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Abstract 13

Identifying similarities between datasets is a fundamental task in data mining 14

and has become an integral part of modern scientific investigation. Whether 15

the task is to identify co-expressed genes in large-scale expression surveys or to 16

predict combinations of gene knockouts which would elicit a similar phenotype, 17

the underlying computational task is often a multi-dimensional similarity test. As 18

datasets continue to grow, improvements to the efficiency, sensitivity or specificity 19

of such computation will have broad impacts as it allows scientists to more 20

completely explore the wealth of scientific data. A significant practical drawback 21

of large-scale data mining is that the vast majority of pairwise comparisons are 22

unlikely to be relevant, meaning that they do not share a signature of interest. 23

It is therefore essential to efficiently identify these unproductive comparisons 24

as rapidly as possible and exclude them from more time-intensive similarity 25

calculations. The Blazing Signature Filter (BSF) is a highly efficient pairwise 26

similarity algorithm which enables extensive data mining within a reasonable 27

amount of time. The algorithm transforms datasets into binary metrics, allowing 28

it to utilize the computationally efficient bit operators and provide a coarse 29

measure of similarity. As a result, the BSF can scale to high dimensionality and 30

rapidly filter unproductive pairwise comparison. Two bioinformatics applications 31

of the tool are presented to demonstrate the ability to scale to billions of pairwise 32

comparisons and the usefulness of this approach. 33
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Introduction 34

Data mining is frequently used in scientific research for hypothesis generation, 35

mechanistic insight, or validation. Similarity metrics are an essential component 36

of data mining, and are used to identify relevant data. In computational biology, 37

a wide variety of similarity metrics have been devised to maximize specificity 38

and sensitivity in sequences alignment [1], proteomic mass spectrometry [2], 39

evolutionary tree building [3], co-expression network creation [4], etc. These algo- 40

rithms are typically used to facilitate comparing a data point against a curated 41

library of experiments, which can lead to insight [5]. As modern data generation 42

capabilities have created a deluge of potential data to compare against, exhaus- 43

tive similarity search may become computationally prohibitive for inefficient 44

algorithms. Therefore, efficient and accurate algorithms for computing similarity 45

are necessary. For instance, the library of integrated network-based cellular 46

signatures (LINCS) program has generated over one million gene expression 47

experiments [6]. To compute the pairwise similarity between all experiments 48

therefore requires 0.5 trillion similarity calculations. 49

When doing similarity-based computations on very large data, a significant 50

drawback is that most of the pairwise comparisons yield a negative result, i.e. 51

the two data points are not similar. An example of this is sequence alignment of 52

genomic data. The current NCBI nr database contains > 78 million proteins (as 53

of January 2017, release 80), the vast majority of which are not related to an input 54

query. It would be a significant waste of time to perform the Smith-Waterman 55

local alignment search against all 78 million sequences [7]. To overcome this 56

limitation and enable large-scale data mining, sequence comparison algorithms 57

commonly filter the set of sequences in the library prior to a more sensitive search. 58

The BLAST algorithm requires a shared k-mer between the query sequence and 59

candidate sequences from the library [8]. Only those proteins which contain 60
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a shared k-mer progress to a full alignment. This style of filtering candidates 61

before a more computationally expensive scoring scheme is a common strategy 62

which allows data mining to scale to ever-larger data volumes [9–11]. 63

A second method to improve the speed of an algorithm is to adopt a faster 64

core calculation. Most scientific data is stored as floating-point numbers; multi- 65

plication or division of floats is relatively slow. Therefore, optimizing an approach 66

to minimize these will improve the computational speed. Bit operations (e.g. 67

AND, OR, XOR) are dramatically faster than multiplication, yet require a 68

restructuring of the basic approach or a data transform. The FastBit algorithm 69

transforms data into bitmaps, then performs a hybrid compression to enable 70

several common algorithmic operations (e.g. less than operator, histograms, 71

exact pattern matching). This method is specifically designed to facilitate query- 72

ing very large libraries with scientific data of high cardinalities [12]. Similarly, 73

bit-vectors have been used to improve the speed of string matching [13]. 74

We combine these two ideas in the Blazing Signature Filter (BSF), a new 75

approach to prune unproductive pairwise similarity calculations and enable 76

large-scale data mining. The BSF identifies signatures in digital data through bit 77

