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We study how noise in active dendrites affects information transmission. A mismatch of both
noise and refractoriness between a dendritic compartment and a somatic compartment is shown
to lead to an input-dependent exchange of leadership, where the dendrite entrains the soma for
weak stimuli and the soma entrains the dendrite for strong stimuli. Using this simple mechanism,
the noise in the dendritic compartment can boost weak signals without affecting the output of the
neuron for strong stimuli. We show that these mechanisms give rise to a noise-induced increase of

information transmission by neural populations.

I. INTRODUCTION

Biological systems process information with high ef-
ficiency despite a machinery characterized by high in-
trinsic variability. This incongruity may be resolved by
considering the beneficial effects of noise on information
transmission. At multiple time scales, noise can enhance
information transmission for either subthreshold [1-3] or
suprathreshold signals [4], a phenomenon known as ape-
riodic stochastic resonance. Yet, it is unclear how and
to what extent neuronal populations exploit the noise in-
herent to the biophysics of membranes.

Intrinsic noise is known to contribute to the activity of
single neurons [5-8]. It is thought to arise from stochastic
changes in ion channel conformations regulating vesicle
release and action potential generation. If such intrin-
sic noise were to play a constructive role in information
transmission either by boosting subthreshold signals or
decorrelating individual elements [1, 4, 9], its intensity
should be tuned to the particular input [10, 11]: too lit-
tle noise does not significantly enhance information, too
much degrades it. It is unclear if single neurons can tune
the intensity of intrinsic noise, and if so with what pre-
cision. Preferably, neurons would have a mechanism to
gate noise selectively according to the strength of the in-
put. Here we study the extent with which noise in active
dendrites affects the information transmitted by the cell
body.

Dendrites are characterized by small compartment
sizes [12-14], large intrinsic noise [15-17], and refractori-
ness [18, 19], which limits their maximal firing frequency.
Conversely, the cell bodies of neurons are characterized
by large compartment sizes, weak intrinsic noise and can
sustain high firing frequencies. These two types of neural
subunits are active since they may generate spikes locally
[13, 14, 18, 20]. They are also coupled: a dendritic ac-
tion potential can force a spike in the cell body and the
back-propagating action potential couples the compart-
ments in the reverse direction [12-14, 18]. In this article,
we show how these features can perform noise gating,
and how this leads to an enhancement of time-dependent

information transmission.

II. THE DENDRITE-SOMA SYSTEM
A. Simplified Biophysical Description

The role of dendrites can be addressed by a simplified
biophysical model with a single dendritic compartment
connected to the cell body. This dendrite-soma system
is typically modelled with resistive coupling between the
dendrite and the soma and a reduced set of ion channels
on both compartments [21-23]. In an instantiation of
such a system (see Appendix), we simulated the response
to a constant input delivered with equal strength to both
compartments. In addition to this constant component,
and to take into account noisier dendritic dynamics, the
compartments were stimulated with independent noise
scaled to have a thirty-fold higher amplitude in the den-
drite (see Appendix). Figure 1 shows that the response
consists of short and stereotypical action potentials in the
soma, which are often associated with a broader action
potential in the dendrite, consistent with experimental
observations [13, 18, 20] and detailed compartment mod-
elling [20, 24, 25]. When the depolarizing input was weak,
we found that a dendritic spike would consistently pre-
cede the somatic spike (Fig. 1 (a) and (¢)). In contrast,
when the depolarizing input was strong, the dendritic
spike would generally follow the somatic spike (Fig. 1
(b) and (c)). In addition, we observed that the firing
rate of the two-compartment system would follow more
closely the firing rate of an isolated dendritic compart-
ment when the input was weak, and more closely the
firing rate of an isolated somatic compartment when the
input was strong (Fig. 1 (d)).

