Inert and seed-competent tau monomers elucidate the structural origins of aggregation
Hilda Mirbaha ${ }^{1}$, Olga A. Morozova ${ }^{2}$, Kiersten M. Ruff ${ }^{3}$, Apurwa Sharma ${ }^{1}$, Rohit V. Pappu ${ }^{3}$, David W. Colby ${ }^{2}$, Hamid Mirzaei ${ }^{4}$, Lukasz A. Joachimiak ${ }^{1}$, Marc I. Diamond ${ }^{1}$
${ }^{1}$ Center for Alzheimer's and Neurodegenerative Diseases, University of Texas, Southwestern Medical Center, Dallas, Texas 75390
${ }^{2}$ Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716
${ }^{3}$ Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130
${ }^{4}$ Department of Biochemistry, University of Texas, Southwestern Medical Center, Dallas, Texas 75390

Corresponding Author
Marc I. Diamond, M.D.
NL10. 120
5323 Harry Hines Blvd.
Dallas, TX 75390
Email: marc.diamond@utsouthwestern.edu
Phone: 214-648-8857

Abstract

Tauopathies are defined by progressive accumulation of tau amyloids. These assemble around a protein seed, whose structure is unknown, but might explain the initiation of pathology. We have purified and characterized distinct forms of tau monomer-either seedcompetent or inert. Recombinant tau that was seed-competent triggered intracellular tau aggregation, induced full length tau fibrillization in vitro, and exhibited intrinsic properties of self-assembly. Tau monomer from AD brain, but not from controls, similarly seeded aggregation, and self-assembled in vitro to form higher order, seed-competent structures. We used crosslinking with mass spectrometry to identify distinct conformers of both recombinant tau and human brain-derived protein. Theoretical models informed by this data suggest that VQIINK and VQIVYK sequences, which support amyloid formation, are uniquely exposed in all seed-competent structures. Our data imply that initiation of pathological aggregation begins with conversion of tau monomer from an inert to a seed-competent form.

Introduction

Amyloids are ordered protein assemblies, typically rich in beta sheet, that underlie multiple disorders including Alzheimer's disease (AD). Amyloid-forming proteins include tau, synuclein, and expanded polyglutamine proteins such as huntingtin, among many others. It is unknown how or why intracellular amyloid proteins such as tau transition from a relatively inert form to one that efficiently self-assembles into ordered structures. This process begins with the formation of a pathogenic "seed," a structure that serves as a template for homotypic fibril growth. This structural transition could be the critical event in the pathogenesis of neurodegeneration. Under defined conditions and relatively high concentrations (typically micromolar), recombinant tau monomer will form amyloid fibrils in vitro. However free monomer in cells is likely at a much lower concentration, and a complex intracellular protein milieu, with competing heterotypic interactions, theoretically should inhibit spontaneous selfassembly. The conversion of a protein from a monomer to a large, ordered multimer may occur by multiple mechanisms, but a proximal step involves the formation of a seed. This event, and indeed the actual form of the protein that constitutes the "minimal" seed, has remained obscure. This has led to the idea that a seed is potentially transitory, arising from equilibrium between two states: one relatively aggregation-resistant, and another that is short-lived. A seed could be a single molecule, or an assembly of molecules. Based on extrapolation from kinetic aggregation studies, it has been suggested that a critical seed for tau and polyglutamine peptide amyloid formation is a single molecule(1,2), while another study has proposed a tau multimer(3). Isolation of the seed-competent form of tau thus could be critical to understanding the initiation of disease.

