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Knowledge of ‘haplotypes”, i.e. phased and ordered marker alleles on a chromosome, is essential to answer
many questions in genetics and genomics. By generating short pieces of DNA sequence, high-throughput modern
sequencing technologies make estimation of haplotypes possible for single individuals. In polyploids, however,
haplotype estimation methods usually require deep coverage to achieve sufficient accuracy. This often renders
sequencing-based approaches too costly to be applied to large populations needed in studies of Quantitative Trait

Loci (QTL).

We propose a novel haplotype estimation method for polyploids, TriPoly, that combines sequencing data with
Mendelian inheritance rules to infer haplotypes in parent-offspring trios. Using realistic simulations of short-
read sequencing data for potato (Solanum tuberosum) and banana (Musa acuminata) trios, we show that TriPoly
yields more accurate progeny haplotypes at low coverages compared to the existing methods that work on single

individuals.

1 Introduction

Haplotypes are defined as sequences of consecutive nucleotides over a
chromosome, which normally shares high similarity with & — 1 other
chromosomes in diploid (k = 2) and polyploid (k > 2) organisms. These
k homologous chromosomes can nevertheless have important differences
in the form of nucleotide substitutions or insertions/deletions, leading to
genotypic (and phenotypic) diversity within an outcrossing population,
e.g. of the diploid (k¥ = 2) human (Homo sapiens), tetraploid (k = 4)
African clawed frog (Xenopus laevis) or tetraploid potato (Solanum tubero-
sum), or between inbred lines of autogamous species, e.g. hexaploid
(k = 6) wheat (Triticum aestivum). The assignment of these variant
forms, i.e. alleles, to the chromosomes is called phasing or haplotyping.
In this context, phasing may also refer to the set of phased homologues,
H = {h1, ha, ..., hy } with k being the ploidy level and h; (s = 1, ..., k)
being the haplotype corresponding to the i homologue.

As phasing is uninformative at genomic positions with identical nu-
cleotides over all the homologous chromosomes, i.e. at the homozygous
sites, haplotypes are usually defined as sequences of alleles at heterozygous
sites over achromosome. By this definition, 2™ haplotypes are theoretically
possible for a region covering n bi-allelic Single Nucleotide Polymor-
phisms (SNPs), which is the most abundant form of genomic variation
among individuals of the same species (Rafalski, 2002). However, often
far fewer haplotypes actually occur in a study population.

While high-throughput genotyping assays such as SNP arrays can as-
sist in efficient determination of unphased SNPs, direct determination
of haplotypes is much more complicated due to high similarity of their
nucleotide content, which usually requires the application of laborious
and expensive techniques such as allele-specific PCR or chromosome
microdissection (Michalatos-Beloin et al., 1996; DolezZel et al., 2014).

However, unphased SNPs provide incomplete knowledge of an individ-
ual’s phenotype with respect to both gene expression and protein function,
as both can be affected by the heterozygous variants being in cis or trans
with other variants (Tewhey et al., 2011). Besides, haplotypes can be used
as multi-allelic markers offering more statistical power compared to single
SNPs for genetic linkage and association studies (Simko et al., 2004).
Several computational methods have been therefore proposed to in-
directly infer the phasing from available genotype data, which can be
divided into three main categories. Methods in the first category, such as
TetraOrigin (Zheng et al., 2016), aim to determine the most likely haplo-
types using the segregation of marker alleles in a population taking into
account the genetic distances between the marker loci. These methods start
from unphased SNP data at positions far enough apart to be informative
about linkage, and are especially useful with large populations (Garg ez al.,
2016). Methods in the second category, such as HapCut (Bansal and Bafna,
2008), HapCompass (Aguiar and Istrail, 2013), HapTree (Berger et al.,
2014) and SDhaP (Das and Vikalo, 2015), exploit the fact that a sequence
read containing at least two SNPs reveals the phasing of the homologue
from which it has originated at the contained SNP sites. The aim of these
methods is therefore to assign the reads of a single individual into & groups,
corresponding to the homologues of a k-ploid, and to obtain the consensus
sequence of the reads within each group to reconstruct the haplotypes over
the sequenced region. Finally, methods in the third category are based on
coalescence theory, trying to infer the haplotypes parsimoniously by min-
imising their total number in a population of unrelated (or only distantly
related) individuals (Clark, 1990) or by applying data-augmentation to ob-
tain a set of highly frequent haplotypes in the population compatible with
the genotype data, as implemented in SHEsisPlus (Shen et al., 2016).
Applied to polyploid species, all of these approaches have limitations
in terms of applicable ploidy level (k), required marker density, sequencing
depth and read length. For example, the TetraOrigin algorithm (the first
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category) is only applicable to bi-parental tetraploid populations (k = 4)
with an obtained linkage map, and methods in the second category can fail
to reconstruct haplotypes with high quality at low sequence depths as well
as at ploidy levels higher than & = 4 (Motazedi et al., 2017).