representation (non-full precision) and bitwise operators. These binary operands 78

are dramatically more efficient than floating-point multiplication and division in 79

terms of CPU cycles per comparison. This simple heuristic allow us to remove 80

> 98% of pairwise comparisons rapidly and therefore concentrate computational 81

effort on pairs that are more likely to be meaningfully similar, enabling data 82

mining tasks which previously appeared infeasible. We demonstrate the power 83

of the BSF by computing the pairwise similarity of all publicly available LINCS 84

datasets and identifying similarity of all genomes annotated by the Kyoto 85

Encyclopedia of Genes and Genomes (KEGG). 86
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Results 87

Mining large data repositories to identify similar datasets is a common technical 88

task. Depending on the number of comparisons to be done, the time involved 89

in this simple task may be prohibitive. In most large-scale pairwise similarity 90

searches (e.g., identifying similarity between all public transcriptomics datasets), 91

the vast majority of pairs will be dissimilar. Thus, the most efficient way to 92

speed such data mining explorations is to rapidly identify dissimilar pairs and 93

remove them from the analysis pipeline. The purpose of the BSF is to identify 94

pairwise similarity comparisons which are unlikely to be statistically meaningful. 95

Our heuristic is to binarize the data and calculate a similarity metric on the 96

binary data using bit operators, as bitwise computation is dramatically faster 97

than floating point operations. In this way, the BSF can work as a front-end 98

filter to computational analysis tools and dramatically speed up their pipeline. 99

Algorithm description 100

A simplified example of the BSF is illustrated in Fig 1, where a 64 element signa- 101

ture is compared to a pool of candidates in a library. This 64 element signature 102

is entirely binary, meaning that we only keep track of whether the element is 103

part of the signature or not. Bit operations on two 64-bit binary signatures 104

happen in a single instruction as two registers are compared with operators like 105

AND, or XOR. Counting the number of successes in the comparisons (1s in the 106

resulting array) is rapidly done using the hardware instruction ‘POPCNT’ [14]. 107

In comparison, identifying the cosine similarity or Euclidean distance between 108

two 64 element floating point vectors requires over 100 additions, multiplications, 109

divisions and square root operations. For modern processors, cosine distance 110

and euclidean distance have an average latency of 524∼538 and 711∼725 clock 111

cycles, respectively, whereas BSF uses 4 clock cycles. Although this simplified 112
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example shows a 64 element signature, the software implementation of the BSF 113

has been engineered to allow an arbitrary signature length. This is essential for 114

comparing gene expression signatures which may scale to tens of thousands of 115

elements, e.g. 20,000 human proteins. As this is larger than the size of a single 116

CPU register, the data is chunked into appropriate sizes and comparisons are 117

flowed through the registers. 118

Fig 1. Illustration for the core of BSF. This simple example shows how
the BSF deals with the binary data to identify the similarity between query and
library signatures. Each signature has 64 elements (rows in the matrix). The
binary data represents whether an element is part of the signature, i.e. ‘1’
means that the element is part of the signature, ‘0’ means that it is not part of
the signature. (a) A set of query signatures represented as a binary matrix. (b)
A set of library signatures to which the query signatures are compared. (c) The
binary comparison for a single column in the query and library matrices. (d)
The results matrix containing the similarity for each pairwise comparison. In
the 64-bits example, clock cycle needs for the BSF are 1 for ‘AND’ and 3 for
‘POPCNT’, while cosine and euclidean metric use > 500 and > 700 clock cycles,
respectively. (See Methods).
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Performance benchmarking 119