Tau protein forms amyloids that underlie neurodegeneration in a variety of neuropathological syndromes, collectively termed tauopathies(4). These include AD and frontotemporal dementias, among many others. Multiple groups, including ours, have now observed that tau will propagate an aggregated state from the outside to the inside of a cell, between cells, across synapses, and within brain networks(5). In prior work we used size exclusion chromatography (SEC) to define tau trimers as the minimal unit of spontaneous cellular uptake and intracellular amyloid formation, and proposed this as the smallest particle capable of propagating aggregates between cells(6). This work involved application of "naked" protein assemblies derived from recombinant protein or human brain onto cultured "biosensor" HEK293 cells or primary neurons that express a tau aggregation reporter(7,8). These biosensor cells take up tau aggregates via macropinocytosis(9). The aggregates subsequently serve as highly specific templates to trigger intracellular amyloid formation $(8,10)$. We have also determined that preincubation of cationic lipids such as Lipofectamine with tau seeds will directly transduce them into the cell, bypassing the physiologic uptake mechanism(8,11). Lipofectamine-mediated delivery into biosensor cells allows direct quantitation of seed titer for both tau and α-synuclein(9).

Tau is intrinsically disordered upon isolation from bacteria or mammalian cells, and is relatively inert in terms of spontaneous self-assembly. However under various conditions, including exposure to polyanions such as heparin, tau will form aggregates via nucleated selfassembly $(12,13)$. It is unknown how these experimental conditions relate to the initiation of aggregation in human brain. We have now purified various stable forms of full-length tau monomer from recombinant protein and human brain. One type is relatively inert, and is stable for long periods. Another type is "seed-competent," triggers amyloid formation in cells
and in vitro, and exhibits intrinsic properties of self-assembly. We have used crosslinking with mass spectrometry (XL-MS) to probe the structures of these molecules and build theoretical structural models. These models imply that differential exposure of hexapeptide motifs previously known to be important for amyloid formation distinguish the two forms of tau. Identification of distinct and stable forms of tau monomer, including structural isoforms that are uniquely seed-competent, bears directly on how we understand the initiation of protein aggregation in the tauopathies.

MATERIALS AND METHODS

Tau expression, purification, fibrillization, and labeling

We utilized several forms of recombinant tau. Full-length (FL), wild-type (WT) tau contains two cysteines that create disulfide bridges, and complicate isolation of monomer. Thus in addition to preparing FL WT tau (2N4R), we created FL tau (2N4R) that contains two cysteine/alanine substitutions (C291A, C322A), termed tau (2A), and prepared recombinant protein as previously described(14). Additionally, for fluorescence correlation spectroscopy (FCS), we engineered a single cysteine at the amino terminus of this construct (Cys-Tau (2A)) for labeling via sulfhydryl chemistry. These modified proteins have fibrillization and seeding properties similar to FL WT tau. To initiate fibrillization, we incubated tau in 10 mM HEPES, 100 mM NaCl , and $8 \mu \mathrm{M}$ heparin (1:1 ratio of FL tau to heparin) at $37^{\circ} \mathrm{C}$ for 72 h without agitation. For cysteine labeling, we incubated $200 \mu \mathrm{~L}$ of $8 \mu \mathrm{M}$ fibrils (monomer equivalent) and monomer with 0.025 mg of Alexa Fluor-488 (AF488) C5-maleimide (Invitrogen) and $80 \mu \mathrm{M}$ Tetramethylrhodamine-5-maleimide (Sigma-Aldrich) overnight at $4^{\circ} \mathrm{C}$ with gentle rotation. We quenched excess dye with 10 mM DTT for 1 h at room temperature. We employ the following terminology to refer to four types of recombinant tau monomer, each comprised of identical primary amino acid (aa) sequences:
$\mathbf{M}_{\mathbf{r}}$: recombinant tau prepared from E. coli, without any further modification or size fractionation.
\mathbf{M}_{h} : recombinant tau treated with heparin for 1 min .
$\mathbf{M}_{\mathbf{i}}$: recombinant tau, subsequently isolated by SEC.
$\mathbf{M}_{\mathbf{s}}$: recombinant tau, treated with heparin, allowed to form fibrils, then sonicated, and isolated by SEC.