In case parent-progeny relations exist in a population, it is possible
to improve the quality of haplotype estimation by combining the phasing
information used in the first and second categories under a unified scheme.
Such an approach is also of high practical importance, as with sequenc-
ing experiments becoming cheaper and more efficient, more often whole
populations are sequenced rather than only genotyped at specific marker
loci. An implementation of this unifying framework, called PedMEC, has
recently been reported by Garg et al. (2016) for diploid trios, i.e. families
with two parents and one offspring. Specifically, PedMEC extends the
partial-phasing of sequence reads using their overlaps while penalising
meiotic recombination events in each trio. However, the exact dynamic
programming approach of Garg et al. (2016) rapidly becomes intractable
for polyploids, i.e. with k > 2, as its complexity increases exponentially
with an increase in the ploidy level (Section 2.3). Here we present a greedy
algorithm, TriPoly, for phasing of the SNPs detected over a continuous ge-
nomic region in parent-offspring trios. Starting at the SNP site with the
smallest genomic coordinate, TriPoly extends the phasing one SNP at a
time keeping only the most likely extended phasings to be worked out
in the subsequent extension step. In determining the likelihood of each
extension, TriPoly considers its compatibility with the sequence reads, as
well as the number of recombination events observed by comparing the
parental extensions with that of the offspring.

Using quantitative measures, we investigated the quality of haplotype
estimates obtained by TriPoly in parent-offspring trios simulated under
realistic assumptions with tetraploid X tetraploid and tetraploid X diploid
parents. By comparing our results with the single individual haplotyping
methods, we show that substantially better estimates can be obtained by
TriPoly for the haplotypes of the progeny, especially at low sequencing
depths.

2 Method
2.1 Specification of a probabilistic model for phasing

In order to establish a probability model for haplotypes, with the sequence
reads as data and the base call error and recombination rates as parameters,
we must first determine which reads are informative about the phasing. In-
formative reads need to cover at least two variants, e.g. SNP sites which are
heterozygous for at least one of the trio members (m, f, ¢), corresponding
to mother, father and the offspring (child). As sites that are homozygous in
all trio members retain no phasing information, we discard them from the
sequence reads and keep only the base-calls corresponding to the variation
positions. Therefore in the first step, the SNP sites, s =1, 2, ..., [, are de-
tected over a genomic region and the genotypes Gs = (G7*, Gg ,GS) are
estimated at these sites, using efficient algorithms such as FreeBayes (Gar-
rison and Marth, 2012). The raw reads of each trio member are then
replaced by the so-called SNP-fragments of length [ (Figure 1) that each
correspond to a read and contain the numerically coded alleles, i.e. 0, 1,
2 or 3 representing the reference and alternative nucleotides, at the SNP
sites covered by that read and ’-* at positions not called or not covered. To
reduce sequencing noise, the positions at which the base-calling quality is
lower than a desired threshold can be set to ’-* as well. Hereafter, by using
the term sequence read, r, we refer to SNP-fragments that contain at least
two determined positions.

In the next step, one should assign the reads to k compatible sets in
which all of the reads have the same allele at their overlaps, and obtain
the consensus sequence of each set to obtain the phasing. As shown in
Figure 1, this process is straightforward for diploids in the absence of
sequencing errors. In presence of sequencing errors, however, such an

assignment of reads to homologues will be possible only if mismatches
are allowed. However, allowing mismatches at sites with no error can lead
to incorrect haplotype estimates. Polyploidy results in further complexity,
as there may be more than one way to assign the reads into & > 2 sets
even when no error is present. This can happen for instance when several
haplotypes are identical in a phasing solution, e.g. in a 3 SNP tetraploid

phasing consisting of 4 homologues: 888 1 in which three identical

( é ) haplotypes are present. In this example, the reads will be compatible
with any phasing as long as it contains both (é) and (?) haplotypes
regardless of their dosages, e.g. with the phasing (é é (}) (1) ) Therefore,
probabilistic models must be used to assign the reads to homologues taking
into account the uncertainty caused by various phasing possibilities and
the presence of errors in the reads.

