of our model, we previously showed [23] that when rejection 

thresholds were fixed at zero—that is, in a DG—evolved offers hovered just above zero 

(mutation prevents offers from staying at exactly zero).  This implies that rejection thresholds 

force the evolution of higher offers, but the question remains as to why rejection thresholds 

remain so low relative to offers. In our UG model, offers and rejection thresholds were subject to 

random mutation.  This results in a noisy evolutionary process in which the likelihood of rejected 

offers increases as offers and rejection thresholds converge. That is, when offers and rejection 

thresholds are close to each other, mutation is increasingly likely to introduce mutant rejection 

thresholds that are higher than offers. Because rejections are costly for both players, the 

convergence of offers and rejection thresholds becomes increasingly costly the closer rejection 

thresholds are to offers.  Thus, selection acts against the convergence of offers and rejection 

thresholds.    

High offers are selected against at the level of the individual but selection also acts against 

lower offers as they approach rejection thresholds. The non-Nash equilibrium strategies that 

evolved in our individual-only selection simulations resulted from the quasi-stabilizing forces of 

mutation driving up rejection thresholds, the cost of convergent offer and rejection thresholds 

(preventing their convergence), and individual selection against high offers.  This suggests that 
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the results from the population structure simulation experiments are a complex interplay of 

individual level and group level selection forces.  While selection at the group level favors 

fairness, selection at the individual level acts both for and against fairness in the UG. 

Kin selection does not apply and the importance of resource variance 

Offers far from the SPNE evolved in large part because population structure allowed 

spatiotemporal associations to emerge among agents with similar strategies.  These associations 

arose because of local reproduction resulting in offspring placed adjacent to their parents, often 

referred to as limited dispersal. This could indicate that some type of kin selection process may 

have occurred.  However, we believe that the classic theoretical machinery for explaining kin 

selection does not apply in this case. To see why, we will examine the best-case scenario for the 

evolution of fair strategies in the UG under conditions of population structure. 

Consider two homogeneous populations of agents that play the UG for resources to 

reproduce, with the assumption that proposer and responder roles are always randomly assigned. 

One population consists of agents that always offer 50% of a resource (with q ≤ 0.5) and the 

other population consists of utterly selfish agents that offer nothing and expect nothing in return 

(i.e., q = 0). If fair agents always play selfish agents, the selfish strategy always dominates, but if 

fair agents only play other fair agents, then perhaps fair agents might do better than selfish agents 

who only play other selfish agents?  

It is important to understand that this scenario differs essentially from the classic group 

selection argument for the evolution of altruism [30]. In the case of altruistic behavior, often 

modeled as a prisoner’s dilemma game, the expected fitness payoff to an individual in altruistic 

group is always higher than the expected payoff to an individual in a selfish group. In our 

scenario, in contrast, the expected payoff to individuals in either group is the same. Suppose a 
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proposer is tasked with the division of RG units of a resource.  In the fair group, the proposer 

keeps RG/2 units and the responder receives RG/2 units; the expected payoff for members of a fair 

group is RG/2 for each game.  In the selfish group, the proposer keeps RG and the responder 

receives nothing. Because an agent is equally likely to be the proposer or the responder over 

time, the expected payoff is again RG/2.  No matter the degree of generosity or selfishness of 

agents in homogenous groups, the expected gain in resources each interaction is always RG/2.  

Thus, there is no difference between groups in expected resources and so apparently no fitness 

differences between groups. How could fairness evolve in this scenario? 

This problem remains puzzling if stated in terms of Hamilton’s rule.  If p is the proportion 

offered by the proposer, then a proposer offers pRG and keeps (1 – p)RG.  The benefit to an agent 

as responder is b = pRG and the cost as proposer is c = pRG.  Because selfish agents always offer 

less than fair agents, p¢ < p, fair agents always receive less benefit when playing selfish agents 

and so b < c. The only hope for fair agents is to play other fair agents with the same strategy, but 

in that case the best that can be hope for is to break even, b = c, which violates Hamilton’s rule, 

rb – c > 0, even when r = 1 (where r is the probability of playing an agent with the same 

phenotype).  Thus, Hamilton’s rule is of no help in explaining the evolution of fairness.  

Nevertheless, fair offers robustly evolved, which implies that some group property is missing 

from the analysis. 

Returning to our two groups of agents, there is one factor in which the groups differ: the 

variance in resources among individuals within a group.  In fair groups, proposers offer an even 

split.  If we assume on each round of play that proposer and responder roles are randomly 

assigned and that proposers find exactly RG units of a resource, then as we saw above the 

expected payoff for fair or selfish players in any homogenous group is RG/2. After one round of 
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play, however, although there is zero variance in the resources accumulated by agents in fair 

groups, there is considerable variance in selfish groups as given by the following equation. 

 
var(RG ) = RG

2 (1
4
− p+ p2 )

      
(1)

 

If agents are fair (p = 0.5) and half the agents in a population are proposers and the other half 

responders, the variance in resources after the members of the group play a round is zero. As p 

approaches zero (selfish) or one (selfless), the variance increases rapidly. The magnitude of 

variance in resources is the only difference between fair and selfish groups, and so must provide 

an explanation for the evolution of fairness in the context of our model.  

