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Abstract 
 
Across biology we are seeing rapid developments in scale of data production without a 

corresponding increase in data analysis capabilities. Here, we present Aether 

(http://aether.kosticlab.org), an intuitive, easy-to-use, cost-effective, and scalable 

framework that uses linear programming (LP) to optimally bid on and deploy 

combinations of underutilized cloud computing resources. Our approach simultaneously 

minimizes the cost of data analysis while maximizing its efficiency and speed. As a test, 

we used Aether to de novo assemble 1572 metagenomic samples, a task it completed 

in merely 13 hours with cost savings of approximately 80% relative to comparable 

methods.  

 

Main 

Data accumulation is exceeding Moore’s law, which only still progresses due to 

advances in parallel chip architecture.1 Fortunately, the shift away from in-house 

computing clusters to cloud infrastructure has yielded approaches to computational 

challenges in biology that both make science more reproducible and eliminate time lost 

in high-performance computing queues2,3; however, existing off-the-shelf tools built for 

cloud computing often remain inaccessible, cumbersome, and in some instances, 

costly.  

 

Solutions to parallelizable compute problems in computational biology are increasingly 

necessary; however, batch job-oriented cloud computing systems, such as Amazon 

Web Services (AWS) Batch, Google preemptible Virtual Machines (VMs), Apache 
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Spark, and MapReduce implementations are either closed source, restrictively licensed, 

or locked in their own ecosystems making them inaccessible to many bioinformatics 

labs.4,5 Other approaches for bidding on cloud resources exist, but they neither provide 

implementations nor interface with a distributed batch job processing backend.6–8 

 

Our proposed tool, Aether, leverages a linear programming approach to minimize cloud 

compute cost while being constrained by user needs and cloud capacity, which are 

parameterized by the number of cores, RAM, and in-node solid-state drive space. 

Specifically, certain types of instances are allocated to large web service providers (e.g., 

Netflix) and auctioned on a secondary market when they are not fully utilized.6 Users bid 

amongst each other for use of this already purchased but unused compute time at 

extremely low rates (up to 90% off the listed price).9 However, this market is not without 

its complexities. For instance, significant price fluctuations, up to an order of magnitude, 

could lead to early termination of multi-hour compute jobs (Figure 1A). Clearly, bidding 

strategies must be dynamic to overcome such hurdles. 

 

Due to this pricing variability, it can be optimal to bid on non-auctioned instances in 

certain regions. To properly handle this case, we include additional linear constraints for 

both an instance’s on-demand and at-auction prices. The solution vector is bounded by 

the number of currently running instances as well as  limits due to provider capacity. 

Finally, to avoid bidding on instances that will spike in price, the algorithm looks at 

pricing history and sets a final constraint corresponding to a user’s maximum tolerable 

pricing variability. For each run of the bidder, this system of 140 inequalities is 
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converted to slack (standard) form and then solved with the simplex algorithm as 

implemented in Python’s scipy.linprog library (Figure 1B).10 This naively outputs 

suggested compute bids as floats; obviously, a fraction of an instance is not a valid bid 

and generating integer solutions to linear programming problems is NP-hard. However, 

a true integer linear programming solution is not required, as the constraints still hold if 

the floor is taken from each bid, provided that preprocessing is done to remove 

underutilized instance types and those that cannot process a unary compute job. To 

reach this optimal integer pseudo-solution, the linear programming solver is run 

recursively such that these non-feasible fractional bids are iteratively removed. 

Additionally, adhering to the pricing variability constraint is not guaranteed to yield the 

optimal value, so the simplex algorithm is applied iteratively, setting the pricing 

variability from zero to the maximum specified value until either the optimal value is 

found or it is determined that there is no solution to the system. In the event of finding 

no solution, the user must re-run the program with a higher maximum cost. This 

approach results in a tractable average case runtime, which yields essentially instant 

bidding suggestions given the small size of the system being solved.  

 

Aether consists of  bidder and batch job processing command line tools which query 

instance metadata from the vendor application programming interface (APIs) to 

formulate the linear programming problem. Subsequently, the replica nodes specified by 

the linear programming result are launched and placed under the control of a primary 

node, which assigns batch processing jobs over Transmission Control Protocol (TCP), 

monitors for any failures, gathers all logs, sends all results to a specified cloud storage 
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location, and terminates all compute nodes once processing is complete (Figure 1C). 

Additionally, Aether is able to distribute compute across multiple cloud providers. Our 

implementation runs on any Unix-like system; we ran our pipeline and cost analysis 

using AWS but have provided code to spin up compute nodes on either Microsoft Azure 

or on a user's local physical clusters.  

