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Abstract  37 

 38 

In recent decades, environmental drivers of community change have been associated with 39 

changes in biodiversity from local to global scales. Here we evaluate the role of anthropogenic 40 

drivers in marine ecosystems as drivers of change in local species richness with a meta-analysis 41 

of a novel dataset of temporal change in species richness. We paired biodiversity data from 144 42 

sites with large-scale drivers derived from geospatial databases: human cumulative impacts, sea 43 

surface temperature change, nutrient loading, and invasion potential. Three specific drivers 44 

(nutrient inputs, rate of linear temperature change, and non-native species invasion potential) 45 

explained patterns in local species richness change. We show that these drivers have opposing 46 

effects on biodiversity trends, and in some cases, contrasting directions of change can offset each 47 

other to yield observations of no net change across localities. Further, long-term studies reveal 48 

different effects of drivers that are not observed in short-term studies. These findings begin to 49 

explain high variability observed in species diversity trends at local scales. We suggest that local 50 

species diversity change is a predictable phenomenon and that observations of no net change 51 

across many time-series can be explained when the contrasting effects of human impacts are 52 

considered. 53 

 54 

 55 

 56 
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INTRODUCTION 59 

Human impacts such as habitat destruction, pollution, and climate change have reduced global 60 

species diversity [1,2]. At the same time, local temporal trends in diversity are variable; synthetic 61 

assessments of marine and terrestrial diversity time-series have reported decreases, gains [3,4], 62 

and no net change in average species richness [5,6] over time at local scales (e.g., < 20 km2). 63 

Even more important than variation in average trends reported by each of these syntheses is the 64 

‘within-synthesis’ variation in local biodiversity trends. That is, individual sites can exhibit 65 

species losses or gains [3,5,6]. Emphasis on global average trends in diversity obscures the 66 

regional or local scale processes that drive local change in richness [3]. 67 

 68 

Human-mediated disturbances contribute to local species loss across terrestrial [2,7], aquatic [8], 69 

and marine environments [9,10]. However, to date, we lack studies that attribute local richness 70 

change over time to human drivers, instead using space-for-time substitutions (e.g., 2,7). Habitat 71 

change, overexploitation, and pollution negatively affect species at a local scale [11–14]. 72 

Meanwhile, synergisms between multiple stressors can exacerbate community responses to 73 

human impacts [15,16]. However human impacts such as invasions and climate change can lead 74 

to local increases in diversity [17,18]. If multiple drivers interact or co-occur, the opposing 75 

effects of these different drivers of global change could result in observations of no net change. 76 

Given the broad range of human impacts and the variability of community responses, it is not 77 

surprising that the findings of recent syntheses of local diversity change have been equivocal, 78 

especially since few of them have considered this variability in the context of human impacts [3]. 79 

 80 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 12, 2017. ; https://doi.org/10.1101/162362doi: bioRxiv preprint 

https://doi.org/10.1101/162362


 5

High variability in diversity trends across many time-series underlies recent estimates of no 81 

average change in species richness. For example, the rates of species richness change in Vellend 82 

[5], which concluded no net change in species richness, ranged from losses of 8% per year to 83 

gains of 35% per year. Elahi [3], found more increases in richness over time than decreases, 84 

based on reported species losses that ranged from 5% per year to gains of 6.3% per year, and 85 

much of this variation was attributable to human drivers. This variability in observed patterns of 86 

diversity change and knowledge that human impacts affect local-scale diversity [2,3,7] suggests 87 

a need for a framework that explicitly identifies how environmental and human impacts will 88 

shape long-term changes in local-scale biodiversity. Here we attempt to attribute local changes in 89 

species richness to human impacts for a new synthesis of species diversity over time in marine 90 

coastal communities.  91 

 92 

Coastal communities worldwide are subjected to a range of different human impacts [19]. We 93 

hypothesize that cumulative human impacts are likely to reflect additive stresses and thus have a 94 

negative effect on local species richness [16]. However, cumulative impacts are composed of 95 

many individual drivers that could mask each other’s signal. We quantify how a combination of 96 

the human impacts—nutrient addition, shipping traffic, and rate of temperature change—affect 97 

species richness change in marine communities at a local/site level. Nutrient addition can 98 

negatively affect local richness by degrading habitat [20,21] but can also increase productivity, 99 

and consequently total abundance and therefore diversity. Shipping traffic facilitates species 100 

invasions and can lead to gains or offset local losses by introducing new species [22]. Increased 101 

temperatures could lead to species range expansions yielding local gains of warm water species 102 