B. Integrate-and-Fire Description

In order to identify central mechanisms from biophys-
ical models, we used a simple yet accurate abstraction.
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FIG. 1. Exchange of leadership in a simplified biophysical
model of the dendrite-soma system. (a) The dendrite-soma
system (see Appendix) receiving a weak input in both the
dendrite and the soma. The membrane potential of the soma
(blue trace) and the dendrite (red trace) shows action po-
tentials initiated first in the dendritic compartment. (b) For
a strong input, the somatic compartment fires regularly and
generally leads the dendritic action potentials. (c) The frac-
tion of somatic spikes that were preceded by a dendritic spike
within 8 ms (blue, full line) and the fraction of dendritic spikes
that were preceded by a somatic spike by at least 8 ms (or-
ange, dashed line) are shown. Spike timing is taken to be the
time of crossing -30 mV from below. (d) The firing rate of the
coupled system is shown as a function of the input strength
(black, full line). Isolating the compartments by fixing the
coupling conductance to zero shows that the dendrite-soma
system interpolates between the isolated dendritic compart-
ment (red, dashed line) and the isolated somatic compartment
(blue, dash-dot line).

We considered that the tip of dendrites can emit stereo-
typical spikes associated with a relative refractory period
longer than that at the soma. We therefore modeled a
dendrite-soma system as two interconnected integrate-
and-fire units, a system studied in the context of con-
nected pairs of neurons [26, 27]. To model dendrite-soma
systems, we considered that each compartment has inde-
pendent intrinsic noise, a distinct refractory period and
common stimulation of intensity s. These effects are dis-
tinct from dendritic NMDA-spikes [25, 28-32], of calcium
spikes [21, 22, 33| or other simplified models of dendritic
activity lacking either a back-propagating action poten-
tials or a clear refractory period [34, 35].

The dendritic (somatic) potential ux (uy) evolves ac-
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cording to the Langevin equations

duxy = (—ux + s)dt/T + /D% /7 dWx, (1)
duy = (—uy + s)dt/T + \/ﬂdWy, (2)

with membrane time constant 7 [36]. Upon reaching a
threshold at ux (uy) > 1, a unit is said to fire. When
a unit fires, it causes a strong potential jump b in the
other unit, consistent with strong active coupling be-
tween soma and dendrites [12-14, 20]. This jump is
implemented numerically in the timestep after the fir-
ing time. After spiking, a unit remains clamped to the
reset potential Vx (Vy) for unit X (Y) during an ab-
solute refractory period Tg, after which the membrane
potential follows Eqgs.1-2. We model a different relative
refractory period with different reset potentials since it
takes a longer time to relax from a lower reset. We choose
Vx < Vy to model a longer relative refractory period for
the dendrite. Lastly, each unit is subjected to an intrin-
sic noise denoted by the independent Wiener increments
dWx and dWy in Egs. 1-2 with intensity scaled by Dx
(Dy). To comply with the intensity of intrinsic noise ex-
pected in neocortical dendrites[15-17], we consider that
unit X is noisier than unit Y (Dx > Dy ) and study the
dynamics of the system when Dx is varied within a real-
istic range. Our analysis does not include an explicit sub-
threshold coupling between the compartments reflecting
weak electrotonic coupling in the presence of active spike
propagation in cortical dendrites [12-14]. With these pa-
rameter restrictions, the noisier and more refractory unit
(X) models an active dendrite while unit Y corresponds
to the soma, and so it is the output of the system.

III. EXCHANGE OF LEADERSHIP AS NOISE
GATING

A. Exchange of Leadership

The coupling between the units implies that whenever
one of the units fires, the other has a high probability
to discharge immediately afterwards. The relative re-
fractory period prevents another firing event to directly
follow this dual firing. Between these dual spiking events
the units are effectively independent. Then, the first
unit reaching threshold dictates the firing dynamics of
the coupled system. In the subthreshold regime, i.e. for
s < 1, the potential of each unit cannot cross threshold
without noise and both ux and uy would saturate to s in
this case. At this potential, the noisier unit has a greater
probability to fire since Dx > Dy. The noisier unit X
will fire more often and therefore be the leader, entrain-
ing the more deterministic unit Y as illustrated in Fig.
2 (a). On the other hand, in the suprathreshold regime
(s > 1), both units fire without noise. Hence, following a
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FIG. 2. Noise gating in coupled integrate-and-fire units. (a)
Membrane potential response of Y (somatic, blue dashed line)
and X (dendritic, red full line) units for s =0.95 and Dx =
3Dy . Inset: expanded view near threshold, where the X-
unit crosses first (arrow). (b) Same as (a) but for stronger
input s = 1.15. (c) Entrainment probability for a range of
input strengths, as described in the caption to Fig. 1 The
time window used to establish leadership in the integrate-
and-fire model was of the same order as the integration time
step.  The input intensity where entrainment probabilities
cross is the switching point. (d) Dependence of the switching
point on Dx /Dy for different values of Dy. Parameters are
described in the reference section [36].

spike, unit Y can take advantage of its higher reset value
and cross threshold before X (Fig. 2 (b)).