 

To test our bidding approach and batch job pipeline at scale, we used our framework to  

de novo assemble and annotate 1572 metagenomic, longitudinal samples from the stool 

of 222 infants in Northern Europe (Figure 2A).11–14 The sequencing data within  datasets 

from the DIABIMMUNE consortium ranged from 4,680 to 22,435,430 reads/sample with 

a median of 19,020,036 reads/sample. Assemblies were performed with MEGAHIT and 

annotations were done with PROKKA.15,16  

 

Metagenomic data, shotgun DNA sequencing of microbial communities, is difficult to 

analyze because of the enormous amounts of compute required to naively assemble 

short sequence reads into large contiguous spans (contigs) of DNA. To accomplish our 

assemblies, our bidding algorithm suggested that the optimal strategy would be to spin 

up 30TB of RAM across underutilized compute nodes. Our networked batch job 

processing module utilized these nodes for 13 hours and yielded an assembly and 

annotation cost of ~$0.30 per sample (Figure 2B). Theoretically, the pipeline can 

complete in the time it takes for the longest sub-process (i.e. assembly in this case) to 

finish (~7 hours).  Spinning up the same nodes for this long without a bidding approach 

would cost ~$1.60 per sample (Figure 2C). In order for on-site hardware to achieve the 
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same cost efficiency as our pipeline, one would have to carry out on the order of 1 

million assemblies over the lifespan of the servers, a practically insurmountable task 

(Figure 2B). Such efficiency in both time and cost at scale is unprecedented. In fact, due 

to resource paucity, computational costs have forced the field of metagenomics to rely 

on algorithmic approaches that utilize mapping back to reference genomes rather than 

de novo methods.17  

 

In simulated runs of the bidder incorporating pricing history from periods where ask 

prices were approximately an order of magnitude higher than normal on the east coast 

of the United States (Figure 1A), Aether suggested utilization of different instance types 

that would have resulted in similar cost and time to completion as our actual run. To 

allow users make optimal usage of these benefits, the ability to simulate bidding for 

different timeframes is included as a feature. By not having to potentially re-run analysis 

pipelines (due to being outbid on compute during runtime), we claim that utilizing Aether 

leads to a reduction of market inefficiencies. Future directions include training the 

bidding algorithm to predict its own effect on pricing variability when being utilized at 

massive scale as well as  distributing compute nodes across datacenters when enough 

resources are being spun up to strongly influence the market.  

 

To our knowledge, this is the first implementation of a bidding algorithm for cloud 

compute resources that is tied both to an easy-to-use front-end as well as a distributed 

backend that allows for spinning up purchased compute nodes across multiple 
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providers.  Conceivably, this tool can be applied to any number of disciplines, bringing 

cost-effective cloud computing into the hands of scientists in fields beyond biology. 

 

Methods 

Implementation Details   Computational resources and monetary costs are mapped to 

each available instance type at run-time by querying the cloud providers’ web-based 

public APIs. To identify the ideal resource selection, we feed these data, along with 

constraints provided by the user, into our multi-objective optimization procedure. The 

user-defined set of jobs is subdivided into computational workloads according to the 

resources available to each node, and distributed across the worker nodes by a central 

server. In a single node’s workload, jobs are executed in parallel but may complete 

asynchronously. Upon completion of a job, the replica node notifies the central server, 

which then schedules another task for the replica. To prevent scheduling errors, we 

synchronized changes in the primary node’s job ledger, and used at-least-once 

message delivery. We controlled access to computational resources and accounts with 

AWS Identity & Access Management (IAM) security groups and Azure Identity and 

Access Management (IaAM) , which their respective providers recommend for 

authentication and authorization. Additional details regarding Aether’s implementation 

are available on the project website (http://aether.kosticlab.org).  

Data Availability Infant metagenomic data utilized are freely available at  

https://pubs.broadinstitute.org/diabimmune and with EBI  SRA accession ERP005989. 

Code Availability The source code for Aether is available on GitHub 
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(https://github.com/kosticlab/aether), where it is being actively maintained and updated. 

The examples included in this manuscript, along with documentation and step-by-step 

tutorials, are available on the project website (http://aether.kosticlab.org). 
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Figure 1  A) Pricing history of an x1.16xlarge EC2 Instance on AWS showcasing variability of 

an order of magnitude, in both directions, for spot prices. B) Simplified example showing three 

constraints on a sample bidding approach minimizing an objective function cTx considering cost 

according to a system of constraints represented as inequalities. x1, x2, and x3 represent the 

number of specific types of compute nodes to solve for. Each inequality represents a constraint 

and adds another dimension to the space which the simplex algorithm needs to traverse 

vertices in to find ideal solution. The actual system of inequalities has 140 constraints. The 

green line represents the optimal solution. C) An overview of Aether’s computing infrastructure.  
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Figure 2 A) Overview of the assembly process. A total of 1572 fecal samples were collected 

and sequenced at various timepoints during the first 3 years of 222 individuals lives. These were 

assembled with MEGAHIT into 68,181,571 contigs. Across all samples, a total of 62,257,853 

genes, ~1,000,000 of which were unique, were then annotated using Prokka. Only contigs that 

were over 1000 bases long were used. The mean length of this group was 4278 bases. B) Cost 

comparison between Aether, standard cloud computing, and user-maintained hardware. Total 

assembly cost was 18% ($471.60) of what it would have been using on-demand instances. We 

estimated the upfront cost of a server equivalent to those used to analyze the data being 

~$10,000. Given that we used 30 instances of these servers, the total cost of hardware would 

be $300,000 according to pricing information from Penguin Computing and Dell, not counting 

system maintenance and depreciation. C) Comparison of cost per assembly for the three 

platforms outlined in 2B. 
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