To demonstrate the speed of the similarity metrics, we performed a benchmark 120

test of BSF, cosine similarity and Euclidean distance using a synthetic dataset 121

mimicking gene expression measurements. In gene expression experiments, the 122

goal is often to identify the up/down regulated genes relative to a reference 123

condition. For example, in a gene knockout experiment, the desire is to under- 124

stand and investigate which proteins are altered in their regulation relative to 125

wild-type. The synthetic data was generated as measurements of 20,000 genes 126

for 15,000 experiments (See Methods). Full precision floating point data was 127

used by cosine and Euclidean distance metrics, whereas the BSF used binarized 128

data showing up or down regulated genes. 129

We performed the full pairwise comparison of all 15K experiments for both 130

the up and down matrix (∼225 million comparisons). To characterize the time- 131

dependence of each algorithm on the length of the signature, we tested each 132

algorithm with a different number of genes ranging from 1,000 to 20,000. This is 133

essential to understanding the utility of each algorithm, as different applications 134

may contain highly variable signature lengths. As shown in Fig 2, the time taken 135

by each algorithm grows with the length of the signature. However, we note 136

that the time dependence of the BSF grows dramatically more slowly than other 137

methods. For the full 20,000 length signature (approximately what would be 138

used for human gene expression data), the BSF algorithm ran in 45 seconds, 139

while Euclidean and cosine methods took ∼2,000 or ∼6,000 seconds respectively. 140

Both the Euclidean and cosine method show a linear time dependence on the 141

signature length, O(n), while the BSF shows a log-linear dependence, O(log n), 142

consistent with algorithmic expectations. 143
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Fig 2. Benchmark result of BSF. (a) shows the average running time of
computing each metric. TCOS(K), TEUC(K), TBSF (K) indicate the linear
functions to fit the time points in terms of K of cosine similarity, euclidean
distance, and BSF, respectively, where K means the length of each signature.
(b) is a zoomed portion of (a) to focus on the BSF. (b) shows the BSF has a
logarithmic time complexity while others have a linear time complexity. Refer
to Methods and
https://github.com/PNNL-Comp-Mass-Spec/BSF_publication.

LINCS Network analysis 144

The LINCS L1000 project is a large-scale gene expression analysis, where numer- 145

ous perturbations are applied to a variety of human cell lines and the response 146

measured at multiple time points (https://clue.io/). The L1000 assay ac- 147

quires transcript measurements on ∼ 1, 000 carefully chosen landmark genes 148

followed by imputing the expression values for the remaining ∼ 21, 000 human 149

genes. Perturbations used in the LINCS L1000 project include small molecule 150

inhibitors, gene knockdowns and gene over-expression. Identifying similarities 151

between perturbations is a primary focus of the project, and the goal is to enable 152

the characterization of drug compounds having unknown targets as well as to 153

identify signaling cross-talk and other gene expression changes induced by the 154

perturbations. 155

As a real-world test for the BSF, we computed the pairwise similarity for 156
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the publicly available subset of the LINCS L1000 datasets [6]. We downloaded 157

the December 2016 snapshot which contains 117K signatures as differentially 158

expressed genes calculated using the characteristic direction method. We con- 159

vert the up/down regulated genes into a 22,688-by-117,373 binary matrix and 160

computed the 6.89 billion pairwise comparisons for the up-regulated genes and 161

another 6.89 billion comparisons for the down-regulated genes. Results from 162

these were merged to show the number of up/down regulated genes shared 163

between two experiments. Supplementary Figure 1 shows that 98.8% of all 164

pairs shared less than 10 up/down regulated genes. By spending about 2 hours 165

determining this lack of pattern similarity using the BSF, accurate distances did 166

not need to be calculated for these unproductive pairs, thus saving 9.6 days of 167

computation. 168

After computing all pairwise comparisons within the LINCS dataset, we built 169

a network connectivity graph to identify similar signatures of gene expression 170

among the various perturbations. In exploring this graph, we first examined 171

perturbations using small molecule histone deacetylase (HDAC) inhibitors. We 172

queried the network using nine well-known HDAC inhibitors (belinostat, entino- 173

stat, mocetinostat, pracinostat, trichostatin A, vorinostat, rocilinostat, HDAC6 174

inhibitor ISOX, and valproic acid), which generated a sub-network of 1,066 175

nodes and 6.3 million edges. Fig 3 shows the network of the top 500 connec- 176

tions. Each node and its size indicate a perturbation dataset and the number of 177

up/down-regulated genes by each perturbation. The weight of an edge shows 178

the similarity score between two nodes. This analysis revealed that the nodes 179

clustered by cell line rather than drug, indicating the response to various HDAC 180

inhibitors is more cell line-specific than drug-specific. In addition to the query 181

perturbations, six additional drug treatments were also found to show a similar 182

signature and thus form part of the sub-network. Among these six are known or 183
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putative HDAC inhibitors such as HC toxin [15], panobinostat [16] and scriptaid, 184

one of the first HDAC inhibitors discovered via high-throughput screening [17]. 185