An exchange of leadership, or switching, occurs as s is
varied from subthreshold to suprathreshold values. We
computed the probability that X entrains Y, Px_,y, by
counting the fraction of X spikes that are immediately
followed by a Y spike. Figure 2 (¢) shows Px_,y and
its complement Py _, x calculated by numerical simula-
tion of Egs. 1-2 in a typical example of switching. The
dendritic leadership is complete and sustained at sub-
threshold input strengths. As s is increased, dendritic
leadership is diminished and Px_,y decreases. Simul-
taneously, somatic leadership is augmented and Py _, x
increases. In the strong input regime the exchange of
leadership is complete such that Px_,y reaches zero and
Py _, x one.

We observed complete switching provided that the rel-
ative dendritic noise Dx is sufficiently greater than Dy
and sufficiently small compared to the coupling ampli-
tude b to ensure strong effective coupling. Within this
range, the switching point defined by Px_y = Py _,x =
0.5 is not constant but increases with Dx (Fig. 2 (d)).
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A mismatch of the level of noise across compartments
combined with a mismatch of refractoriness can therefore
mediate the input-dependent exchange of leadership.

B. Noise Gating

Since the switching seen at strong inputs implies that
the influence of high intrinsic noise in unit X is removed
from the output, we remark that the system effectively
reduces, or gates, noise as a function of input intensity.
Furthermore, gating emerges close to the deterministic
threshold, precisely at the point where the role of noise
switches from beneficial to detrimental in single-unit en-
coding. It suggests a particular role for moise gating:
a more deterministic encoding of supra-threshold inputs
and a noise-assisted encoding to resolve subthreshold in-
puts within the same encoding device and without the
use of feedback.

IV. EFFECTS ON ENCODING PRECISION
A. Stationary Inputs

To show the role of a dendrosomatic mismatch of noise
on encoding quality, we investigated the consequences of
noise gating on stationary firing statistics (Fig. 3). For
various input strengths s, we computed the mean firing
rate and the variance of the interspike intervals (c%4;).
At subthreshold input strengths, the firing rate of the
coupled system is identical to the firing rate of an uncou-
pled X-unit. In this regime, the dendritic compartment
controls the timing of the somatic compartment, con-
sistent with in vitro recordings [37] and our biophysical
model (Fig. 1 (a)). As the input strength is increased,
the firing rate of the coupled system starts to deviate
from that of an uncoupled X-unit, reaching the firing rate
predicted for an isolated Y-unit when switching is com-
plete (Fig. 3 (a)). Interspike interval variance similarly
switches from a variability predicted by the dynamics of
an X-unit subthreshold to a variability predicted by the
dynamics of an Y-unit suprathreshold (Fig. 3 (b)), as is
to be expected from the gating of X-unit noise. Notably,
the coupled system follows the strongest firing rate and
the smallest variability, concurrently.

To determine if switching affects signal encoding, we
calculated the Fisher information that interspike inter-
vals T carry about a constant input. Fisher information
measures how sensitive an observable such as the inter-
spike interval T' is to changes in an input parameter s.
In practice, we used an approximation to the Fisher in-
formation rate

F(s) = 7“'“322 (3)
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FIG. 3. The firing statistics of isolated units constitute
asymptotic curves for the dendrite-soma system. (a) Firing
rate of coupled system (black line), X-unit alone (i.e. den-
drite alone, red line) and Y-unit alone (i.e. soma alone, blue
line) for different input strengths. (b) The interspike inter-
val variance of the coupled system follows the minimum be-
tween isolated X and Y units. (¢) Fisher information about
the input strength. Parameters are described in the reference
section [36].