To account for sequencing errors, we assume an independent binomial
error model at each SNP site (Berger et al., 2014) and assign an error
vector, €, of length [ to each read containing the probability of erroneous
base-calling at the SNP-sites in that read. Using these error probabilities,
the probability of maternal, paternal and offspring phasings belonging to a
trio, represented by Hy,, H y and H, respectively, can be derived from the
set of sequence reads associated with the trio, R (consisting of maternal
read R, paternal reads R 7 and offspring reads R.). In addition to the
reads, we consider meiotic recombination probabilities, 6, between SNP
s — 1 and SNP s, represented by vector Gforalls > 1to adjust the
probability assigned to each phasing using Mendelian inheritance rules as
follows:

P(Hpm, Hy, He|R, €,0) = P(Hp|Ron, €m) 1

—

P(Hy Ry, e5)P(He|Re, Hm, Hy, €c, 0)
R=Rn|JR;|JRe

€:€mU€fU€c

where €, € f and €. are sets of error vectors associated with R,
R and Re, respectively. Assuming exchangeability of the offspring, it
is straightforward to generalise Equation 1 to include n offsprings as:

—

P(Hm7Hf7H017---7HCn|R7579) = (2)
n
P(Hpm|Rom, €m)P(Hy Ry, €5) [ | P(He,|Re;, Him, Hy, €c;, 0)
i=1

n
R=|JRe | JRm|JRy
1=1
n
€= U ecz‘UEmUef
i=1

2.2 Computational complexity of finding the phasing with the
maximum likelihood

By calculating the lefthand side of Equation 1, one can determine the
likelihood of each phasing of a trio conditional on its sequence reads.
However, as it is instead more convenient to calculate the probability of
observing the reads conditional on a phasing (Berger et al., 2014), we
use Bayes’ formula for obtaining the phasing likelihoods (Supplementary
Methods: Equations 1, 2). To apply this Bayesian approach, one also needs
to assign a prior probability to each phasing (Supplementary Methods:
Equations 4, 5). The number of recombination events (with some preset
recombination rate) can thus be used to assign this prior (Supplementary
Methods: Equation 5).
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Figure 1: A set of SNP-fragments aligned to a reference an

specified by O (reference) and 1 (alternative), at their overlapping sites are assi;

To determine the order of computations needed to find the phasing with
the maximum likelihood (determined with the approach described above),
we begin by noting that the number of possible phasings of [ SNPs for a
k-ploid is bounded in the range:

l 1
<max(1, L% Mo I1 m) 3)
Ts=1 s=1

where IIs denotes the number of possible permutations of the & homo-
logues at position s. The % coefficient produces the lower bound, as the
numbering of the homologues is arbitrary and therefore eacl
be obtained by up to k! combinations of the single SNP permutations (with
k! occurring when the phasing is consisted of k distinct haplotypes). As an
example, for a tetraploid phasing that includes 3 SNPs (1 < s < 3) with
genotypes: G1 = (1,1,0,1),G2 = (0,0,1,0) and G3 = (0,0, 1,0),

4

h phasing can

Equation 3 gives lower and upper bounds equal to \_MJ =2
and (4) (4) ( ) 64, respectively, while 5 distinct phasings: (é é i §>

1101 1110 1101 1110
, (0100) , (0 o) R (0010) and (00 1) are actually pos-

00Q1 0001 0001 0001 .

sible, yielded by 12,24,12,12 and 4 combinati of the single SNP
permutations, respectively.

With parental ploidy levels ky,, k7 and parental sequencing depths
Cm,, Cf, calculating the probability of each parental phasing conditional
on its reads requires O(kplcp) computations for p € {m, f}, as each de-
termined allele in the reads must be compared to the corresponding allele
on each of the k;, homologues and each SNP has been on average called in

oOOH

d the homologues, ~1 and k2, from which the fragments are or
igned to the same homologue.

1 1 0 1 1 1 h,

iginated. Fragments that have identical variants,

cp reads. Assuming no recombination, at most ( % ) ( ﬁ ) distinct hap-

lotypes can be passed from the parents to the offspring tk21r0ugh balanced
meioses, yielding an offspring ploidy level k. = km;kp . Similar to the
parental phasings, each offspring phasing requires O (kclc.) computations
to calculate its probability conditional on the offspring reads at an average

depth of c... Therefore, from Equation 3 it follows that a total computational
k
cost of O(kmazlcmaz ( E:"n )( k; ) ]_[1521 my Hls:1 11%) is required to
=

calculate Equation 1 assuming r?o recombination, with kg2 the maxi-
mum parental ploidy level, i.e. max(km, k¢), and cmae the maximum
sequencing depth for the trio members.

Allowing for recombination, different homologues may be passed
to the offspring at each SNP position. To take all possible trans-
missions into account, we have to enumerate them separately at

each SNP position. Thus, the order of computations increases to
km Kyt

O(kma l maz(k ) (k?) Hlszl H'gn Hlszl Hg)
2 2

2.3 TriPoly algorithm

At fixed ploidy levels, the computational cost of the brute-force approach
calculated in Section 2.2 grows linearly with sequencing depth, but ex-
ponentially with the number of SNPs [, rapidly rendering this approach
intractable.