[23–25]. Last, we expect the effect of drivers on diversity can change over time [26]. Thus, we 103 

examined how study duration to moderates the effect of drivers. To address these hypotheses, we 104 
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collated studies that have measured species richness from sites across marine biomes and 105 

leverage the available variation in global drivers to put our analysis in an ecological context. We 106 

find that variation in local-scale biodiversity change is related to the influence of human impacts 107 

such as climate change, invasions, and eutrophication.  108 

 109 

METHODS 110 

 111 

Study Selection 112 

We performed a systematic search of the literature using Web of Science and the Aquatic 113 

Commons database, which included grey literature publications. Additional grey literature 114 

publications were extracted from Elahi [3], which was published after our initial search. We 115 

searched for studies that had resampled marine species richness or diversity at a minimum of two 116 

time points equal to or greater than one year apart. Our literature search terms were adapted from 117 

Vellend [5] with keywords to target marine habitats while excluding freshwater or terrestrial 118 

habitats: e.g., ‘marine’ OR ‘ocean’ NOT (‘freshwater’ OR ‘terrestrial’), and combining these 119 

with keywords about biodiversity and resampling: (‘biodiv* OR ‘divers*’ OR ‘richness’) AND 120 

‘resamp*’ (See full search string in supplementary materials S1). We initially entered the search 121 

terms into the Web of Science and Aquatic Commons databases on February 19, 2014. This 122 

search returned 4803 references, which we filtered down to 745 papers after reviewing titles, 123 

abstracts, and full text where necessary, to identify studies that met the following criteria: 124 

sampled marine taxa, reported biodiversity, and resampled sites with at least one year between 125 

initial and final sampling points (figure S1). From the remaining 745 papers, we excluded studies 126 

if sampling methods were inconsistent between time points, if rare species were not included, or 127 

if a priori events were described by authors as affecting a site (see supplementary materials S2). 128 
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After study selection we had data from 144 sites from 35 studies around the world (figure S2). 129 

Although we collected data for abundances (sites = 22) and Shannon diversity (sites = 40), the 130 

number of samples and the limited range of variation in drivers were insufficient for us to 131 

examine in the context of human drivers. Therefore, we discuss only results of local species 132 

richness change. 133 

 134 

 135 

 136 

Data Acquisition 137 

We extracted 13 variables that described taxonomic group, sampling method, number of 138 

replicates, number of subsamples, plot size, and richness. In most studies, raw species abundance 139 

data were not provided and so data were extracted as summary statistics from figures using 140 

WebPlotDigitizer 3.10 [27] or manually extracted from data tables. Wherever possible, sampling 141 

errors from summary statistics were collected so that we could perform a variance-weighted 142 

meta-regression. When a site was sampled between a range of years (e.g., 1995 – 1996), the first 143 

year was recorded for consistency. When only a season or range of months was given, the 144 

average month of that season was recorded. When studies explicitly stated that an event had 145 

occurred (e.g., Marine Protected Area implemented, resource extraction, construction) they were 146 

excluded from the analysis. We calculated the effect size as the log response ratio (LRR) of the 147 

proportion of species richness change between a final and initial time point (eqn. 1).  148 

 149 

LRR = Ln(Final richness / Initial richness) (eqn. 1) 150 

 151 
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We chose to use the LRR instead of Hedges’s D, another commonly used metric of effect size, 152 

because log transformation of the response ratio normalizes the data and because we can use the 153 

following equation to convert the LRR into the percent change in species richness (eqn. 2).  154 

 155 

% change in species richness = 100 * (eLRR – 1) (eqn. 2) 156 

 157 

We verified assumptions of normality of residuals for all fit models using visual inspection of 158 

standardized residuals and their quantiles. To check for potential publication bias in effect sizes, 159 

we visually inspected funnel plots. However, publication bias in our dataset was unlikely as 160 

many of our studies (46%) were not testing for changes in biodiversity over time. For a complete 161 

list of studies used in the analysis see electronic supplementary materials S5. 162 

