

1

Aether: Leveraging Linear Programming for Optimal Cloud
Computing In Genomics

Jacob M. Luber1,2,3,4,5,6,∗, Braden T. Tierney2,3,4,5,6,7,∗, Evan M. Cofer3,4,6,8,9, Chirag J.

Patel5, & Aleksandar D. Kostic3,4,6

1Program in Bioinformatics and Integrative Genomics, Division of Medical Sciences, Harvard Medical

School, Boston, MA 02115, USA

2Graduate School of Arts and Sciences, Harvard University, Cambridge, MA, 02138, USA

3Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA 02215,

USA

4Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA 02215, USA

5Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA

6Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA

7Program in Biological and Biomedical Sciences, Division of Medical Sciences, Harvard Medical School,

Boston, MA 02115, USA

8Graduate Program in Quantitative and Computational Biology, Princeton University, Princeton, NJ

08544, USA

9Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA

*These authors contributed equally to this work.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 13, 2017. ; https://doi.org/10.1101/162883doi: bioRxiv preprint

https://doi.org/10.1101/162883

2

Abstract

Across biology we are seeing rapid developments in scale of data production without a

corresponding increase in data analysis capabilities. Here, we present Aether

(http://aether.kosticlab.org), an intuitive, easy-to-use, cost-effective, and scalable

framework that uses linear programming (LP) to optimally bid on and deploy

combinations of underutilized cloud computing resources. Our approach simultaneously

minimizes the cost of data analysis while maximizing its efficiency and speed. As a test,

we used Aether to de novo assemble 1572 metagenomic samples, a task it completed

in merely 13 hours with cost savings of approximately 80% relative to comparable

methods.

Main

Data accumulation is exceeding Moore’s law, which only still progresses due to

advances in parallel chip architecture.1 Fortunately, the shift away from in-house

computing clusters to cloud infrastructure has yielded approaches to computational

challenges in biology that both make science more reproducible and eliminate time lost

in high-performance computing queues2,3; however, existing off-the-shelf tools built for

cloud computing often remain inaccessible, cumbersome, and in some instances,

costly.

Solutions to parallelizable compute problems in computational biology are increasingly

necessary; however, batch job-oriented cloud computing systems, such as Amazon

Web Services (AWS) Batch, Google preemptible Virtual Machines (VMs), Apache

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 13, 2017. ; https://doi.org/10.1101/162883doi: bioRxiv preprint

https://doi.org/10.1101/162883

3

Spark, and MapReduce implementations are either closed source, restrictively licensed,

or locked in their own ecosystems making them inaccessible to many bioinformatics

labs.4,5 Other approaches for bidding on cloud resources exist, but they neither provide

implementations nor interface with a distributed batch job processing backend.6–8

Our proposed tool, Aether, leverages a linear programming approach to minimize cloud

compute cost while being constrained by user needs and cloud capacity, which are

parameterized by the number of cores, RAM, and in-node solid-state drive space.

Specifically, certain types of instances are allocated to large web service providers (e.g.,

Netflix) and auctioned on a secondary market when they are not fully utilized.6 Users bid

amongst each other for use of this already purchased but unused compute time at

extremely low rates (up to 90% off the listed price).9 However, this market is not without

its complexities. For instance, significant price fluctuations, up to an order of magnitude,

could lead to early termination of multi-hour compute jobs (Figure 1A). Clearly, bidding

strategies must be dynamic to overcome such hurdles.

Due to this pricing variability, it can be optimal to bid on non-auctioned instances in

certain regions. To properly handle this case, we include additional linear constraints for

both an instance’s on-demand and at-auction prices. The solution vector is bounded by

the number of currently running instances as well as limits due to provider capacity.

Finally, to avoid bidding on instances that will spike in price, the algorithm looks at

pricing history and sets a final constraint corresponding to a user’s maximum tolerable

pricing variability. For each run of the bidder, this system of 140 inequalities is

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 13, 2017. ; https://doi.org/10.1101/162883doi: bioRxiv preprint

https://doi.org/10.1101/162883

4

converted to slack (standard) form and then solved with the simplex algorithm as

implemented in Python’s scipy.linprog library (Figure 1B).10 This naively outputs

suggested compute bids as floats; obviously, a fraction of an instance is not a valid bid

and generating integer solutions to linear programming problems is NP-hard. However,

a true integer linear programming solution is not required, as the constraints still hold if

the floor is taken from each bid, provided that preprocessing is done to remove

underutilized instance types and those that cannot process a unary compute job. To

reach this optimal integer pseudo-solution, the linear programming solver is run

recursively such that these non-feasible fractional bids are iteratively removed.