Sonication and size exclusion chromatography (SEC)

We sonicated labeled and non-labeled fibrils using a Q700 Sonicator (QSonica) at a power of $100-110$ watt (Amplitude 50) at $4^{\circ} \mathrm{C}$ for 3 h . Samples were then centrifuged at $10,000 \times \mathrm{g}$ for 10 min and 1 mL of supernatant was loaded into a Superdex 200 Increase 10/300 GL column (GE Healthcare) and eluted in PBS buffer at $4^{\circ} \mathrm{C}$. After measuring the protein content of each fraction with a Micro BCA assay (Thermo Scientific) and/or fluorescence using a plate reader (Tecan M1000), we aliquoted and stored samples at $-80^{\circ} \mathrm{C}$ until further use. Each aliquot was thawed immediately before use. The molecular weight of proteins in each fraction was estimated by running gel filtration standards (Bio-Rad): Thyroglobulin (bovine) 670 kDa; y globulin (bovine) 158 kDa ; Ovalbumin (chicken) 44 kDa ; myoglobin (horse) 17 kDa ; and vitamin $\mathrm{B}_{12} 1.35 \mathrm{kDa}$.

CD spectroscopy

Circular dichroism (CD) measurements were performed at $25^{\circ} \mathrm{C}$ on a Jasco $\mathrm{J}-815$ spectropolarimeter using a 0.1 cm optical path length. $200 \mu \mathrm{~L}$ of $2 \mu \mathrm{M} \mathrm{M}_{\mathrm{s}}$ or M_{i} monomer was dialyzed onto 10 mM NaP and the spectra were measured at 0.10 nm intervals, with a band width of 1.0 nm , and scan speed of $10 \mathrm{~nm} / \mathrm{min}$. The spectrum represents the average of 4 scans in the range of 195 to 250 nm .

Enzyme linked immunosorbent assay

A total tau "sandwich" ELISA was performed similarly to that described previously(15). Antibodies were kindly provided by Dr. Peter Davies (Albert Einstein College of Medicine). 96 -well round-bottom plates (Corning) were coated for 48 hours at $4^{\circ} \mathrm{C}$ with DA-31 (aa 150190) diluted in sodium bicarbonate buffer $(6 \mu \mathrm{~g} / \mathrm{mL})$. Plates were rinsed with PBS 3 times, blocked for 2 hours at room temperature with Starting Block (Pierce), and rinsed with PBS 5 additional times. SEC fractions were diluted in SuperBlock solution (Pierce; 20\% SuperBlock, diluted in TBS), and $50 \mu \mathrm{~L}$ sample was added per well. DA-9 (aa 102-150) was conjugated to HRP using the Lighting-Link HRP Conjugation Kit (Innova Biosciences), diluted 1:50 in SuperBlock solution, and $50 \mu \mathrm{~L}$ was added per well $(15 \mu \mathrm{~g} / \mathrm{mL})$. Sample + detection antibody complexes were incubated overnight at $4^{\circ} \mathrm{C}$. Plates were washed with PBS 9 times with a 15 sec incubation between each wash, and $75 \mu \mathrm{~L}$ 1-Step Ultra TMB Substrate Solution (Pierce) was added. Plates were developed for 30 min , and the reaction quenched with 2 M sulfuric acid. Absorbance was measured at 450nm using an Epoch plate reader (BioTek). Each plate contained a standard curve, and all samples were run in triplicate.

Fluorescence correlation spectroscopy

FCS measurements were conducted on a Confocal/Multiphoton Zeiss LSM780 Inverted microscope (Carl Zeiss-Evotec, Jena, Germany), using a 40X water immersion objective as previously described (16). Fluorescently labeled tau from SEC fractions (in PBS) was excited at 488 nm and 561 nm for 30 sec , recording 10 times(17). The data analysis was performed with Origin 7.0 (OriginLab, Northampton, MA).