where p/ is the derivative of the mean interspike interval
with respect to the mean input s. The quantity described
by Eq. 3 is widely used in studies of neural coding since
it is a lower bound on the Fisher information of a popu-
lation of spiking neurons with independent noise [38, 39].
Consistent with the firing rate and interval variability
described above, F of the coupled system was predicted
by X-unit properties subthreshold and by Y-unit proper-
ties after complete switching. In the limit of both small
and large input strengths, the coupled system showed
F as high as the maximum between isolated X- or Y-
units (Fig. 3 (c)). Since for s < 1 F is enhanced by
noise, we observe that the stochastic enhancement due
to X-unit noise is preserved in the dendrite-soma system.
Near threshold, however, the coupled system shows lower
F than the isolated Y-unit. To summarize, Fig. 3 sug-
gests that noise gating is beneficial for encoding either
weak or strong signals, but not input strengths that lie
predominantly close to the deterministic threshold. For
these perithreshold inputs, the isolated Y-unit translates
small input increments into consistently strong firing rate
changes while the coupled system randomly switches be-
tween X- and Y-driven firing of with similar rates.

B. Time-Dependent Inputs

These observations suggest that if a time-dependent in-
put is less often around threshold values, while sampling
more consistently both subthreshold and suprathreshold
input intensities, then noise gating could enhance the en-
coding of time-dependent inputs. To achieve this, the
coupled system would rely on noisier unit X when the in-
put is below the deterministic threshold at s = 1. When
the input is above the deterministic threshold, the sys-
tem would switch to a more deterministic encoding by
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relying on Y units. Therefore, we hypothesize that noise
gating can enhance encoding of a time-dependent input,
even for inputs distributed predominantly above thresh-
old. Additionally, the enhancement should be robust for
large dendritic noise since strong noise does not degrade
the suprathreshold part of the signal due to noise gating.

To test this hypothesis, we simulated 8000 dendrite-
soma systems receiving the same time-dependent input
s(t) with mean § > 1, in the regime of suprathreshold
stochastic resonance [4]. An estimate of the population
activity is constructed by summing the 8000 spike trains
from all Y-units. Encoding quality was quantified by
Shannon’s information for the classic channel with addi-
tive Gaussian noise [40-42]

M= / T logy (1— C()) df, (4)
0

where C(f) is the coherence between the population ac-
tivity and the input s(¢) for each frequency f [43]. M
encapsulates the frequency-resolved measure of correla-
tion between input and output fluctuations C(f) into a
single quantity. This quantity is distinct from the average
firing rate, and it is used as a lower bound on the mutual
information between the time-dependent input and the
set of spike trains.

Figure 4 shows M for increasing intrinsic dendritic
noise and two types of input currents s(t). For the first
type, we considered a Jump-Diffusion Process (JDP) pro-
ducing random fluctuations around two states with ran-
dom switching times between the high and the low states.
The JDP parameters [44] were chosen to produce a bi-
modal distribution centered slightly above threshold such
that the switching point (Fig. 2 (d)) may cross the cen-
ter of the input distribution as Dx is varied (Fig. 4
(a)). Although the exact mutual information has not yet
been derived for JDPs, this process was chosen to en-
sure a bimodal distribution of inputs without imposing
a periodic structure. It is a physiologically realistic in-
put distribution since sinusoidal sensory inputs and up
and down states are frequently treated in the context of
neuroscience [45-47]. We compared JDP encoding with
encoding of a Gaussian Process (GP) simulated with the
Euler-Maruyama method with matched mean and vari-
ance (Fig. 4 (b)), focusing, as a first step, on narrow
input distributions.

For narrow input distributions, a resonance as a func-
tion of Dx /Dy is seen for the JDP but not the GP (Fig.
4 (d)-(e)). Consistent with a more frequent sampling of
elevated F peri-threshold [48], M is generally higher for
the unimodal input than for the bimodal input. At the
maximum, or resonance, and only for the bimodal input,
the coupled system surpasses in encoding quality a more
deterministic population made of isolated Y-units (dash-
dot line in Fig. 4 (d)-(e)). This stochastic enhancement is
seen for a large range of intrinsic noise. The coupled sys-
tem also surpasses a population of isolated X-units with
the corresponding intrinsic noise intensity, again only for
bimodal inputs. The resonance in Fig. 4 (d) can be un-
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FIG. 4. Stochastic resonance for bimodal input distributions.
(a) Schema illustrating an neural ensemble made of dendrite-
soma systems (black), somatic units alone (blue) or dendritic
unit alone (red). Input distribution for (b) the JDP and (c) a
GP with mean matched to that of the JDP. (d) For the JDP,
M calculated from the summed activity of 8000 coupled units
(black line) surpasses that of isolated Y-units compartments
(blue dot-dash line) and of isolated dendritic compartments
(red dashed line) for a broad range of dendritic noise. (e) The
resonance for a GP is reduced with respect to the resonance of
obtained using the JDP (d). We used 7 = 10 ms to represent
M in bits per second, see the reference section [36] for all
other parameters.