Additionally, adhering to the pricing variability constraint is not guaranteed to yield the

optimal value, so the simplex algorithm is applied iteratively, setting the pricing

variability from zero to the maximum specified value until either the optimal value is

found or it is determined that there is no solution to the system. In the event of finding

no solution, the user must re-run the program with a higher maximum cost. This

approach results in a tractable average case runtime, which yields essentially instant

bidding suggestions given the small size of the system being solved.

Aether consists of bidder and batch job processing command line tools which query

instance metadata from the vendor application programming interface (APIs) to

formulate the linear programming problem. Subsequently, the replica nodes specified by

the linear programming result are launched and placed under the control of a primary

node, which assigns batch processing jobs over Transmission Control Protocol (TCP),

monitors for any failures, gathers all logs, sends all results to a specified cloud storage

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 13, 2017. ; https://doi.org/10.1101/162883doi: bioRxiv preprint

https://doi.org/10.1101/162883

5

location, and terminates all compute nodes once processing is complete (Figure 1C).

Additionally, Aether is able to distribute compute across multiple cloud providers. Our

implementation runs on any Unix-like system; we ran our pipeline and cost analysis

using AWS but have provided code to spin up compute nodes on either Microsoft Azure

or on a user's local physical clusters.

To test our bidding approach and batch job pipeline at scale, we used our framework to

de novo assemble and annotate 1572 metagenomic, longitudinal samples from the stool

of 222 infants in Northern Europe (Figure 2A).11–14 The sequencing data within datasets

from the DIABIMMUNE consortium ranged from 4,680 to 22,435,430 reads/sample with

a median of 19,020,036 reads/sample. Assemblies were performed with MEGAHIT and

annotations were done with PROKKA.15,16

Metagenomic data, shotgun DNA sequencing of microbial communities, is difficult to

analyze because of the enormous amounts of compute required to naively assemble

short sequence reads into large contiguous spans (contigs) of DNA. To accomplish our

assemblies, our bidding algorithm suggested that the optimal strategy would be to spin

up 30TB of RAM across underutilized compute nodes. Our networked batch job

processing module utilized these nodes for 13 hours and yielded an assembly and

annotation cost of ~$0.30 per sample (Figure 2B). Theoretically, the pipeline can

complete in the time it takes for the longest sub-process (i.e. assembly in this case) to

finish (~7 hours). Spinning up the same nodes for this long without a bidding approach

would cost ~$1.60 per sample (Figure 2C). In order for on-site hardware to achieve the

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 13, 2017. ; https://doi.org/10.1101/162883doi: bioRxiv preprint

https://doi.org/10.1101/162883

6

same cost efficiency as our pipeline, one would have to carry out on the order of 1

million assemblies over the lifespan of the servers, a practically insurmountable task

(Figure 2B). Such efficiency in both time and cost at scale is unprecedented. In fact, due

to resource paucity, computational costs have forced the field of metagenomics to rely

on algorithmic approaches that utilize mapping back to reference genomes rather than

de novo methods.17

In simulated runs of the bidder incorporating pricing history from periods where ask

prices were approximately an order of magnitude higher than normal on the east coast

of the United States (Figure 1A), Aether suggested utilization of different instance types

that would have resulted in similar cost and time to completion as our actual run. To

allow users make optimal usage of these benefits, the ability to simulate bidding for

different timeframes is included as a feature. By not having to potentially re-run analysis

pipelines (due to being outbid on compute during runtime), we claim that utilizing Aether

leads to a reduction of market inefficiencies. Future directions include training the

bidding algorithm to predict its own effect on pricing variability when being utilized at

massive scale as well as distributing compute nodes across datacenters when enough

resources are being spun up to strongly influence the market.

To our knowledge, this is the first implementation of a bidding algorithm for cloud

compute resources that is tied both to an easy-to-use front-end as well as a distributed

backend that allows for spinning up purchased compute nodes across multiple

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 13, 2017. ; https://doi.org/10.1101/162883doi: bioRxiv preprint

https://doi.org/10.1101/162883

7

providers. Conceivably, this tool can be applied to any number of disciplines, bringing

cost-effective cloud computing into the hands of scientists in fields beyond biology.