Differences between groups in resource variance create the opportunity for differences in 

the efficiency of the conversion of resources into offspring, at the level of the group, when there 

are constraints on this flow. In our model, the benefit to fair offers comes from the more efficient 

flow of resources into the production of offspring.  In contrast, greater variance among 

individuals in selfish groups creates inefficiencies in the conversion of resources into offspring. 

We introduced two important assumptions that constrained the conversion of resources into 

offspring: population carrying capacity and limited spatial availability. Agents could only 

produce offspring if the total number of agents, N, was less than the maximum population size K 

(N < K) and if an empty nearby cell was available.  Since these assumptions resulted in agents 

sometimes waiting to reproduce, lucky selfish agents accumulated abundant resources that they 

could not fully convert to offspring—resources that in fair groups were partially distributed to 

other neighbors (see figure 4).  Thus, because fair agents more evenly distributed resources, 

agents in fair groups more efficiently converted resources into offspring as illustrated in figure 4.  

This implies that an analysis of the fitness costs and benefits of fairness for individuals requires 
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an analysis of the flow of resources at the level of population structure and not merely an 

accounting of benefits at the individual level. 

 

 

Figure 4. A simplified illustration of the flow and conversion of resources over a sequence of games 
resulting in the differential production of offspring as a function of strategy.  Fair agents are blue (i.e., 
p = 0.5, q ≤ 0.5) and selfish agents (p = 0, q = 0) are red.  Shading represents resource status.  For 
selfish agents (left), reproduction of offspring depends only on their chance accumulation of resources 
over t steps.  For fair agents (right), reproduction depends on both their chance accumulation of 
resources and the sharing of resources among each other. 

 

Biological implications 

Similar constraints are universal in biological populations. For example, a fundamental 

constraint on the conversion of resources into offspring is imposed by development. In 

mammals, gestation periods vary across species, but gestation and parental care impose 

constraints on how rapidly individuals reproduce offspring.  This is a developmental constraint 

on how fast animals can reproduce [31].  For example, vampire bats give birth to a single 

offspring about once a year [32].  A vampire bat cannot increase its rate of birth to twice a year 

by consuming twice as much blood.  Feeding a female vampire twice as much blood as she can 

use and store will not double her reproductive rate, but rather is a waste of blood from the 

perspective of fitness, and indeed may be part of why many organisms exhibit Type II functional 
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responses to resources [33].  However, if the extra blood is shared with others, that excess blood 

can be transformed into offspring by increasing the survival of starving bats (Wilkerson, 1984) 

[34]. Indeed, vampire bats share blood meals within groups even with non-kin [34,35]. 

The aim of our modeling was to not only explain fair offers in the UG far from SPNE but 

also to explain the low rejection thresholds characteristic of experimental data from UG 

experiments. We found that generous offers with low rejection thresholds evolved in structured 

populations and that factors such as parental investment and the capacity to store resources 

affected the degree of fairness that evolved. No single globally-adopted strategy evolved in any 

of our simulations.  Instead, populations were composed of a distribution of strategies that on 

average fluctuated around mean values consistent with those seen empirically.  This population 

variation may be inherent in many evolutionary processes—biological or cultural—and may 

explain the within-population variation typical of UG experiments.  Finally, analysis of the flow 

of resources through structured populations may shed light into the evolution of cooperation 

more generally as well as the evolution of other types of social behavior and group-level 

organization. 

 

Methods 

In simulations of our model as described above, limited dispersal and local mobility 

produced spatial assortment by phenotype. Because group structure is known to affect selection 

on social traits [35-41], we term these “multilevel simulations.” In order to assess the effects of 

assortative group structure, we additionally paired each multilevel simulation run with a control 

simulation in which each agent swapped location with another randomly chosen agent on each 

round of play. Following [23], we term these “individual-only simulations,” as they allowed us 
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to compare the effects of population structure with unstructured random interactions among 

agents while preserving spatial-group structure. In other words, selection is at the individual 

level only, but we maintain spatial-group structure so that interactions do not vary between 

conditions. Most simulations were run for 100,000 time steps, which was sufficient time for the 

evolved offers and rejection thresholds to reach long-term values (we also ran individual 

simulations with much larger populations and for 750,000 steps to investigate scalability and 

stability; see below). 

Initial population size N was always set to its maximum size K. Each agent, i, was 

randomly placed at a unique random location in the 2D grid space. Initial offers, pi, and rejection 

thresholds, qi, were each randomly drawn from a uniform distribution [0, 0.1], resulting in very 

selfish agents with fairly low rejection thresholds at the beginning of all simulations. All other 

initial parameter values are described in table S1.  