Liposome-mediated transduction of tau seeds

Stable cell lines were plated at a density of 35,000 cells per well in a 96 -well plate. After 18 h , at 60% confluency, cells were transduced with protein seeds. Transduction complexes were made by combining [$8.75 \mu \mathrm{~L}$ Opti-MEM (Gibco) +1.25 $\mu \mathrm{L}$ Lipofectamine 2000 (Invitrogen)] with [Opti-MEM + proteopathic seeds] for a total volume of $20 \mu \mathrm{~L}$ per well. Liposome preparations were incubated at room temperature for 20 min before adding to cells. Cells were incubated with transduction complexes for 24 h .

FRET flow cytometry

Cells were harvested with 0.05\% trypsin and fixed in 2\% paraformaldehyde (Electron Microscopy Services) for 10 min , then resuspended in flow cytometry buffer. The MACSQuant VYB (Miltenyi) was used to perform FRET flow cytometry. To measure CFP and FRET, cells were excited with a 405nm laser, and fluorescence was captured with 405/50nm and 525/50nm filters, respectively. To measure YFP, cells were excited with a 488nm laser and fluorescence was captured with a 525/50nm filter. To quantify FRET, we used a gating strategy similar to that previously described(8). The integrated FRET density (IFD), defined as the percentage of FRET-positive cells multiplied by the median fluorescence intensity of FRET-positive cells, was used for all analyses. For each experiment, $\sim 20,000$ cells were
analyzed in triplicate. Analysis was performed using FlowJo v10 software (Treestar).

Tau seeding in vitro

Recombinant full length (0N4R) tau monomer was purified as previously described(18) at
 and boiled at $100^{\circ} \mathrm{C}$ for 5 min with $25 \mathrm{mM} \beta$-mercaptoethanol. The tau protein solution was then rapidly diluted $1: 5$ and cooled to $20^{\circ} \mathrm{C}$ in PBS, pH 7.4 , to a final concentration of $0.2 \mathrm{mg} / \mathrm{mL}$ of tau and $5 \mathrm{mM} \beta$-mercaptoethanol. This solution was supplemented with Thioflavin T (ThT) to a final concentration of $20 \mu \mathrm{M}$ and filtered through a sterile $0.2 \mu \mathrm{~m}$ filter. Reaction sizes of $195 \mu \mathrm{~L}$ were aliquoted from the prepared protein stock and thoroughly mixed with $5 \mu \mathrm{~L}$ of each sample at 100 nM monomer equivalent, or $5 \mu \mathrm{~L}$ of buffer control. For each sample, three different technical replicates were prepared. An opaque 96-well plate was prepared with a 3 mm glass bead added to each well to increase agitation. The recombinant tau solution was added to the plate in 200μ l reaction volumes. The plate was sealed with sealing tape to prevent evaporation and incubated in the plate reader (SpectraMax M2) at $37^{\circ} \mathrm{C}$. ThT fluorescence was monitored over time with excitation and emission filters set to 444 nm and 485 nm , respectively. Fluorescence readings were taken every 5 min , with agitation for 5 sec before each reading.