Methods

Implementation Details Computational resources and monetary costs are mapped to

each available instance type at run-time by querying the cloud providers’ web-based

public APIs. To identify the ideal resource selection, we feed these data, along with

constraints provided by the user, into our multi-objective optimization procedure. The

user-defined set of jobs is subdivided into computational workloads according to the

resources available to each node, and distributed across the worker nodes by a central

server. In a single node’s workload, jobs are executed in parallel but may complete

asynchronously. Upon completion of a job, the replica node notifies the central server,

which then schedules another task for the replica. To prevent scheduling errors, we

synchronized changes in the primary node’s job ledger, and used at-least-once

message delivery. We controlled access to computational resources and accounts with

AWS Identity & Access Management (IAM) security groups and Azure Identity and

Access Management (IaAM) , which their respective providers recommend for

authentication and authorization. Additional details regarding Aether’s implementation

are available on the project website (http://aether.kosticlab.org).

Data Availability Infant metagenomic data utilized are freely available at

https://pubs.broadinstitute.org/diabimmune and with EBI SRA accession ERP005989.

Code Availability The source code for Aether is available on GitHub

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 13, 2017. ; https://doi.org/10.1101/162883doi: bioRxiv preprint

https://doi.org/10.1101/162883

8

(https://github.com/kosticlab/aether), where it is being actively maintained and updated.

The examples included in this manuscript, along with documentation and step-by-step

tutorials, are available on the project website (http://aether.kosticlab.org).

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 13, 2017. ; https://doi.org/10.1101/162883doi: bioRxiv preprint

https://doi.org/10.1101/162883

9

References

1. Esmaeilzadeh, H., Blem, E., Amant, R. S., Sankaralingam, K. & Burger, D. Power

Challenges May End the Multicore Era. Commun. ACM 56, 93–102 (2013).

2. Beaulieu-Jones, B. K. & Greene, C. S. Reproducibility of computational workflows

is automated using continuous analysis. Nat. Biotechnol. 35, 342–346 (2017).

3. Garg, S. K., Yeo, C. S., Anandasivam, A. & Buyya, R. Environment-conscious

scheduling of HPC applications on distributed Cloud-oriented data centers. J.

Parallel Distrib. Comput. 71, 732–749 (2011).

4. Shvachko, K., Kuang, H., Radia, S. & Chansler, R. The Hadoop Distributed File

System. in 2010 IEEE 26th Symposium on Mass Storage Systems and

Technologies (MSST) 1–10 (ieeexplore.ieee.org, 2010).

5. Yang, H.-C., Dasdan, A., Hsiao, R.-L. & Parker, D. S. Map-reduce-merge:

Simplified Relational Data Processing on Large Clusters. in Proceedings of the

2007 ACM SIGMOD International Conference on Management of Data 1029–1040

(ACM, 2007).

6. Zheng, L., Joe-Wong, C., Tan, C. W., Chiang, M. & Wang, X. How to bid the cloud.

ACM SIGCOMM Computer Communication Review 45, 71–84 (2015).

7. Andrzejak, A., Kondo, D. & Yi, S. Decision Model for Cloud Computing under SLA

Constraints. in 2010 IEEE International Symposium on Modeling, Analysis and

Simulation of Computer and Telecommunication Systems 257–266

(ieeexplore.ieee.org, 2010).

8. Tordsson, J., Montero, R. S., Moreno-Vozmediano, R. & Llorente, I. M. Cloud

brokering mechanisms for optimized placement of virtual machines across multiple

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 13, 2017. ; https://doi.org/10.1101/162883doi: bioRxiv preprint

https://doi.org/10.1101/162883

10

providers. Future Gener. Comput. Syst. 28, 358–367 (2012).

9. AWS EC2 Pricing.

10. Jones, E., Oliphant, T. & Peterson, P. {SciPy}: Open source scientific tools for

{Python}. (2001--).

11. Bäckhed, F. et al. Dynamics and Stabilization of the Human Gut Microbiome during

the First Year of Life. Cell Host Microbe 17, 852 (2015).

12. Kostic, A. D. et al. The Dynamics of the Human Infant Gut Microbiome in

Development and in Progression toward Type 1 Diabetes. Cell Host Microbe 17,

260–273 (2015).

13. Vatanen, T. et al. Variation in Microbiome LPS Immunogenicity Contributes to

Autoimmunity in Humans. Cell 165, 1551 (2016).