To overcome this problem, we perform SNP-by-SNP reconstruction
of haplotypes, starting from the leftmost SNP in the target region and
keeping only a few most likely phasing extensions to the next SNP at
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each step (Figure 2). Following this approach, one will end up with a lim-
ited number of phasings that have passed the selection criteria during the
extension procedure from s = 1 to s = [. Assuming the selection proce-
dure effectively keeps the number of accepted solutions at each extension
step bounded above by Ey, and E for the mother and the father, re-
spectively, the number of trio phasings at each extension will be bounded

k¢
above by (’,:72) (kﬁ )Em E¢ and the total complexity will decrease to
2 3

k
O(lkmazCmaz ( E: )( k’; ) Em Ey). This greedy method is therefore lin-
RS

2
ear in terms of the number of SNPs, [. With parental ploidy levels, k,, for
p € {m, f}, in the range of 2 to 12 (covering most of the naturally occur-

k 5 .
ring cases of polyploidy), ( kﬁ ) < kp2'7° and therefore this cost grows

with a rate of O(kS;5 ) With2p10idy level.

To implement this approach, which we call TriPoly, we employ the
branching and pruning steps explained in HapTree algorithm (Berger et al.,
2014), as shown in Figure 3. Starting at SNP site s = 1, its alleles for each
parent and for the offspring are used as the base parental and offspring
phasings, Hpy, and Hp,.. The phasing is then extended step by step from
SNP s — 1 to SNP s for s > 2, until all SNPs have been phased according
to the algorithm outlined in Supplementary Methods: Algorithm 1. Ateach
extension step, branching and pruning (Supplementary Methods: Proce-
dure 3 and Supplementary Methods: Procedure 4) allow the algorithm to
work with a limited number of phasing solutions. This approach can be
easily extended to include several offspring at the same time using Equa-
tion 2, a detailed description of which is given in Supplementary Methods,
A.

Note that this approach assumes working on the so-called phasing
blocks, i.e. genomic regions in which each SNP, s, is connected to at least
one other SNP, s’, through at least one of the reads in R.. In case the
sequencing reads do not satisfy this condition for the whole set of SNPs
in the region, it is straightforward to divide the SNP set into blocks and
phase each block separately, with the phasing being interrupted between
the blocks.

3 Experimental setup
3.1 Simulation of polyploid trios

We evaluated the performance of TriPoly, as well as three state-of-the-
art single individual haplotyping algorithms: HapCompass, SDhaP and
HapTree, using synthetically generated sequence data for parent-offspring
trios. To this end, maternal and paternal genomes were independently sim-
ulated from a common reference using Haplogenerator (Motazedi et al.,
2017), and offspring genomes were generated by passing recombinant
parental chromatids at random considering a Poisson stochastic model for
meiosis (see Supplementary Methods, B for the details). In our simulations,
we set the recombination rate (A in Supplementary Methods:Equation 7)
to 3.07 ¢cM/Mb, corresponding to the average recombination rate in
potato (Bourke er al., 2015; Felcher et al., 2012). Using this approach,
genomic regions of length 10 kb where simulated for 100 independent
trios of tetraploid (ky = ky = k. = 4) potato (Solanum tubero-
sum, 2n = 4x = 48), based on 100 regions randomly selected from
PGSC-DM genome, chromosome 5 (release version 4.03) (Genome Se-
quencing Consortium et al., 2011) using a lognormal model to simulate
genomic variation (Motazedi et al., 2017). To fit the lognormal model,
the SNP density of each parent was determined from empirical data (Uit-
dewilligen et al., 2013) as described in (Motazedi et al., 2017), resulting
in a mean distance of 21 bp between neighbour SNPs with a standard de-
viation of 27 bp. The proportion of each parental marker type: simplex,
duplex, triplex and quadruplex, in the total set of markers was also deter-
mined from (Uitdewilligen et al., 2013) to be 0.5, 0.23, 0.14 and 0.13,
respectively.

We also simulated crosses of diploid (2n = 2z = 22) and tetraploid
(2n = 4z = 44) banana (Musa acuminata), with the female parent being
the tetraploid as the pollen of tetraploid banana is hardy viable (Fortescue
and Turner, 2004). In practice, commercial triploid bananas (k. = 3) are
produced by such hybridisations (kn, = 4, ky = 2), which have high
consumer preference as their parthenocarpic fruits lack the large, hard
seeds of fertilisation-induced fruits of diploid and tetraploid sorts.