THM-I-94 had previously been hypothesized to act as an HDAC inhibitor based 186

on structural similarity [18], and its clustering here supports that assertion. 187

Other small molecules which cluster with the HDAC inhibitors include unnamed 188

or poorly characterized pharmacological agents. With respect to the differential 189

gene expression pattern shared by these drug treatments, we found enrichment in 190

pathways associated with the cell cycle, MAPK signaling and KEGG’s Pathways 191

in Cancer network based on the Fisher’s exact test. 192

A second data mining example from LINCS investigates the effect on human 193

cell lines of non-human medication. Niclosamide is used to treat tapeworm 194

infestations, but has recently been explored as a treatment for MRSA and 195

Zika virus [19, 20]. With the capability of BSF, we can easily find the most 196

similar treatments in the LINCS dataset. As shown in Supplementary Figure 197

2, 257 experiments of 20 different drugs form a subnetwork with niclosamide. 198

Even though it wasn’t designed to target human cells, niclosamide has strong 199

connectivity with IMD-0354, which is an IKKβ inhibitor and blocks IκBα 200

phosphorylation. In addition to their high concordance in affecting the NF-κB 201

pathway (Supplementary Figure 2b), the two signatures have very high overlap 202

in KEGG’s cell cycle pathway, with both showing strong down regulation of 203

cyclins, cyclin dependent kinases, checkpoint kinases and the MCM complex 204

(Supplementary Figure 2c). 205

Whole genome similarity 206

A second application of the BSF is to compare gene content across a large 207

number of genomes. Sequenced genomes are functionally annotated both by 208

sequence repositories for inclusion in RefSeq [21] or Uniprot [22], or they can be 209
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Fig 3. A sub-network associated to known HDAC inhibitors. The top 500 edges (among 6.3 million) are shown
which includes the perturbations from the query (belinostat, pracinostat, trichostatin A, vorinostat, and HDAC6
inhibitor ISOX) and other compounds, some of which are known (scriptaid) and putative (THM-I-94) HDAC inhibitors.
H7270 and S1030 are catalog numbers for HC toxin and panobinostat, both recognized HDAC inhibitors. Other
perturbation are unnamed drugs (See Methods). The networks naturally form tight clusters, mostly distinguished by cell
type and time point. The line width represents its similiarity score between two nodes.

annotated by a variety of systems biology style knowledgebases like KEGG [23] 210

or RAST [24]. At the advent of genome sequencing, large scale comparisons of all 211

genomes was used to understand protein function and evolution [25]. As genome 212

sequencing technology has improved, the number of publicly available genomes 213
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grows dramatically and an all versus all comparison is much less frequently done 214

due to computational costs. 215

KEGG is a functional annotation system which organizes whole genomes 216

into into pathways and molecular interactions for 20,624 protein orthologs in 217

4,648 organisms (356 eukaryotes, 4,049 bacteria, and 243 archaea). Annotated 218

genes are identified by their KEGG ortholog number, which are used to define 219

metabolic, signaling and information pathways. Using the BSF, we computed 220

the functional similarity between all genomes annotated by KEGG. Because gene 221

presence/absence is already a binary measure, genome similarity comparisons are 222

a simple and natural use for the BSF. We prepare the binary matrix consisting of 223

20,624 rows (orthologs) by 4,648 columns (genomes) where each cell represents 224

where whether a ortholog is present in a genome. Computation for the full 225

pairwise comparison took 5.2 seconds. 226

To show the diversity of genomic content within a taxonomic grouping, we 227

plotted the average number of shared genes between genomes within a taxonomic 228

group, e.g. Homo sapiens compared to all vertebrates (Fig 4). Eukaryotic 229

genomes are generally larger than genomes of bacteria and archaea, and therefore 230

it is not surprising to find a higher number of shared genes among eukaryotes. 231