derstood by recalling that two competing processes result
from an increase in Dx. On the one hand weaker signals
can trigger spikes, which increases the coding range and
therefore M. On the other hand, the switching point in-
creases, decreasing the range of inputs encoded by the Y-
unit (Fig. 2 (d)), which decreases reliability and therefore
M. The output unit (unit Y) representation of bimodal
inputs can therefore be enhanced by noise in an auxiliary
unit (unit X). The optimal noise results from a trade-off
between increasing the coding range and decreasing the
coding reliability.

The particular scenario illustrated in Figure 4 (c¢) cor-
responds to a coding enhancement with respect to the
isolated Y-units of up to 61% in M (Fig. 4 (c)). We ver-
ified that finite-size effects deteriorate this enhancement
by halving the population size. This resulted in a reduc-
tion of the enhancement to 42% in M. We found that the
enhancement in M was not detectable for a population of
250 coupled systems, but was present for a population of
500 coupled systems. We verified that the enhancement
was maintained by replacing the JDP with a sinusoidal
input with matched bimodal peaks. We then verified that
the enhancement necessitates a paucity of peri-threshold
input strengths by simulating a JDP with a mean in-
creased from 1.04 to 1.14, such that the leftmost peak is
close to the deterministic threshold. This manipulation
removed the stochastic enhancement. We conclude that
intrinsic dendritic noise, when gated by input intensity,
may improve M for inputs rarely lying close to threshold.
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Also, this enhancement is more pronounced in range and
amplitude than with classical mechanisms for stochastic
resonance [1-4] (see red curve in Fig. 4 (d)).

In the context of neuroscience, the inputs are likely
to be broadly distributed. We thus considered a broad
GP input distribution with twice the standard deviation
of the distribution shown in Fig. 4. We find that even
when the average input is above threshold (Fig. 5 (a)),
the coupled system shows stochastic enhancement over a
large range of intrinsic noise levels (Fig. 5 (b)). Since
M remains high even at the largest levels of noise we
have considered, the dendrite-soma system can tolerate
noise coming in addition to noise expected from intrinsic
sources [15-17]. Background synaptic noise and finite-
size noise are examples of extrinsic noise sources which
could contribute to this enhancement.

To verify that the information enhancement was not
simply due to a rate increase, we normalized M by the
average firing rate v and considered the quantity

M

£= 2 (5)

Since every spike comes with a metabolic energy cost, £
is interpreted as a measure of energy efficiency of infor-
mation transfer [49, 50]. We report here a quantity in
bits per spike, but this can be converted into bits per
ATP molecule using numerical estimates of the number
of ATP molecules used for the generation of an action po-
tential [49]. The parameter r is interpreted as the firing
rate at which the energy expenditure of action potential
generation equals the energy expenditure of maintain-
ing a depolarized membrane potential. This parameter
is though to vary substantially across neuron types [51],
but to be relatively low (we fixed r = 5 Hz). Figure 5 (c)
shows an enhanced efficiency for large dendritic noise in
the coupled system. In addition, the efficiency of the cou-
pled system surpasses the efficiency of either a population
of somatic compartments, or a population of dendritic
compartments with matched level of intrinsic noise.