We used the sequence of chromosome 10 from the reference genome
of DH-Pahang (a double-haploid M. acuminata) (D’Hont et al., 2012), re-
lease version 2 (Martin et al., 2016), to simulate banana trios, applying the
lognormal model to generate SNPs. To fit the model, we set the average
SNP frequency to 1 per 200 bp with a standard deviation of 1194 bp, so that
we do not get many uninformative reads (Section 2.1) while the predicted
average distance of 1394 bp between DH-Pahang SNPs (Droc et al., 2013)
lies one standard deviation away from the considered average. As 1% re-
combination rate has been reported to correspond to 100 to 400 kb physical
distance for banana (except at regions close to the centromere) (Pillay et al.,
2012, p. 130), we applied an average recombination rate of 0.04 ¢cM /Mb
simulating meiosis. The proportions of parental marker types were set the
same as that of potato.

For each simulated individual, simulation of the sequence data and
variant calling was performed using conventional tools, explained in detail
in Supplementary Methods, C.

3.2 Measures of Phasing Estimation Quality

Knowing the true haplotypes in simulations, one can evaluate the
performance of haplotyping methods by using measures that directly
compare the estimates to the true haplotypes. We used the reconstruc-
tion rate (RR) (Geraci, 2010) and the pair-wise phasing accuracy rate
(PAR) (Browning and Browning, 2011) to evaluate the accuracy, and the
SNP missing rate (SMR) (Motazedi et al., 2017) as well as the number
of gaps per SNP (NGPS) to evaluate the completeness and continuity of
haplotyping.

The first measure, RR, has been defined for diploids as the propor-
tion of correctly phased markers in the phasing estimate of the target
region (Geraci, 2010). However, to apply it for polyploids we have to
generalise its mathematical formulation as haplotypes are not necessarily
complementary in polyploids, making multiple correspondences possible
between the original and estimated haplotypes.

Let H = {le, .y ﬁk} be the estimated phasing and H = {hq, ...,
hy } be the correct phasing of a region containing I SNPs. We define RR
as:

k
1 j
RRg =1 min > D(hishyp,i)) “

=1

where Sy, represents the permutation group on {1, ..., k} and ¢ denotes
the group action on {1, ..., k}. In this definition, D(h;, izw(p’i)) is the
Hamming distance defined as:

l
D(his hy(p,i)) = Z d(his hy(p,iys8) ®)
s=1

LR i howan 7

0 otherwise

d(hi, hyp.iys s) = {

where Escp(p,i) = "-" means that SNP s has not been phased in H.

As an alternative measure of estimation accuracy, PAR is defined as
the proportion of all SNP pairs for which the inferred phasing is correct.
While RR is an overall measure of the accuracy of local phasing, i.e. the
phasing inferred from the estimated haplotypes for a few adjacent SNPs

along the target region, PAR primarily shows the accuracy of long range
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for mother using its reads R, E‘Z' for father using its reads R,
for SNPs: 1,...,5-1, s for SNPs: 1,...,s-1, s

Most likely extensions H,, for the offspring
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recombination, for SNPs: 1,...,s-1, s

Filter the most likely extensions of the trio (H,
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Figure 2: Overview of the SNP by SNP haplotyping method implemented in TriPoly for a trio consisted of two parents and one offspring.

Pom hom Hom hom ey hby ey ey
Hy, s1 1 1 1 0 Hy s1 1 0 1 0
s 1 1 0 0 s 1 0 0 0
1 H,
H., w1 1 1 1 R | e s+1 0 1 0 1
2 H
He 541 0 1 1 1 ef s+1 1 0 0 1
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Hpe s11 1 ] 0
s 1 0 0 0
Hlﬂ s+1 1 1 0 0
Hi: s+1 0 1 1 [}
Hic s+1 1 0 0 1 |
4
Hec s+1 0 1 0 1
sz 1 0 1 0 |

Figure 3: An example of the branching step for a trio: mother and father base phasings, Hy,,,, and Hyy, ending at SNP s — 1 are extended to SNP s using sequence reads.
Extensions H sm and H, ff that have a posterior probability larger than the branching threshold, p, are used to extend the offspring base phasing Hp. by transmitting their
alleles at s, assuming the offspring homologues (hiC7 hic) have maternal origin and (hf;C7 hgc) are of paternal origin. Thus, (;1) (g) = 36 transmissions are possible from
which those not compatible with the offspring genotype at s are discarded. Also in case several transmissions result in the same phasing for the offspring, only one transmission
is considered that implies the minimum number of recombinations. Using the offspring reads as data and the recombination probability as prior, a Bayesian probability is
assigned to each offspring extension. Extensions H>_ and H? that pass p yield candidate trios extensions: (H?, , H> ¢ H, 3 yand (H!, ., H ff, H? ). The probability of

each trio extension is determined using Equation 1 and is compared against p to choose the final extensions.

phasing as it is highly affected by chimeric elongations of the haplotypes As haplotyping methods sometimes report phasings with high SNP
during estimation, i.e. the elongation of a homologue by part of another exclusion, which nevertheless can have high RR and PAR, the average
homologue. proportion of SNPs left out in the phasing estimates of each method was

calculated as SMR to show the method’s phasing completeness. Besides,
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in order to show how much fragmented the phasing estimates are for each
method, which phenomenon is not reflected in RR , PAR or SMR, the
average number of interruptions, i.e. the number of blocks minus one, in
the estimates of each method was calculated and normalised by the number
of SNPs, [, as NGPS. Defined in this way, NGPS measures the continuity
of phasing for each method. All of the calculations to obtain these quality
measures were performed using hapcompare (Motazedi et al., 2017).