Additionally, KEGG contains a significant number of orthologs annotated in 232

human disease pathways, and therefore the number of shared genes among 233

animals is notably higher than among plants. We note that there is a broad 234

range of similarity within a taxonomic group, most of which appears to be 235

driven by genome size. For example, within alphaproteobacteria, most organisms 236

share between 500-1100 orthologs. There are, however a few which share < 140 237

genes. These are 4 different strains of Candidatus Hodgkinia cicadicola (See 238

Materials and Methods), an endosymbionts of the cicada, which has a tiny 144 239

kb genome [26]. To look at the comparisons within a taxonomic division, we 240
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plotted the average similarity between all genera within the class Bacilli (Fig 5). 241

Many genera within Lactobacillales have very low similarity to all other genera 242

of Bacilli. Some of this can be due to low gene counts (e.g. Weissella), however, 243

several have high self-similarity but very low average overlap with any other taxa 244

(e.g. Streptococcus, Leuconostoc, Melissococcus). Thus they likely represent an 245

adaptive genomic response to unique environmental niche. 246

Most organisms which share a small number of genes with other organisms 247

are genome reduced and live as obligate symbionts. To compare the functions 248

retained by genome reduced organisms, we plotted the similarity between organ- 249

isms which had fewer than 600 genes annotated by KEGG (Fig 6). The lack 250

of similarity between these minimalist genomes points to the wide variety of 251

possible adaptations to environmental conditions. This is even true for para- 252

sites/pathogens which have nominally similar environments: e.g. Chlamydia 253

and Mycoplasma both infect humans, Coxiella and Borrelia are both tick borne 254

pathogens infecting humans. 255

Discussion 256

As technologies for scientific data generation continue to dramatically improve 257

and facilitate an ever greater characterization and description of the natural 258

world, data mining for hypothesis generation and validation becomes both more 259

important and more technically challenging. With the BSF, we introduce a 260

simple and efficient method for identifying patterns, or signatures, in massive 261

amounts of data. This is enabled by the rapid pairwise comparison of data as 262

binary vectors. We show two example applications where pairwise comparisons 263

are a common bioinformatics task: comparing genomes for similar gene content 264

and identifying experiments with similar gene expression patterns. In both 265

applications, the sheer number of comparisons would be time prohibitive without 266
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Fig 4. The average number of shared genes across all the genomes. Using protein orthologs from KEGG, we
compare the gene presence/absence across all annotated genomes. Data points represent the average number of shared
genes of a genome with the other genomes in the same taxonomic family. The graph is plotted on a log scale. Data
points are colored according to taxonomic family membership. For clarity, taxonomic groups with fewer than four
organisms were not plotted.
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Fig 5. The average number of shared genes in genera within the class Bacilli. Rows and columns are
ordered via hierarchical clustering. When only one sequenced member is present, the diagonal is marked with a boxed ×.
A number in the bracket of each label shows the number of species of each genus. For details, see Materials and Methods.

optimized computational methods such as the BSF. 267

New experimental technologies will improve the ability to make comprehensive 268
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Fig 6. The average number of shared genes between minimalist bacteria. These organisms have 200-600
genes annotated by KEGG. Organisms are grouped by taxonomy.

datasets. For example, the task of identifying genetic interactions between pairs 269

of genes was previously difficult to scale to whole genomes [27]. However, the 270

CRISPR technology now makes is dramatically simpler to explore the effects of 271
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multiple knockouts [28], and we anticipate that whole genome double knockouts 272

will be common in the near future. Even for genomically compact bacteria with 273

∼2000 genes, the number of double knockouts exceeds millions of strains. The 274

subsequent task of identifying similarity (or differences) between the millions 275

of strains will then require trillions of calculations. In these scenarios, efficient 276

similarity metrics like the BSF will be essential to enable scientific discovery. 277

For datasets that are natively binary (e.g. gene content), the BSF works 278

trivially. Another computation that is inherently binary is the set overlap 279

calculation that is part of a Fisher’s exact test, commonly used for gene set 280

enrichment. For datasets which are numeric or categorical, use of the BSF 281

requires a meaningful transformation into binary space such as was done in the 282