 163 

Driver data 164 

To examine the effect of human impacts on the change in species richness over time, we used 165 

components of the cumulative human impacts (CHI) data created by Halpern [28]. The CHI 166 

model summarizes data on a broad set of human impacts for every square kilometer of the 167 

world’s oceans. Impact scores are derived from a model that integrates global data for 19 168 

different drivers including nutrient pollution, fishing, urban runoff, shipping traffic, and sea 169 

surface temperature anomalies [28]. The CHI model is a potential indicator of human impacts; 170 

however, this model incorporates the effects of multiple drivers that may have opposing effects 171 

on local species diversity. To understand the effects of specific drivers on local-scale species 172 

richness change, we extracted data layers that had global coverage and that were expected to 173 

affect local richness in coastal areas. We used two data layers used in the CHI data: non-native 174 

species invasion potential (metric tonnes of cargo shipped to a port in 2011 was used as a proxy 175 
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for invasion potential) and nutrient addition (metric tonnes of nitrogen and phosphorous fertilizer 176 

use as reported by the FAO from 2007 – 2010, was used as an indication of intensity of nutrient 177 

addition along coastal areas; See [19,28] for details). We also calculated the decadal rate of 178 

linear temperature change (LTC) using the Met Office Hadley Centre Sea Surface Temperature 179 

data [29]. For each study, we collected the latitude and longitude of sampling points for all plots 180 

surveyed in a study. When study sites were composed of multiple subsamples, we included all 181 

the associated coordinates. Data from the spatial layers were then extracted from these 182 

coordinates. When a site was comprised of multiple coordinates, we computed the average 183 

impact value for each site.  184 

 185 

Statistical analysis 186 

To examine whether marine richness has changed at local scales and to test whether cumulative 187 

human impacts and specific drivers affect changes in local species richness, we performed three 188 

variance-weighted random effects meta-regressions using the package metafor [30] in the 189 

statistical software R version 3.4.0 [31]. We included a random effect of study, as single studies 190 

could contain multiple sites. This approach allowed us to account for variation between studies 191 

due to factors such as differences in researcher methods, taxonomic groups, and sites. All code 192 

for analysis is available at https://github.com/jdunic/local-marine-meta. 193 

 194 

To test explicit drivers and to determine the average rate of change in local species richness we 195 

tested three models: the average change in local richness (eqn. 3), the effect of cumulative 196 

human impacts on local richness change (eqn. 4), and the effect of specific drivers on local 197 

richness change (eqn. 4). We used the model heterogeneity statistic Qm to determine whether our 198 

models explained a significant amount of variability observed in the data. We first examined the 199 
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average rate of change in species richness from our data set using the following model for site i 200 

from study j 201 

 202 

 203 

����� �  �� � ���	
��
��� � ��  

 204 

��  ~ ��0, ��� 

��  ~ ��0, ��� 

(eqn. 3) 205 

 206 

Where αj is the between-study random effects (estimated by the model) and σi was the measured 207 

variance of a richness estimate at site i. We used study duration as a predictor of the LRR to 208 

estimate a rate of change rather than use LRR/Duration as a response variable to increase the 209 

power of our analyses. To then evaluate the effects of different drivers, we used a general model 210 

for incorporating k drivers (eqn. 4). 211 

 212 

 213 

LRR�� �  α� � β�Duration�� � &�β�Driver����
�

�	


� &�β��Driver���Duration��� � e�
�

�	


 

 214 

α� ~ N�0, σ�� 

e� ~ N�0, σ�� 

(eqn. 4) 215 
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 216 

Including duration in our analysis allowed us to account for differences observed between short-217 

term and long-term studies by comparing the rate of change of richness as it varies by study 218 

duration (βD) with the average effect of a driver on the rate of change of species richness (βk) and  219 

the average effect of a driver on the rate of change of richness as moderated by study duration 220 

(βk2). For example, a positive value for the coefficient βk2, would be interpreted as the driver 221 

slowing the rate of loss or increasing the rate of gain, depending on the sign of rate of change βD. 222 

We used the Akaike Information Criterion corrected for small sample sizes (AICc) to compare 223 

models and determine whether inclusion of human impacts improved the predictive ability of the 224 

model relative to the model that included only study duration.  225 

To determine whether any single study had a disproportionate effect on parameter estimates we 226 

systematically re-ran the meta-analysis excluding data from one study at a time to test the 227 

robustness of our analyses to outliers in the data (i.e., leave-one-out analyses). We used variance 228 

weighting in our analysis because it increases the power to detect differences from zero by 229 

placing higher values on studies for which estimates are more precise [32]. Although using an 230 

unweighted or sample-size weighted analysis would increase the studies included in our 231 

analyses, the parameter estimates from these methods are unreliable (figure S4). For 232 

completeness, however, we present these results along with their robustness to the exclusion of 233 

single studies using both method (supplementary materials S3, S4, figures S5-S9, tables S5 – 234 