To quantify the effect of haplotyping method on the quality measures in
each simulated population, accounting for the effect of sequencing depth
and random variation among the simulated families, we built regression
models for each measure including the estimation method as predictor.

4 Results

We used simulated genomes and sequence reads to assess the performance
of TriPoly, HapCompass, HapTree and SDhaP in trios of tetraploid potato
and tetraploid-diploid-triploid banana. To quantify the assessment, we
used pairwise phasing accuracy rate (PAR) and reconstruction rate (RR)
(Section 3.2) as measures of log-range and local phasing precision, re-
spectively, and the number of gaps per SNP (NGPS) in each estimate as
measure of phasing continuity. The fraction of unphased SNPs was also
reported as SNP missing rate (SMR) for each haplotyping method to show
the method’s phasing completeness. For each simulation scenario, we built
aregression model to investigate the dependency of each of these measures
on the haplotyping method and sequencing depth.

All of the analyses were run using 2.90 GHz Intel Xeon processors.
A time-limit of 1500 seconds was set for each haplotyping method during
simulations, not to consume too much of the shared computational re-
sources in case estimation became prohibitively difficult (Motazedi et al.,
2017). To achieve time-memory efficiency, we set the branching threshold
of TriPoly, p, to 0.2 and its pruning threshold, x, to 0.94. Besides, we
forced TriPoly to keep no more than 11% of all possible phasing exten-
sions at each step in case the pruning had not been able to discard as many
with the value chosen for &.

TriPoly improves the quality of phasing between neighbouring
SNPs for the offspring

The results of regression analysis showed 11% and 24% increases in RR
by using TriPoly compared to the other methods for the banana and potato
offspring, respectively (Supplementary Tables S1-S2). These observed
improvements in local phasing show that parental transmission is infor-
mative even for phasing between nearby SNPs, in which case the SNPs
can be contained within a single read and therefore the reads dominate the
phasing likelihood. This information is especially advantageous when the
offspring is sequenced at low depth (Figure 4). TriPoly did not increase
RR for the parents (Supplementary Figures S2- S3).

Among the single individual haplotyping methods, HapTree yielded
the closest RR, but its accuracy was more variable at low depth compared
to the other methods (Figure 4).

TriPoly increases markedly the accuracy of phasing between
distant SNPs for the offspring

The regression analysis of PAR showed that at the same SMR, the fraction
of correct phasings between distant SNPs is around 33% and 42% higher in
the TriPoly estimates for banana and potato offspring, respectively, com-
pared to the other methods (Supplementary Tables S1-S2, Supplementary
Figure S1). Besides, this increase was more manifest at low sequencing
depths (Figure 5). TriPoly was not able to increase PAR for the parents
(Supplementary Figures S2- S3).

While sequence reads contain phasing information for the SNPs con-
tained in them, this information hardly goes beyond nearby SNPs with
short reads that span just a few hundred bases. The accuracy of phasing is
therefore gradually decreased as the phasing is extended to include more
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Figure 4: Average reconstruction rates (RR) for the progeny in the 100 trios
simulated for a) potato and b) banana, obtained by HapCompass, SDhaP,
HapTree and TriPoly at various sequencing depths.

distant SNPs in a block, due to the fact that chimeric extensions become
more likely with spurious overlaps between the erroneous reads. By pe-
nalising recombination events through the considered small recombination
probability (Supplementary Methods: Equation 6), TriPoly tends to reduce
the chance of chimeric extensions and markedly improves the precision of
phasing between distant SNPs in the offspring.

Similar to RR, the PAR scores closest to TriPoly were obtained by
HapTree, but HapTree results were more variable in accuracy at low depths.

Pairwise-phasing Accuracy Rate for Solanum tuberosum, progeny Pairwise-phasing Accuracy Rate for Musa acuminata, progeny
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Figure 5: Average pairwise-phasing accuracy rates (PAR) for the progeny
in the 100 trios simulated for a) potato and b) banana, obtained by
HapCompass, SDhaP, HapTree and TriPoly at various sequencing depths.