LINCS gene expression compendium. A wide variety of bioinformatics needs, 283

e.g. proteomics library searches and FBA modeling, could benefit from using 284

the BSF to quickly filter out unproductive data point prior to a more sensitive 285

computation on the native (i.e. non-binary) data. 286

Materials and Methods 287

The data and analysis methods for all figures are available at see https:// 288

github.com/PNNL-Comp-Mass-Spec/BSF_publication. 289

LINCS Application 290

The LINCS L1000 project measures gene expression (transcriptomics) over 291

different cell lines with a broad range of small molecule perturbations and 292

genetic manipulations (knockout, knockdown and over-expression) [29,30]. In 293

this manuscript, we use the L1000 mRNA gene-expression signatures computed 294

using the characteristic direction signatures method [6,29], giving binary up and 295

down regulated genes for each of the ∼ 117, 000 datasets. It is publicly available 296
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at http://amp.pharm.mssm.edu/public/L1000CDS_download/. 297

KEGG Application 298

All Kegg annotations were taken from in Release 81.0 downloaded on January 299

1, 2017. A table of orthologs versus genomes was created and fed into the BSF 300

using the python interface. See the kegg data section at https://github.com/ 301

PNNL-Comp-Mass-Spec/BSF_publication for auxiliary files and code. 302

Benchmarking 303

The synthetic benchmarking data was created as a table (15K columns × 20K 304

rows) of floating point numbers drawn randomly from the gaussian distribution 305

of N(0, 0.5). Rows can be thought of as different gene measurements, and 306

columns as distinct datasets. This continuous data was binarized into two tables 307

to represent the extremes of the distribution, i.e. values < −0.6 were written as 308

1 in a binary table representing the ‘low’ values and values > 0.6 were written 309

as 1 to a binary table representing high values. 310

We use the cosine distance and euclidean distance on the original floating 311

point data to compare the performance with BSF. In the manuscript, we discussed 312

clock cycles required for various operations. For a description of CPU clock cycles 313

per instruction set, refer to http://www.agner.org/optimize/instruction_ 314

tables.pdf. Supposing the M -by-N signature matrix [S1, S2, S3, · · · , SN ], the 315

formulae for cosine and Euclidean similarity are: 316

euclidean(Si, Sj) =

√√√√ M∑
k=1

(ak − bk)2 (1)

cosine(Si, Sj) =
si · sj
|si||sj |

=

∑M
k=1 akbk√∑M

k=1 a
2
k

√∑M
k=1 b

2
k

(2)
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, where Si = [a1, a2, a3, · · · , aM ]T and Sj = [b1, b2, b3, · · · , bM ]T (i, j = 317

1, 2, 3, · · · , N). 318

BSF Software and Access 319

The BSF code, written in C++, is an open source software project licensed under 320

BSD. Source can be found at https://github.com/PNNL-Comp-Mass-Spec/ 321

bsf-core. For ease of access, we have written a python wrapper to interface with 322

the BSF C++ library, https://github.com/PNNL-Comp-Mass-Spec/bsf-py. 323

Python extensions and numpy C-API are employed to implement the python 324

wrapper. 325

The BSF is accessed through an API which ensures that input data is 326

appropriate and meaningful, and interprets the output tables which are returned. 327

Input to the BSF consists of two binary tables of size K-by-N and K-by-M . For 328

the input table, all the bits of each column are stored into an array of 64-bit 329

unsigned integers. It enables bitwise operators using the 64-bit registers. The 330

user also specifies which binary operator to use. The return from BSF is an 331

N -by-M table with each cell representing the value of comparing element i in 332

table 1 with element j in table 2. 333

As shown in Fig 1, the BSF outputs the N -by-M matrix, where N and M 334

indicate the column sizes of K-by-N and K-by-M input matrices, respectively. 335

The pseudocode is described in Algorithms 1. 336

In case to compute all the pairwise comparisons between two signatures 337

within a K-by-N library matrix, it outputs a N -by-N strictly upper triangular 338

matrix with zero diagonal entries so that we avoid the redundant computation 339

of aij for i > j which must be equal to aji. The pseudo code for this looks as 340

shown in Algorithms 2. 341

In case of LINCS dataset, we need 117K × 117K × 4bytes ≈ 50G at least to 342
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Algorithm 1 BSF algorithm to analyse the similarity between columns of a
library matrix and a query matrix