We now ask how enhancement depends on the mean
input. The M of the coupled system matches that of
isolated X-units when the mean is subthreshold (Fig. 5
(d)), but surpasses those of isolated X and Y units when
the mean is suprathreshold. Therefore, for broadly dis-
tributed inputs, noise gating allows stochastic enhance-
ment on a broad range of intrinsic noise levels, thus al-
leviating the need for precise noise tuning in neurons.
The energy efficiency is similarly enhanced (Fig. 5 (e)),
but shows two peaks: A first peak subthreshold, match-
ing the enhancement obtained by isolated dendritic units,
and a second, much higher peak suprathreshold exceed-
ing the efficiency of isolated somatic units. These results
are consistent with the enhanced M (Fig. 5 (d)) and a
firing rate that follows the largest of either units (Fig.
2). Hence, noise gating in dendrite-soma systems allows
an efficient encoding through a stochastic enhancement
of subthreshold signals that preserves deterministic en-
coding suprathreshold.
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FIG. 5. Stochastic resonance for wide input distributions.
(a) Input distribution of the GP chosen to cover a large range
around a high mean 5. Using the same color code as in Fig.
3, panel (b) shows M and panel (c) shows £ for different
Dx calculated with input distribution in (a). We restricted
the range for intrinsic noise such that the standard deviation
of ux remains smaller than 0.5, which would correspond to
substantial membrane potential fluctuations in physical units.
(d) M and (e) & for different values of the mean input and
for a fixed level of intrinsic noise Dx = 15Dy. Parameters
are described in the reference section [36].

V. DISCUSSION

Several other theoretical studies pointed to a func-
tional relevance of spiking or nonlinear summation in
dendrites. One view holds that dendrites function as
sigmoidal units [28, 29]. This simple description was
shown to capture time-average firing rate of biophysical
neuron models with detailed morphology and active den-
dritic conductances supporting NMDA-spikes [25, 31, 52].
Modelling studies have shown that this architecture pro-
vides multiple advantages, namely specific sensory com-
putations [53], enhanced memory capacity [30, 35], en-
hanced dynamic range [54, 55| and flexible gating of spe-
cific pathways [32]. These computational advantages are
based on a phenomenological description of the time-
averaged firing rate, which could remain consistent with
the timing-dependent mechanisms described here. Addi-
tionally, the timing-dependent network synchrony mech-
anism discussed in Ref. [34] is likely to hold in the pres-
ence of noise gating. Therefore, we add to the known
computational advantages of nonlinear dendrites an im-
provement of encoding precision based on spike-timing
interactions.

Experimental studies point to a surprising diversity of
active dendrites. The mechanism described here is likely
to remain relevant when a combination of long refrac-
tory period, small subthreshold coupling and large noise
is achieved. We argue that high intrinsic noise and small
subthreshold coupling is expected in thin basal dendrites
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more than one electrotonic constant away from the cell
body. First, from measurements of dendrite diameter
at the tip of dendrites (0.5-0.6 pum [56, 57]) and exper-
imental estimates of the effective length of a compart-
ment (250 pm [20]), the effective dendritic surface area
is estimated to be approximately 400-500 ym?. Second,
theoretical studies [16] predict that a compartment with
surface area of 500 pm? would exhibit noisy fluctuations
with standard deviation of 1 mV from the stochastic
opening of ion channels, a 10-fold increase from observed
somatic noise [58] (consistent with our Dx /Dy ~ 10).
Such basal dendrites have accrued refractoriness [18, 19],
and longer action potentials [20, 59]. Therefore the
known properties of thin basal or oblique dendrites are
consistent with the mechanisms described here.

Other dendritic compartments may implement differ-
ent functions. Notably, the apical tuft of cortical pyra-
midal cells are known to generate calcium regenerative
events, which lead to a burst of action potentials [60, 61]
and a dendritic control on somatic gain [62, 63]. In ad-
dition, interactions between synaptic plasticity and den-
dritic dynamics have been the focus of much recent at-
tention [32, 64-66]. In summary, although these mech-
anisms are not immediately compatible with those de-
scribed here, they can be combined in a juxtaposition of
distinct, spatially segregated compartments within the
same dendritic tree.

If noise gating is taking place in the nervous system
according to the mechanism described in this article, we
predict that spikes encoding a weak stimulus would have
been initiated more frequently by the dendrites whereas
spikes encoding a strong stimulus would have been ini-
tiated more frequently at the soma. Given experimental
evidence indicating a connection between the shape of the
action potential and the site of initiation [14, 67], it ap-
pears possible to test this prediction experimentally. Fur-
thermore, focal pharmacological manipulations can be
used to determine the role active dendritic conductances
for different strength of sensory stimulation [68, 69].