Fewer phasing interruptions are introduced in the haplotypes
estimated by TriPoly

As explained in Section 3.2, in single individual haplotyping the phasing is
interrupted between two SNPs if there is no read that connects the two by
covering both. However, when the reads do not contain enough phasing
information for some SNPs, parental transmission can be still informa-
tive to prefer one phasing extension to another (Supplementary Methods,
A) resulting in less phasing interruptions. The regression analysis of
NGPS showed that the haplotypes obtained by TriPoly were significantly
less interrupted compared to the other approaches, notably for banana
(Supplementary Tables S1-S2, Figure 6).

Atlower SNP densities, the average distance between subsequent SNPs
will be larger and this can increase the number of reads uninformative for
phasing (Section 2.1). As a results, more interruptions can be introduced
in the haplotypes reconstructed from short reads (Motazedi et al., 2017).
TriPoly proves to be beneficial in such low SNP density situations, reflected


https://doi.org/10.1101/163162
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/163162; this version posted July 13, 2017. The copyright holder for this preprint (which was not certified by peer review) is the
author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.

TriPoly: haplotype estimation for polyploids using sequence data of related individuals 7

in the notable decrease in NGPS for banana compared to the slight decrease Maximum Memory Consumption for Solanum tuberosumrios Estimation Time for Solanum tuberosum rios

for potato which has a high SNP density. O HapCompass « | B HapCompass
. . L. o SDhaP % | o ShaP
Finally, the high standard deviation of NGPS for HapTree stands out B HapTee 5] Haptree
. . . . . . . . . | TiPoly | TriPoly
in Figure 6-a, which is a reflection of its high failure rate at low sequencing g oo
coverages for tetraploid potato (Motazedi et al., 2017). As all of the SNPs 33 8
g p P > 2 8
. . . o 0N
belonging to a failed block are excluded from the final phasing, the NGPS £ E
. . . . . Sa &
will be more varying across the simulated trios due to chance failures. 2 4
Number of Gaps per SNP for Solanum tuberosum, progeny Number of Gaps per SNP for Musa acuminata, progeny g E*
S
O HapCompass O HapCompass ,,,7’ J’ u,‘/" J’
O SDhaP O SDhaP 4 g d d
1 @ HapTr B HapTr ‘ )
o|m T,?So(f g 1m T:,go"ye g Sequence coverage per homologue (parenti-parent2-offspring) Sequence coverage per homologue (parent1-parent2-offspring)
54 &
©° ©° @ )
o [
g é’ g 2 Maximum Memory Consumption for Musa acuminata trios Estimation Time for Musa acuminata trios
°] °] O HapGompass O HapCompass
| 171 o SDhaP o sDhaP
§, T T g @ HapTree [ HapTree
o __g| = TiPoly | = TiiPoly
4 [ —~
E ' bl’d ° 4 pd g: }E:E
© N d d 2 ; S :|
Sequence coverage per homologue (parenti-parent2-offspring) Sequence coverage per homologue (parent1-parent2-offspring) @ 8
@ ) - ¢
J J§
° «

Figure 6: Number of Gaps per SNP (NGPS) in the phasing estimates of the
progeny from the 100 trios simulated for a) potato and b) banana, using
HapCompass, SDhaP, HapTree and TriPoly at various sequencing depths.

TriPoly has the smallest memory consumption and finishes
estimation during a time comparable to that required by the other
methods

As processing large genomic regions usually requires considerable
amounts of CPU time and memory, it is important for a haplotyping al-
gorithm to be efficient in terms of these two resources. Therefore, we
measured the computation time and memory consumption of TriPoly for
the simulated potato and banana trios at the applied sequencing depths and
compared it to those of HapCompass, HapTree and SDhaP. As shown in
Figure 7, TriPoly is the most memory-efficient algorithm compared to the
others, while it requires more time compared to HapCompass and SDhaP
for potato. However, the amount of time required by TriPoly was still not
very far from that needed by the other algorithms.

5 Conclusion and Discussion

‘We propose a novel approach, called TriPoly, for estimating haplotypes
in polyploid parent-offspring trios using NGS data while taking haplotype
transmission from the parents to the progeny into account. TriPoly recon-
structs the phasing of the SNPs over a genomic region simultaneously for
the parents and for the offspring setting out with the SNP site that has
the smallest coordinate in the region, adding one SNP to the phasing at
each step and greedily selecting the most likely extensions for the next ex-
tension step conditional on the sequence reads and recombination events.
Through realistic simulations, we show that TriPoly significantly improves
the haplotyping accuracy for the offspring by 11-42% compared to single
individual approaches: HapCompass, SDhaP and HapTree. Besides, we
show that TriPoly estimates are more continuous compared to the other
methods when the SNP-density is low. TriPoly in also an efficient algorithm
in terms of the memory consumption and CPU-time.

