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Summary: Likelihood-free methods are often required for inference in systems biology.
While Approximate Bayesian Computation (ABC) provides a theoretical solution, its practical

application has often been challenging due to its high computational demands. To scale

likelihood-free inference to computationally demanding stochastic models we developed

pyABC: a distributed and scalable ABC-Sequential Monte Carlo (ABC-SMC) framework. It im-

plements computation-minimizing and scalable, runtime-minimizing parallelization strategies

for multi-core and distributed environments scaling to thousands of cores. The framework

is accessible to non-expert users and also enables advanced users to experiment with and

to custom implement many options of ABC-SMC schemes, such as acceptance threshold

schedules, transition kernels and distance functions without alteration of pyABC’s source

code. pyABC includes a web interface to visualize ongoing and finished ABC-SMC runs and

exposes an API for data querying and post-processing.Availability and Implementation: pyABC is written in Python 3 and is released under the
GPLv3 license. The source code is hosted on https://github.com/neuralyzer/pyabc and the

documentation on http://pyabc.readthedocs.io. It can be installed from the Python Package

Index (PyPI).Contact: emmanuel.klinger@brain.mpg.de

1

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 17, 2017. ; https://doi.org/10.1101/162552doi: bioRxiv preprint 

https://doi.org/10.1101/162552
http://creativecommons.org/licenses/by/4.0/


1 Introduction
The development of predictive models of biological processes requires the estimation of

parameters from experimental data. For model classes such as ordinary differential equations,

tailored approaches exploiting specific model properties have been developed to solve these

inverse problems (Raue et al. 2015). However, this has not been possible for many other

relevant model classes such as stochastic models of intracellular processes or multi-scale

models of biological tissues. These models are often so involved and problem-specific that

they have to be considered as black-boxes (Jagiella et al. 2017). Black-box models can be

simulated but their internal structure cannot be exploited. To parameterize these models,

likelihood-free methods, such as ABC-SMC schemes (Sisson et al. 2007; Toni et al. 2009),

have been developed. ABC-SMC schemes use numerical simulations of the model to infer

its parameters. Although some ABC-SMC frameworks for Python exist, these frameworks

either lack customization options like (adaptive) acceptance threshold schedules or transition

kernels, (Kangasrääsiö et al. 2016), do not implement scalable parallelization strategies

(Jennings and Madigan 2017), only parallelize across the cores of a single machine (Ishida

et al. 2015), or only leverage GPUs but not distributed infrastructure (Liepe et al. 2010). To

address these shortcomings we developed pyABC.

2 Features
2.1 Usage
Parameter estimation and model selection for simulator-based, black-box models using

several different parallelization strategies is implemented in the pyABC framework. The

framework’s features include

• multi-core and distributed execution,

• computation-minimizing and scalable, runtime-minimizing parallelization,

• adaptive, local transition kernels and acceptance threshold schedules,

• web based visualizations of posterior parameter distributions, acceptance thresholds,
configuration options and more,

• early stopping of model simulations, and

• a variety of configuration and custom extension options without alterations of pyABC’s
source code.

pyABC can be combined with any user-defined computational model, distance function and

parameter prior. Models can be defined as functions mapping the model parameters onto

simulated data. This ensures a high degree of flexibility and allows the internal usage of,

e.g., the Systems Biology Markup Language (SBML) or GPUs. Custom- and scipy.stats-

distributions are supported as priors. Post-processing and analysis is supported via the
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Figure 1: Parameter inference and scalability of pyABC’s parallelization strategies. (a-d) Static
Scheduling (STAT) and Dynamic Scheduling (DYN) for 5 particles and 8 cores. The

core usage (a, c) and the total number of accepted particles (b, d) are depicted

over runtime. The color-coding indicates whether a sample satisfies the acceptance

threshold and is included in the next population, satisfies the acceptance threshold

but is discarded (i.e. not included in the next population) or does not satisfy the

acceptance threshold and is rejected. In (c), the fifth accepted sample (light-blue) is

not included in the next population. (e) Mean relative runtime and (f) mean relative

total amount of computation of STAT compared to DYN for exponentially distributed

simulation times disregarding potential communication overhead.

included API which provides pandas data frames, or by directly querying the underlying

relational database.

2.2 Multi-core and distributed execution
Single-machine multi-core execution and multi-machine distributed execution in cloud and

cluster environments is featured by pyABC. A variety of distributed execution engines is

supported, such as ad hoc clusters (e.g., the Dask distributed cluster and the IPython parallel

cluster), bare grid-submission systems (e.g., SGE and UGE), and Redis based, low-latency se-

tups. Furthermore, two parallelization strategies for the sampling of particles in the individual

populations are provided:

• Static Scheduling (STAT): For each particle, one task is started on the available infrastruc-
ture. Within each task, proposal parameters are sampled and model simulations are

run until exactly one simulation’s parameter is accepted (Fig. 1a,b). Denoting by n the

number of desired particles, then even for infrastructures with more than n cores, only

n cores are employed. The tasks are queued, if n is larger than the number of cores
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and are executed as slots become available. STAT aims to minimize the total amount of

computation.

• Dynamic Scheduling (DYN): Parameter sampling and model simulation is continuously
performed on all available hardware until n particles are accepted (Fig. 1c,d). All running

simulations are then waited for to complete, yieldingm ≥ n accepted particles. The

n accepted particles started first are included in the next population while the remaining

m−n accepted particles are discarded (to prevent bias towards parameters with shorter

simulation times). DYN provides a scalable parallelization strategy aiming to minimize

the total runtime.

For STAT, the degree of parallelism is limited to the population size n and decreases as

particles are accepted (Fig. 1a), whereas DYN uses all available cores until n particles are

accepted (Fig. 1c). Moreover, DYN scales further if the number of available cores is larger

than the population size (Fig. 1e). When communication time is negligible compared to model

simulation time, DYN is faster than STAT (Fig. 1e), however, STAT performs less computation

overall (Fig. 1f).

2.3 Configuration, customization and extension
The pyABC package is modular and extensible facilitating to experiment with and to develop

new ABC-SMC schemes. Following the documented API, transition kernels, (adaptive) accep-

tance threshold schedules, distance functions, summary statistics and other options can be

customized and configured. Model simulation and distance calculation can be combined

to interrupt the simulation and reject it early to reduce the runtime, e.g., if the distance is

a cumulative sum as it is commonly the case for time series simulations. The framework

can be run on new parallel environments providing corresponding custom map functions or

implementations of the concurrent.futures.Executor interface. All customizations are

possible without modifying pyABC’s source code.

3 Conclusion
pyABC addresses the need for distributed, likelihood-free inference for computationally

demanding models. While pyABC’s less scalable STAT strategy is also implemented elsewhere

(Jennings and Madigan 2017), the runtime optimized, more scalable DYN strategy is, to the

authors’ knowledge, not available in any other Python ABC-SMC package. The flexibility

and extensibility of pyABC render it applicable to a broad range of problem classes and

infrastructures. We expect it to be used in many fields, including the emergent field of

multi-scale modeling.
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