Input: lib[Nrow][Ncol]← a libary matrix, q[Nrow][Mcol]← a query matrix
Output: out[Ncol][Mcol]← a 2D array of unsigned integers
1: function BSFCore1(lib, q)
2: for all i in [0, Ncol] do
3: for all j in [0,Mcol] do
4: popcount ← 0
5: for all k in [0, Nrow] do
6: sim← lib[k][i] & q[k][j]
7: popcount ← popcount + builtin popcountll(sim)

8: out[i][j]← count

9: return out

Algorithm 2 BSF algorithm to analyse the similarity between columns of a
single library matrix

Input: lib[Nrow][Ncol]← a 2D array of unsigned 64bit integers
Output: out[Ncol][Ncol]← a 2D array of unsigned integers
1: function BSFCore2(lib)
2: for all i in [0, Ncol − 1] do
3: for all j in [i+ 1, Ncol] do
4: popcount ← 0
5: for all k in [0, Nrow] do
6: sim← lib[k][i] & lib[k][j]
7: popcount ← popcount + builtin popcountll(sim)

8: out[i][j]← count

9: return out
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save all the results. As a data size gets larger, this may lead to an out-of-memory 343

exception depending on the physical memory size. To safely avoid this memory 344

issue, we split the output matrix into multiple chunks, of which size is reasonably 345

manageable. Given the file size, the size of a chunk matrix is decided. Details 346

are described in Algorithms 3. 347

Algorithm 3 Chunk split for avoiding out-of-memory in handling a big library
matrix

Input:
lib[Nrow][Ncol]← a libary matrix,
size← the chunk size (GB, e.g., 4 for 4GB)

Output: multiple binary files of which size is less than schunk
1: schunk ← int(

√
size× 109/4) .

(e.g.,
√

4× 109 bytes/4 bytes ≈ 31, 623 for splitting into 4GB chunks)
2: tail← Ncol (mod schunk)
3: Nchunk ← tail = 0?(Ncol/schunk) : (Ncol/schunk) + 1
4: for all i in [0, Nchunk] do
5: for all j in [i,Nchunk] do
6: if i < Nchunk − 1 then
7: rows← schunk
8: else
9: rows← tail = 0?schunk : tail

10: if j < Nchunk − 1 then
11: cols← schunk
12: else
13: cols← tail = 0?schunk : tail

14: x1← i ∗ schunk, x2← i ∗ schunk + rows
15: y1← j ∗ schunk, y2← j ∗ schunk + cols
16: chunk[rows][cols]← An empty matrix
17: if i = j then
18: chunk ← BSFCore2(lib[Nrow][x1 : x2])
19: else
20: chunk ← BSFCore1(lib[Nrow][x1 : x2], lib[Nrow][y1 : y2])

21: Write chunk[rows][cols] into a binary file
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Supplementary Figure 1. Score distribution of the 6.89 billion pairwise comparisons in the LINCS
L1000 dataset. The color of each point describes the number of pairs which have shared genes. X and Y axes indicate
the number of shared up-regulated genes and down-regulated genes, respectively. For example, a point of (50, 50) has
147, which means 147 pairs of two signatures share 50 up-regulated genes and 50 down-regulated genes. The
overwhelming majority of pairwise comparisons, ∼ 6.80 billions or 98.8%, are located in a small box of up-regulated genes
< 10 and down-regulated genes < 10. These represent pairs of experiments, which do not share a discernable signature of
regulated gene expression and are unproductive data mining events.
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Supplementary Figure 2. A sub-network of LINCS L1000 experiments most similar to niclosamide. (a)
We extracted the network for 88 datasets associated with non-human medications such as niclosamide (tapeworm
infestations) and daminozide (plant growth regulator). It shows 257 experiments of 20 drugs highly connected to these 88
signatures. Refer to Materials and Methods for details. (b) Differentially expressed genes shared between niclosamide
and IMD 0354, an IKKβ inhibitor. Most of all common genes are down-regulated and cell cycle looks slow down. (c)
Shared differential genes shown for the NF-κB signaling pathway; most of the genes are up-regulated.
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