We systematically varied three parameters: population density, d (the size of the grid 

divided by K), parental investment, P, and the resource cap, RC. Less crowded population 

structures allow greater isolation of groups, which facilitates stronger selection at the group 

level. A total of 100 simulations were run for each set of parameter values (see Table S1).  
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The Evolution of Fair Offers with Low Rejection Thresholds in the Ultimatum Game 

Supplementary Information 

Table S1. Fixed parameters, initial conditions, and parameter sweeps. 
Description Parameter Values and/or descriptions 

Fixed Parameters   
Game Resources 
Game Resources 
Standard Deviation 
Expected Life Span 
Life Span Standard 
Deviation 
Reproduction Resource 
Threshold 
 
Mutation rate 
 
Mutation range 
 
 
Grid Size 
 
Moore Radius 

Rm 
sR 
 
L 

sL 

 
RT 

 

r 

mr 

 

X ´ Y 
 
M 

 

10 – the average game resource played for each step 
1 – the standard deviation for RG 
 
100 – time steps 
5 – the standard deviation for L 
 
100 – the resource level required for an agent to 
reproduce. 

.01  
 
0.25 – e.g., if p = 0.1, then minimum and maximum 
values possible are 0 and 0.35).  Mutations were uniform 
random within the range [-mr, mr]. 

50 ´ 50 – spatial dimensions in cells 
 
1, 2 – depending on context (UG, reproduction, search) 

Initial conditions 
Starting Resource 
 
 
Age 

Population size 
Agent i: 

offer proportion  
rejection threshold 

 
R0 

 
 
L0 

N0 
 

pi 

qi 

 
50 – the amount of resources an agent starts with at the 
beginning of a simulation (varies for agents born later in 
a simulation by parental resources and investment), 
1 – age of agents at the start of a simulation 
set to the maximum population size 
 
[0, .1] – drawn from uniform-random distribution 
[0, .1] – drawn from uniform-random distribution 

Parameter Sweeps 

Max Population Size 
 
Parental Investment 
Resource Cap 

 

K 
 
P 
RC 

 

50, 100, 250, 500, 1000, 1500, 2500 

.25, .5, .75 
100, 150, 300, unlimited 
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Figure S1. A flow chart of an agent i’s decisions and key events on each round of play. If an agent does not 
die, it begins by searching for at least one other agent to play with. If there is no other agent in its Moore 
search radius (M = 2), it moves in a random zigzag pattern on each step till it contacts a least one other agent.  
When it is next to another agent and both agents have not yet played, they play the UG.  Whether or not an 
agent played, it can attempt to reproduce if it has sufficient resources, there is an open cell in its Moore 
neighborhood (M = 1), and the population size is less than K.  Offspring are placed in a randomly selected 
vacant cell in the agent’s Moore neighborhood (M = 1). If the agent reproduces, then mutations for pi and qi 
each occur with probability r resulting in the offspring’s po and qo.  The offspring agent receives Ro = PRi 
resources from the parent and the parent retains Ri – Ro resources (see text and table S1 for more detail).  
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Figure S2.  The effects of parental investment and resource storage capacity on evolved offer means and 
rejection threshold means as a function of population density for all simulation conditions. Columns illustrate 
parental investment levels of 0.25, 0.5, and 0.75 and rows depict resource storage capacities of 100, 150, 300, 
and unlimited. Solid black lines are the evolved offer means and solid blue lines are the evolved rejection 
thresholds.  Dashed lines are the corresponding empirical means for offers (black) and rejection thresholds 
(blue; see figure 1 in text for the empirical standard deviations).  As population density increases, group 
population structure through crowding, begins to break down and offers tend to decrease. 
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Figure S3. The effects of parental investment and resource storage capacity on evolved offer means and 
rejection threshold means as a function of population density for all simulation conditions when agents 
randomly swapped locations on each step. As in figure S3, columns illustrate parental investment levels of 
0.25, 0.5, and 0.75 and rows depict resource storage capacities of 100, 150, 300, and unlimited. Solid black 
lines are the evolved offer means and solid blue lines are the evolved rejection thresholds.  Dashed lines are the 
corresponding empirical means for offers (black) and rejection thresholds (blue; see figure 1 in text for the 
empirical standard deviations).  Both mean offers and rejection thresholds are highest for the lowest population 
density simulated (0.02; i.e., 50 agents).  Small population effects can lead to populations drifting to higher 
levels, which largely explains the higher evolved values that rapidly drop off with increasing population size. 
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Figure S4. Differences between multilevel simulations (figure S2) and individual level-only simulations 
(figure S3). As with figures S2 and S3, columns illustrate parental investment levels of 0.25, 0.5, and 0.75 and 
rows depict resource storage capacities of 100, 150, 300, and unlimited. Solid black lines are the evolved offer 
means and solid blue lines are the evolved rejection thresholds. For most conditions, the greatest difference 
occurs for population densities of 0.04 (100 agents) and 0.1 (250 agents). At a population density of 0.02 (50 
agents), small population effects are important resulting in smaller differences.  As population density 
increases from 0.1, the differences between mean offers (figure S2 – figure S3) tend to decrease. However, the 
differences between rejection thresholds (figure S2 – figure S3) exhibit non-monotonic behavior initially 
decreasing and often increasing slightly at higher densities. 
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