S8). 235 

 236 

Taxonomic groups 237 
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We expect that there will be differences in rates of richness change across taxonomic groups in 238 

response to different stressors [7,33]. Therefore, in addition to testing the effect of global drivers 239 

of change on local richness change, we subset the data by taxonomic group. For each taxonomic 240 

group we had insufficient sample size to test the effect of multiple global drivers on local 241 

richness change. Therefore, we present only results for the mean rate local richness change 242 

without considering human impacts and the effect of cumulative human impact values on the rate 243 

of local richness change for different taxonomic groups.  244 

 245 

 246 

RESULTS 247 

 248 

Local richness change 249 

In general, inferences on the rate of change of species richness depend on the inclusion of human 250 

impacts. Within our dataset, both models that included some form of human impacts performed 251 

better than the model that did not include human impacts (table 1). In our model that did not 252 

consider human impacts, study duration influenced observed change in species richness (Qm = 253 

5.12, p = 0.024) and we found that the average log rate of change in species richness per year 254 

was 0.01 (95% CI = 0.002 - 0.021, p = 0.022), which corresponds to species richness gains at a 255 

rate of 1.05% per year (figure 1a, table S1). When we included cumulative human impacts and 256 

specific drivers in our models, the mean estimated log rate of change in species richness changed 257 

over study duration. For example, when cumulative human impacts were zero (i.e., the duration 258 

effect in Fig. 1b), the observed rate of change in species richness was -3.2% (95% CI = -5.4% – 259 

(-1.1)%, p = 0.004, table S1) per year and when all specific driver values were zero (i.e., the 260 
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duration effect in figure 2), the observed rate of change in species richness was 1.7% (95% CI = 261 

0.19% – 3.3%, p = 0.027, table S1) per year.  262 

 263 

Cumulative human impacts accounted for a significant proportion of the heterogeneity observed 264 

in our dataset (Qm = 45.3, p < 0.001), but the signs of results were unexpected. There was weak 265 

evidence for negative effects of cumulative human impact values on the species richness from 266 

short-term studies (i.e., the CHI effect in figure 1b), with an associated decline in species 267 

richness of -4.6% per unit of cumulative human impact value (95% CI  = -9.6% - 0.6%, p = 268 

0.081; table S1). However, over the long term (impact * duration interaction in figure 1b), each 269 

unit increase in cumulative impact value decreased the rate of species loss per year by 0.86% / 270 

(year * impact score) (95% CI = 0.5% - 1.3%, p = < 0.001; table S1). 271 

 272 

Different drivers had opposing effects on local richness change when we accounted for nutrient 273 

addition, invasion potential, and rate of linear temperature change in our models (Qm = 60.3, p < 274 

0.001, figure 2, 3, table S1). Nutrient addition alone was associated with increases in local gains 275 

of richness at a rate of 1.3% per tonne of nutrients / km2 (95% CI = 0.4% - 2.2%, p = 0.007, table 276 

S1). Similarly, rate of linear temperature change was also associated with gains (6% increase per 277 

˚C / decade, 95% CI = 1% – 11%, p = 0.018, table S1). Conversely, there was weak evidence for 278 

negative effects of invasion potential (-1.4% per 1000 tonnes of shipping cargo, 95% CI = 0.4% - 279 

2.3%, p = 0.066, table S1). However, when we considered the effect of these drivers over time 280 