Tau extraction from brain and characterization by SEC

0.5 g frontal lobe sections from AD patients and age-matched controls lacking evident tau pathology were gently homogenized at $4^{\circ} \mathrm{C}$ in 5 mL of TBS buffer containing protease inhibitor cocktails (Roche) using a dounce homogenizer. Samples were centrifuged at $21,000 \times \mathrm{g}$ for 15 min at $4^{\circ} \mathrm{C}$ to remove cellular debris. Supernatant was partitioned into aliquots, snap frozen and stored at $-80^{\circ} \mathrm{C}$. Immunopurification was performed with HJ8.5 at a ratio of 1:50 ($1 \mu \mathrm{~g} \mathrm{mAb}$ per $50 \mu \mathrm{~g}$ of total protein), incubating overnight at $4^{\circ} \mathrm{C}$ while rotating. To each 1 mL of $\mathrm{mAb} /$ brain homogenate we added $200 \mu \mathrm{~L}$ of a 50% slurry protein G-agarose beads (SantaCruz). We washed the bead with TBS buffer before overnight incubation at $4^{\circ} \mathrm{C}$. We then centrifuged the complexes at $1000 \times \mathrm{g}$ for 3 min and discarded the supernatant. Beads were washed with Ag/Ab Binding Buffer, pH 8.0 (Thermo Scientific) three times. Tau bound to the beads was eluted in $100 \mu \mathrm{~L}$ low pH elution buffer (Thermo Scientific), incubated at room temperature for 7 min , followed by neutralization with $10 \mu \mathrm{~L}$ Tris-base pH 8.5. This elution step was repeated once more with $50 \mu \mathrm{~L}$ elution buffer and $5 \mu \mathrm{~L}$ Tris-base pH 8.5 for a total of $165 \mu \mathrm{~L}$. Samples were then centrifuged at $10,000 \times \mathrm{g}$ for 10 min , and the supernatant loaded onto a Superdex 200 Increase 10/300 GL column (GE Healthcare). SEC fractions were frozen at $-80^{\circ} \mathrm{C}$ after evaluation of protein content by Micro BCA assay (Thermo Scientific).

To compare different extraction methods, fresh frozen frontal lobe section from an AD patient was suspended in TBS buffer containing protease inhibitor cocktails (Roche) at $10 \% \mathrm{w} / \mathrm{vol}$ in 4 portions. Samples were homogenized using 3 different devices: a dounce homogenizer, probe sonicator (Omni International), and tissue homogenizer (Power Gen 125, Fischer Scientific). We also included one more condition of homogenizing with tissue homogenizer followed by probe sonication for 10 min . Samples were centrifuged at $21,000 \mathrm{xg}$ for 15 min at $4^{\circ} \mathrm{C}$ to remove cellular debris. Supernatant was partitioned into aliquots followed by immunopurification.

Analysis of heat denaturation data

We analyzed the IFD from measurements of temperature dependent seeding using global fits to a proposed unimolecular heat denaturation reaction. This analysis rests on the Arrhenius equation(19):

$$
k_{U}=A e^{-\frac{E}{R T}}
$$

where k_{u} is the unfolding rate constant, E is the activation energy, R is the gas constant, T is the temperature, and A is the pre-exponential factor. For the unimodal model, the data were fit globally to:

$$
\operatorname{IFD}(t)=100 e^{-t / \tau}
$$

Here, t is the heat denaturation time and $\tau=1 / k_{\nu}$ is the unfolding time. A second, multimodal model was deployed to account for discrepancies in the early time points which appeared to suggest the presence of a lag phase in denaturation. In this model, the data were fit globally to

$$
\begin{gathered}
\operatorname{IFD}(t)=100 ; \quad t \leq l_{t} \\
\operatorname{IFD}(t)=100 e^{-\left(t-l_{t}\right) / \tau} ; t>l_{t}
\end{gathered}
$$

where l_{t} is the lag time given by

$$
1 / l_{t}=B e^{-\frac{E}{R T}}
$$

and B is a pre-exponential factor. We used the Akaike information criterion (AIC) to evaluate the best model as it quantifies the trade-off between goodness of fit and the complexity of the model (20). For least squares model fitting, AIC can be reduced to:

$$
\text { AIC }=2 p+n \ln (\mathrm{RSS} / n)
$$

where p is the number of parameters in the model, n is the number of observations, and RSS is the residual sum of squares. The preferred model is the one with the minimum AIC. Here, we find AIC = 123 for the unimodal model and AIC $=105$ for the multimodal model, which suggests the multimodal model is a better description of the denaturation data.