As a second prediction, we note that the dendritic
refractory period should be substantially greater than
in the soma for the switching point to be in the typical
range of firing rate. Although there are clear indications
that the dendrite is more refractory to spiking [18, 19],
we are not aware of a direct measurement showing a
longer relative or absolute refractory period in the den-
drites. A potent discrepancy is likely, given the different
composition of ion channels in dendrites [70]. Noting
that lengthening of the relative refractory period may
arise either from a spike-triggered hyperpolarization or a
spike-triggered increase in the action potential threshold
[71], an electrophysiology experiment [13, 20, 37, 60] can
be designed to measure the difference between somatic
and dendritic refractory processes.
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VI. CONCLUSION

The mechanism outlined in this article may provide a
functional role of intrinsic noise in active dendrites, where
the dendrite act as a noise-assisted encoder, acting only
at small firing rates. Also, we have described how the
effects of intrinsic noise in a subsystem can be gated by
a mismatch of refractory periods between compartments.
To conclude, we have outlined a novel mechanism for in-
formation enhancement by intrinsic noise. This coding
strategy allows to communicate substantially more in-
formation per action potential, an interesting approach
given the metabolic costs of action potential transmis-
sion. The mechanism being simple and easy to imple-
ment, it can be inspire novel engineering approaches to
signal detection.
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Appendix: Simplified Biophysical Model of the
Dendrite-Soma System

We modeled the soma-dendrite system as two con-
nected electrical compartments with different densities
of voltage-gated ion channels. We note that this bio-
physical description is lacking multiple biophysical de-
tails, namely multiple dendrites, impedance mismatch
between soma and dendrite, multiple other types of ion
channels and active or quasi-active propagation. Yet this
two-compartment abstraction has been instrumental for
understanding many features of dendritic computation
[21, 22, 62, 72, 73].

The somatic membrane potential u, and the dendritic
membrane potential ug evolve according to Kirchoft’s cir-
cuit law for the conservation of current

dus s s
C dt = —gL(’LLS—EL)_ E IZ( )_gc(us_ud)—’—‘[e(xz (Al)
O% =—gr(uqg — Er) — E ¥ *gv(ud*u9)+l(d)
7 i i J £ ext

(A.2)

7

where C' = 0.75 pF is the compartment capacitance, gy, =
0.2 nS is the leak conductance and E; = —70 mV is
the leak reversal potential. The two compartments are
coupled via the coupling conductance g. = 0.02 nS.

Each compartment contains a different set of voltage-
gated ion channels. The soma is modeled with a combi-
nation of inactivating sodium conductance Iy, and fast
rectifying potassium conductance Ik

S =1g) + 1) (A.3)

The sodium conductance follows the Hodgkin-Huxley ki-
netics with an activation gate m and an inactivation gate
h Ing = gl(\fgmsh(us — ENa), where 91(\12 = 20 nS is the
maximal conductance and Eyn, = 60 mV is the rever-
sal potential for sodium. The potassium conductance is
modeled with a single activation gate Ix = gxn(us—FEx),
where gk = 10 nS is the maximal conductance and
Ex = —70 mV is the reversal potential for potassium.
The kinetics of the gating variables © € {m, h,n} follows
T2 (us)E = xo(us) — x, with 7, (u) and z(u) described in
Table L.

The dendrite contains contains these two types of ion
channels, but with lower densities

YIUCERCENT

%

(A4)

In the dendritic compartment, the maximal conductance

of sodium was 91(\2

to gl((d) = 8.0 nS. The kinetics of the gating variables
x € {m, h,n} follows 7, (uq)& = xo(uq) — =, with 7, (u)

and zq(u) described in Table I.

= 10 nS and the that of potassium

Each compartment receives an external input which is
partitioned into three terms:

I§) = Ly + 1+ 0,60, (A.5)
I = Ly + T+ 046, (A.6)

The term I, = 0.57 pA is a constant current correspond-
ing to the rheobase of the system. The additional current
I controls the current injected into the compartments
with respect to this rheobase. We also included inde-
pendent background noises £€*) and ¢4 drawn from a
normal distribution (~ AN(0,1)) independently at every
time step of size dt = 0.1 ms and for each compartment.
The noise amplitude was scaled by o5 = 0.1 pA in the
soma, and o4 = 3 pA in the dendrite.
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