(βDuration*Driver), the effect of each driver on local richness was reversed (i.e., the Duration:Driver 281 

effect in figure 2b). Nutrient addition and rate of linear temperature change negatively affected 282 

the rate of species richness change over time, while invasive propagule pressure positively 283 

affected the rate of species richness change over time (table S1). Figure 3 illustrates the expected 284 
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effects of nutrients, invasive propagule pressure, and rate of linear temperature change (when set 285 

to the maximum values observed in our data) on the rate of species richness change over time 286 

compared to a baseline rate of change (1.7% per year) when the three driver values are zero. The 287 

observed net effect of richness change, when all drivers were set to the maximum values 288 

observed in our dataset (figure 3d), shows a much smaller effect size over time compared to any 289 

individual driver. This suggests that opposing effects of local drivers can result in observations 290 

of little to no change in global averages of local richness change. 291 

 292 

Taxonomic groups 293 

Responses to changes in local richness may vary depending on the subset of the community 294 

examined. Our dataset included nine different taxonomic groups, five of which had three or more 295 

sites sampled (table S2). When impacts were not considered, we found gains in local richness at 296 

an average rate of 5.5% per year in algal assemblages and gains at a rate of 8.1% per year in 297 

invertebrate assemblages (figure 4) in the context of our dataset. Like the aggregated dataset, the 298 

inclusion of cumulative human impacts (table S3) generally improved model performance (table 299 

S4) when we considered taxonomic groups separately. Unfortunately, sample sizes were 300 

insufficient to test for the effects of drivers on local richness change across taxonomic groups. 301 

 302 

Data coverage 303 

With respect to global representativeness of impact levels, we had more observations of species 304 

richness change over time than expected in intermediate levels of nutrient addition and invasion 305 

potential compared to the distribution of these two drivers when considered from coastal areas 306 

globally (figure S10a,b). Meanwhile, the cumulative human impact values ranged from 0.89 – 307 

8.9 in our analysis, compared to minimum and maximum global values of 0 to values greater 308 
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than 15. Similar to the specific drivers, the majority of our sites showed moderate impact. Fifty 309 

percent of our studies were in regions/pixels with cumulative human impact values between 2.7 310 

and 5.1. Across taxonomic groups our data were limited to algae, fish, and invertebrate 311 

communities, or some combination of these taxonomic groups (mixed). Meanwhile, temporally, 312 

eighty percent of studies were 15 years or less in duration and started after 1990. 313 

 314 

DISCUSSION 315 

 316 

Our meta-analysis suggests that local context of human impacts is necessary to understand the 317 

high variability observed in long-term change in local species richness. Specifically, local drivers 318 

(nutrients, invasion potential, and the rate of linear temperature change) can have opposing 319 

effects on local changes in species richness. These opposing effects can interact such that the net 320 

change in local species richness can be close to zero when multiple drivers are acting on a 321 

community, as illustrated in figure 5d. As expected, when we considered cumulative human 322 

impacts, we found weak evidence for negative effects on local richness change. But over time, 323 

contrary to expectations, we found that cumulative human impacts were correlated with local 324 

gains in richness. This was unexpected given research showing that cumulative stressors 325 

typically have a negative effect on local communities [16,34]. However, the cumulative human 326 

impacts are an aggregate metric of human impact meaning that observed relationships between 327 

local scale richness change and high impacts may be driven by whatever individual driver is 328 

most important at a given location.  Our results, which indicate differences in the direction of 329 

change in local species richness change due to specific drivers, suggest a need to apply 330 

ecological theory about individual drivers of species richness at a local scale to the entire planet 331 
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to generate a priori predictions of when and where we should observe increases or decreases in 332 

biodiversity.  333 

 334 

Nutrients 335 

We found that, while sites associated with high nutrient run-off were associated with short-term 336 

gains in species richness, over the long-term, sites with high nutrient run-off were correlated with 337 

losses (figures 2, 3). Nutrient addition has been shown to increase primary production [35] and 338 

richness [36] in macroalgae and may be, in part, responsible for the increase in algal richness that 339 

we observed (figure 4). However, the processes that drive effects of nutrient addition on local 340 

communities can be complex and depend on factors such as the level of addition [37], species 341 

interactions [38], and dependent on time [39]. Most nutrient addition studies in marine systems 342 

occur over a short time frame (e.g., 40,44,45), but Kraufvelin [39] found that it could take five 343 

years before significant changes in canopy composition of rocky shore macroalgae are observed. 344 

Meanwhile in terrestrial systems, long-term studies in grasslands have also revealed that nitrogen 345 

addition can result in species losses over time [42]. Our results suggest that nutrient addition is 346 

an important driver of local richness change and that in the long-term nutrient enrichment can 347 

decrease rates of local richness change. Given the dynamics of coastal systems, this might even 348 

be more important in estuarine systems where water exchange is low relative to the open coast. 349 