Crosslinking, sample processing and LC-MS/MS analysis

M_{i} and M_{s} tau samples were prepared as described above. In all cases, tau preparations were crosslinked at a total protein concentration of $\sim 0.1 \mathrm{mg} / \mathrm{mL}$ using $10-20 \mu \mathrm{~g}$ starting material. The crosslinking buffer was 50 mM HEPES-KOH (pH 7.4) containing 300 mM NaCl and 1 mM DTT. The crosslinking reaction was initiated by adding disuccinimidyl suberate (DSS) stock solution (25 mM DSS- d_{0} and $-\mathrm{d}_{12}$, Creative Molecules) in DMF to a final concentration of 1 mM . Samples were incubated at $37^{\circ} \mathrm{C}$ for 1 min . For the M_{h} sample, heparin sulfate (Sigma) was added to a final concentration of $5 \mu \mathrm{M}$, followed by 1 mM DSS and the samples were inclubated for 1 min at $37^{\circ} \mathrm{C}$. Excess reagent was quenched by addition of ammonium hydrogen carbonate to 50 mM and incubation at $37^{\circ} \mathrm{C}$ for 30 min , and then flash frozen at $-80^{\circ} \mathrm{C}$. After the quenching step, samples were evaporated to dryness in a vacuum centrifuge and resuspended in 8 M urea. Proteins were reduced with 2.5 mM TCEP $\left(37^{\circ} \mathrm{C}, 30 \mathrm{~min}\right.$) and alkylated with 5 mM iodoacetamide (30 min , room temperature, protected from light). The sample solutions were diluted to 1 M urea with 50 mM ammonium hydrogen carbonate and trypsin (Promega) was added at an enzyme-to-substrate ratio of 1:50. Proteolysis was carried out at $37^{\circ} \mathrm{C}$ overnight followed by acidification with formic acid to 2%
(v/v). Samples were then purified by solid-phase extraction using Sep-Pak tC18 cartridges (Waters) according to standard protocols. Samples were fractionated by size exclusion chromatography (SEC) on a Superdex Peptide column as described elsewhere (21). Two fractions collected from SEC were evaporated to dryness and reconstituted in water/acetonitrile/formic acid (95:5:0.1, $\mathrm{v} / \mathrm{v} / \mathrm{v}$) to a final concentration of approximately 0.5 $\mu \mathrm{g} / \mu \mathrm{l} .2 \mu \mathrm{~L}$ each were injected for duplicate LC-MS/MS analyses on an Eksigent 1D-NanoLCUltra HPLC system coupled to a Thermo Orbitrap Fusion Tribrid system. Peptides were separated on self-packed New Objective PicoFrit columns (11cm $\times 0.075 \mathrm{~mm}$ I.D.) containing Magic C_{18} material (Michrom, $3 \mu \mathrm{~m}$ particle size, $200 \AA$ pore size) at a flow rate of $300 \mathrm{~nL} / \mathrm{min}$ using the following gradient. $0-5 \mathrm{~min}=5 \% \mathrm{~B}, 5-95 \mathrm{~min}=5-35 \% \mathrm{~B}, 95-97 \mathrm{~min}=35-95 \% \mathrm{~B}$ and $97-107 \mathrm{~min}=95 \% B$, where $A=$ (water/acetonitrile/formic acid, 97:3:0.1) and $B=$ (acetonitrile/water/formic acid, 97:3:0.1). The mass spectrometer was operated in datadependent mode by selecting the five most abundant precursor ions (m/z 350-1600, charge state $3+$ and above) from a preview scan and subjecting them to collision-induced dissociation (normalized collision energy $=35 \%, 30 \mathrm{~ms}$ activation). Fragment ions were detected at low resolution in the linear ion trap. Dynamic exclusion was enabled (repeat count 1 , exclusion duration 30 sec).