In contrast to HapCompass, SDhaP and HapTree, TriPoly provides
an option to include all of the SNPs, i.e. including those homozygous or
missing for an individual, in the output. In this way, the haplotypes can be
compared in an F1-population and the segregation patterns can be easily
investigated. Moreover, haplotypes reported in this format can be coded

Sequence coverage per homologue (parent1-parent2-offspring)

(© (@

Figure 7: Memory consumption of the haplotyping algorithms (a, ¢), and
the running time of each (b, d) for the 100 simulated banana and potato
trios, respectively, at various sequencing depths.

as multi-allelic markers to be used in genetic analyses. Besides, TriPoly
accepts input in the more convenient format of multi-sample BAM and
VCF files, compared to the other methods that either require one-sample
BAM/VCF (HapCompass) or the SNP-fragment matrix in place of the
mapped reads (SDhaP and HapTree).

While TriPoly increases the accuracy of phasing for the offspring in
a trio by incorporating parental recombination probabilities in the phas-
ing likelihood (Equation 1), it assumes exchangeability of the offspring
in families with more than one offspring (Equation 2), which ignores the
phasing information conveyed by an offspring about the others. By im-
plementing more complex joint likelihood models, we can expect to see
an enhancement in haplotyping accuracy for larger families, both in the
parental haplotypes as well as in the progeny haplotypes. However, the
computational burden is definitely a challenge in implementing such an
approach. Another potential improvement in TriPoly is the phasing of the
parents, the accuracy of which was shown to be inferior to that obtained
by HapTree. An iterative approach of keeping a few surviving TriPoly so-
lutions for the whole target region as the starting point for an Expectation
Maximisation (EM) routine can be a way to tackle this problem, resulting
in a refined set of most likely haplotypes in the population to which the
reads of each individual can be mapped back to find its specific phasing.
Like the joint likelihood approach, the computational challenge will be an
important consideration here.
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Software

TriPoly has been implemented in Python 3.5.2 (also compatible with
Python 2.7.3 and higher) and can be freely downloaded at www.bif.wur.nl.
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Supplementary Figure S1: Suppfigl.pdf: Average SNP Missing Rates
(SMR) in the phasing estimates of the progeny from the 100 trios sim-
ulated for a) potato and b) banana, using HapCompass, SDhaP, HapTree
and TriPoly at various sequencing depths.

Supplementary Figure S2: Suppfig2.pdf: Plots of RR, PAR, NGPS and
SMR obtained by HapCompass, SDhaP, HapTree and TriPoly for the
parents in the 100 simulated M. acuminata trios.

Supplementary Figure S3: Suppfig3.pdf: Plots of RR, PAR, NGPS and
SMR obtained by HapCompass, SDhaP, HapTree and TriPoly for the
parents in the 100 simulated S. tuberosum trios.
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RR PAR SMR NGPS
Intercept  0.813(0.803;0.823) 0.443(0.42;0.466)  0.624(0.613;0.636) 0.0412(0.0377;0.0448)
COV 5-5-5 0.008(0;0.015) 0.131(0.113;0.15)  -0.256(-0.263;-0.249) -0.0035(-0.0057;-0.0013)
SDhaP  0.052(0.041;0.063) 0.128(0.102;0.155) 0.002(-0.008;0.011)  -0.0004(-0.0035;0.0027)
HapTree  0.052(0.041;0.062) 0.075(0.049;0.101) 0.001(-0.008;0.011)  -0.0003(-0.0034;0.0028)
TriPoly  0.113(0.102;0.123) 0.334(0.308;0.36)  0.012(0.003;0.022)  -0.0094(-0.0125;-0.0063)
Table S1. 95% Confidence intervals for regression of quality measures on
haplotype estimation variables for M. acuminata
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RR PAR SMR NGPS
Intercept  0.628(0.622;0.635) 0.249(0.238;0.26)  0.399(0.388;0.411)  0.0006(0.0004;0.0008)
COV 5-5-5 0.016(0.01;0.023) 0.144(0.134;0.154) -0.114(-0.125;-0.103) -0.0002(-0.0004;-0.0001)

SDhaP 0.098(0.09;0.106)  0.056(0.043;0.069) 0(-0.014;0.014) 0(-0.0002;0.0002)
HapTree 0.2(0.19;0.209)  0.186(0.17;0.202)  0.08(0.062;0.097) 0(-0.0003;0.0002)
TriPoly  0.243(0.235;0.251) 0.418(0.405;0.431) 0.003(-0.011;0.017) -0.0002(-0.0004;0)

Table S2. 95% Confidence intervals for regression of quality measures on
haplotype estimation variables for S. tuberosum
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