 350 

Invasions  351 

We found that in the short-term, there was weak evidence that invasion potential may be 352 

associated with species richness losses, but in the long-term, high invasion potential was 353 

associated with local gains in species richness. Invasions can augment local species gains if new-354 

invaders can facilitate potential future invaders [43] through mechanisms such as habitat change 355 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 12, 2017. ; https://doi.org/10.1101/162362doi: bioRxiv preprint 

https://doi.org/10.1101/162362


 17

[33,44]. Our finding that long-term gains in species richness are associated with high shipping 356 

traffic is consistent with predictions made by Drake [45] and Sax [46]. Elahi [3] also found an 357 

average increase in local species richness in coastal marine communities over time, particularly 358 

for low trophic levels. When we considered separate taxonomic groups we found substantial 359 

increases in both the invertebrate and algal communities, which is consistent with the type of 360 

invaders that are transported by shipping traffic through ballast waters and organisms attached to 361 

ship hulls [44]. Furthermore, our findings of increased richness of lower trophic levels are 362 

consistent with expectations of long-term gains in richness of primary consumers in marine 363 

systems[47]. This suggests that more detailed context, such as taxonomic group or trophic level, 364 

could be necessary to understand patterns of local richness change and the effect of propagule 365 

pressure on local richness change. 366 

 367 

 368 

Temperature 369 

Similar to the effects of nutrients on local richness, negative or low values of rate of linear 370 

temperature change were associated with short-term gains but increases in the rate of 371 

temperature change were associated with local species losses (figure 2). Further this result did 372 

not appear to be strongly influenced by any one study. Our observation of short-term gains and 373 

long-term losses might reflect situations where warm water species move into areas that were 374 

previously at cooler temperatures at a rate that is faster than the emigration or extinction of 375 

resident species [48,49]. For example, within the studies included in our analysis, the movement 376 

of warm water fishes into areas that had previously cooler water temperatures was found in two 377 

of eleven studies examining fish communities (e.g., 53,54). Therefore, it is important to consider 378 

long-term trends in species richness as gains due to species range expansions or species 379 
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introductions could offset local losses. In a meta-analysis to examine the effects of human 380 

impacts on local species richness, Murphy [7] found that increased temperature was not a 381 

significant moderator of richness in producer and ectotherm communities yet the majority of 382 

studies included in Murphy [7] were less than three years in duration. 383 

 384 

Relationship to the ongoing debate on trends in local species diversity 385 

Broadly, our results urge caution in the interpretation of the literature on average trends in local 386 

scale biodiversity without considering local context. First, as with previous syntheses, we 387 

identified additional geographical biases in our dataset similar to those identified in terrestrial 388 

systems and in other recent syntheses of local diversity change [2,3,5,6]. Specifically, South 389 

America, Africa, Asia, and Antarctica were underrepresented. Biases of sampled sites may limit 390 

the ability to extrapolate the trends observed in our synthesis to the global scale if our dataset 391 

contains a non-representative distribution of impacts relative to all marine coastal diversity on 392 

the planet. The prevalence of drivers in our dataset differed from their global representation 393 

(figure S10). If the same is true of other recent analyses (e.g., [3,5,6]), the inference of average 394 

trends in species richness could reflect spatial biases in the distribution of drivers in the datasets 395 

of these studies rather than a true global average. Recent syntheses of hundreds of space-for-time 396 

analyses report that land-use change, invasive species, nutrient addition, and habitat change are 397 

associated with declines in local-scale species richness [2,7]. When these results are translated to 398 

global maps of impacts, they suggest that richness change in terrestrial systems should be 399 

negative, on average [2]. Our results begin to attribute the magnitude and sign of local-scale 400 

species richness change to specific human impacts. Further, our results show that specific human 401 

drivers can have antagonistic effects on local richness change. We suggest a need to develop an 402 

understanding of the current and future distribution of drivers, including ones not explicitly 403 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 12, 2017. ; https://doi.org/10.1101/162362doi: bioRxiv preprint 

https://doi.org/10.1101/162362


 19

considered in this study, to understand local species richness change across the world’s oceans. 404 