14. Yassour, M. et al. Natural history of the infant gut microbiome and impact of

antibiotic treatment on bacterial strain diversity and stability. Sci. Transl. Med. 8,

343ra81 (2016).

15. Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast

single-node solution for large and complex metagenomics assembly via succinct de

Bruijn graph. Bioinformatics 31, 1674–1676 (2015).

16. Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30,

2068–2069 (2014).

17. Truong, D. T. et al. MetaPhlAn2 for enhanced metagenomic taxonomic profiling.

Nat. Methods 12, 902–903 (2015).

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 13, 2017. ; https://doi.org/10.1101/162883doi: bioRxiv preprint

https://doi.org/10.1101/162883

11

Acknowledgements This work was funded by NIH/ NHGRI T32 HG002295, PI: Park,

Peter J (J.M.L.), an AWS Research Credits for Education Grant (J.M.L. and A.D.K.), a

Microsoft Azure for Research Grant (B.T.T. and C.J.P.), NIH NIEHS R00 ES023504

(C.J.P.), NIEHS R21 ES025052 (C.J.P.), NSF Big Data Spoke grant (C.J.P.), a Smith

Family Foundation Award for Excellence in Biomedical Research (A.D.K.), and an ADA

Pathway to Stop Diabetes Initiator Award (A.D.K.). We thank Thomas Lane and

Chengwei Luo for their feedback and review of the manuscript. We thank Tommi

Vatanen for helping us with data access.

Author Contributions J.M.L. and B.T.T. conceived the project. J.M.L. and B.T.T.

designed and implemented the LP bidding approach. J.M.L, B.T.T, and E.M.C.

implemented the distributed batch processing pipeline with guidance from C.J.P. and

A.D.K.. C.J.P. and A.D.K. supervised the project. E.M.C. wrote the documentation,

tutorial, and other online resources. J.M.L., E.M.C., and B.T.T. wrote the manuscript.

Competing Interests The authors declare no competing interests.

Correspondence Correspondence and requests for materials should be addressed to

C.J.P. (email: chirag_patel@hms.harvard.edu) or A.D.K.

(aleksandar.kostic@joslin.harvard.edu).

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 13, 2017. ; https://doi.org/10.1101/162883doi: bioRxiv preprint

https://doi.org/10.1101/162883

12

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 13, 2017. ; https://doi.org/10.1101/162883doi: bioRxiv preprint

https://doi.org/10.1101/162883

13

Figure 1 A) Pricing history of an x1.16xlarge EC2 Instance on AWS showcasing variability of

an order of magnitude, in both directions, for spot prices. B) Simplified example showing three

constraints on a sample bidding approach minimizing an objective function cTx considering cost

according to a system of constraints represented as inequalities. x1, x2, and x3 represent the

number of specific types of compute nodes to solve for. Each inequality represents a constraint

and adds another dimension to the space which the simplex algorithm needs to traverse

vertices in to find ideal solution. The actual system of inequalities has 140 constraints. The

green line represents the optimal solution. C) An overview of Aether’s computing infrastructure.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 13, 2017. ; https://doi.org/10.1101/162883doi: bioRxiv preprint

https://doi.org/10.1101/162883

14

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 13, 2017. ; https://doi.org/10.1101/162883doi: bioRxiv preprint

https://doi.org/10.1101/162883

15

Figure 2 A) Overview of the assembly process. A total of 1572 fecal samples were collected

and sequenced at various timepoints during the first 3 years of 222 individuals lives. These were

assembled with MEGAHIT into 68,181,571 contigs. Across all samples, a total of 62,257,853

genes, ~1,000,000 of which were unique, were then annotated using Prokka. Only contigs that

were over 1000 bases long were used. The mean length of this group was 4278 bases. B) Cost

comparison between Aether, standard cloud computing, and user-maintained hardware. Total

assembly cost was 18% ($471.60) of what it would have been using on-demand instances. We

estimated the upfront cost of a server equivalent to those used to analyze the data being

~$10,000. Given that we used 30 instances of these servers, the total cost of hardware would

be $300,000 according to pricing information from Penguin Computing and Dell, not counting

system maintenance and depreciation. C) Comparison of cost per assembly for the three

platforms outlined in 2B.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted July 13, 2017. ; https://doi.org/10.1101/162883doi: bioRxiv preprint

https://doi.org/10.1101/162883