We conclude that examinations of change in biodiversity that come from non-representative 405 

samples must either take drivers into account or restrict inferences to the biogeographic regions 406 

considered.  This point is essential whether an analysis focuses on either temporal analysis or 407 

space-for-time substitutions. 408 

 409 

CONCLUSION 410 

How global increases in species extinction rates are being manifest at local scales is of immense 411 

concern to basic and applied ecological research. Our analysis shows that local context of human 412 

drivers explains some of the high variability observed in trends in local species richness. 413 

Knowledge of specific drivers of local richness change such as invasion potential, nutrient 414 

addition, and temperature change help predict changes in local scale richness. Our results 415 

combined with others [2,3,7] suggest that to discern meaningful patterns of biodiversity change, 416 

we must have some knowledge of local context (e.g., recent disturbances, geographic position 417 

and context of human impacts, focal taxonomic group). We provide further context to the recent 418 

results that have suggested no net change in species richness at local scales, showing that 419 

multiple human impacts can contrast with each other with respect to species richness. We 420 

suggest that species richness change at local scales in coastal marine environments is an 421 

understandable and predictable phenomenon. To truly understand the future of local biodiversity 422 

in the world’s oceans, we suggest combining decades of hard-won understanding of community 423 

ecology with new global assessments of human impacts across our seas. With these tangible, 424 

testable predictions in hand, we can begin to plan for the oceans of the anthropocene. 425 

 426 

 427 
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Tables 596 

 597 

Table 1. AICc scores (corrected for small sample sizes) calculated for three variance-weighted 598 

meta-regressions of the log ratio of the proportion of species richness change (LR). The model 599 

which included three specific drivers: invasion potential (Inv), nutrient addition (Nut), and rate 600 

of linear temperature change (LTC) and the model that included cumulative human impacts 601 

(CHI) both performed better than the model that did not include any form of human impacts. 602 

 603 

Model Log-Likelihood K Deviance AICc ΔAICc Akaike weight 

LR ~ Dur * (Inv + Nut + LTC) -2492.09 7 5202.81 5004.06 0.00 1.00 

LR ~ Dur + CHI + Dur*CHI -2497.02 3 5212.67 5004.64 0.58 0.85 

LR ~ Dur -2518.69 1 5256.00 5043.61 39.55 0.00 

 604 

 605 

 606 

  607 
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Figures 608 

 609 

Figure 1. (a) With increasing study duration, variance-weighted meta-regression shows that the 610 

log ratio of species richness at a rate equivalent to species richness gains of 1% per year. Studies, 611 

represented by different colours, could contain data from multiple sites and so studies were 612 

modelled as random effects. (b) Coefficient estimates for the relationship of the log-proportion of 613 

change in species richness as a function of study duration (Duration), short-term cumulative 614 

human impacts (CHI; Halpern [28]), and long-term effects of cumulative human impacts 615 

(Duration*CHI). Points represent coefficient estimates and lines represent 95% CI obtained 616 

using a variance-weighted meta-regression.' 617 

 618 

Figure 2. The standardised coefficient estimates of the effect of three global drivers: nutrient 619 

addition (Nutrients), invasion potential (Invasives), and the decadal rate of linear rate of 620 

temperature change (LTC) on (a) the log-proportion of change in species richness in the short-621 

term and (b) the effect of these drivers on the rate of change in the log-proportion of change in 622 

species richness over time. Points represent standardised coefficient estimates and lines represent 623 

95% CI obtained using a variance-weighted meta-regression. 624 

 625 

Figure 3. The predicted change in the log-proportion of change in species richness over study 626 

durations up to 20 years as moderated by each of the three drivers (a) nutrient addition, (b) 627 

invasion potential, (c) rate of linear temperature change when each is set to the maximum value 628 

observed in our dataset and the others are set to zero. The final plot (d) demonstrates the overall 629 

effect on the log ratio of local richness change when all three drivers are the maximum values 630 

observed in our dataset. Effects of drivers on predicted richness change (blue) are compared to 631 

the predicted change when all drivers are set to zero (grey). Predicted values regression lines and 632 

confidence intervals were obtained using a variance-weighted meta-regression from the full 633 

drivers model: LRR ~ Duration * (nutrient addition + invasion potential + linear rate of 634 

temperature change). 635 

 636 

Figure 4. Coefficient estimates of the log-proportion of change in species richness in the five 637 

most sampled taxonomic groups (k, sites; n, studies) for the model containing study duration 638 

only. Points represent coefficient estimates and lines represent 95% confidence intervals using 639 

variance-weighted meta-regressions. 640 
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