Analysis of mass spectrometry data

Thermo .raw files were converted into the open .mzXML format using msconvert (proteowizard.sourceforge.net) and analyzed using an in-house version of xQuest(22). Spectral pairs with a precursor mass difference of 12.075321 Da were extracted and searched against the respective FASTA databases containing Tau (TAU_HUMAN P10636-8). x Quest settings were as follows: Maximum number of missed cleavages (excluding the crosslinking site) $=2$, peptide length $=5-50$ aa, fixed modifications $=$ carbamidomethyl-Cys (mass shift $=57.021460 \mathrm{Da}$), mass shift of the light crosslinker $=138.068080 \mathrm{Da}$, mass shift of mono-links $=156.078644$ and $155.096428 \mathrm{Da}, \mathrm{MS}^{1}$ tolerance $=10 \mathrm{ppm}, \mathrm{MS}^{2}$ tolerance $=$ 0.2 Da for common ions and 0.3 Da for crosslink ions, search in ion-tag mode. For brain derived samples we also included variable modifications including: Methionine oxidation = 15.99491, Ser/Thr/Tyr Phosphorylation $=79.96633$ and Lysine Ubiquitylation $=114.043$ with nvariable_mod = 1. Post-search manual validation and filtering was performed using the following criteria: xQuest score > 7, mass error between -4 and +7 ppm, $\%$ TIC >10, and a minimum peptide length of six aa. In addition, at least four assigned fragment ions (or at least three contiguous fragments) were required on each of the two peptides in a crosslink. False discovery rates for the identified crosslinks were estimated using xprophet(22). Crosslink data was visualized using $\mathrm{Xvis}(23)$.

Generation of structural models using XL-MS-derived constraints

High confidence crosslink pairs identified above were used to generate an ensemble of possible structures using a Rosetta protocol employing the crosslink pairs as structural restraints. The integration of XL-MS derived restraints have been previously used to refine structural models of large complexes(21) and simpler heterodimeric complexes(24). Based on distance distributions of crosslink pairs mapped onto crystallographic structures we set a lower bound of $15 \AA$ and an upper bound of $25 \AA$ for lysine $C \alpha$ pairs in our simulations. Importantly, in our simulations we weighted the constraint pairs as to allow some distances above the upper bound limit. The fragment library was supplanted by using chemical shifts derived from tau (bmrb entry 17920) using csrosetta(25). We generated 1000 models for each of the four XL-MS datasets on a high performance cluster (biohpc.swmed.edu).

Because crosslinks were absent in the N - and C-termini we selected models that excluded additional contacts from residues 1-150 and 400-441. Low energy structures with radius of gyration $_{\text {FL/Frag }}$ ratios >2 and contact order $\mathrm{FL}_{\mathrm{Frag}}$ ratios between 0.9 and 1.1 were further analyzed. Relative contact order (i.e. intramolecular crosslink distance) was computed using a perl script and is defined as the average sequence distance between all pairs of contacting residues normalized by the total sequence length. Contact maps were computed using a python script and all figures were generated using Pymol. All plots were generated using gnuplot.

Commandline used for ab initio protocol calculations with XL-MS restraints

AbinitioRelax.default.linuxgccrelease -in:file:fasta tau.fasta -file:frag3 tau.frags3.dat -file:frag9 tau.frags9.dat -nstruct 1000 -abinitio::increase_cycles 0.5 -abinitio::relax -score::weights score13_env_hb -abinitio::rg_reweight 0.5 -abinitio::rsd_wt_helix 0.5 -abinitio::rsd_wt_loop 0.5 -disable_co_filter true -out:file:silent csrosetta.out -constraints:cst_fa_file tau.cst constraints:cst_file tau.cst -constraints:cst_weight 0.1 -constraints:cst_fa_weight 0.1 loopfcst::coord_cst_weight 10.0

Statistical analysis

Group mean values were analyzed by one-way ANOVA with Bonferroni post hoc significant differences test using GraphPad prism 5 software. Data in text and figures are represented as mean \pm SEM.

RESULTS

Isolation of monomer from unfibrillized or fibrillized sources

We initially sought to define the tau seeding unit that would trigger intracellular aggregation upon direct delivery to the cell interior. We had previously observed that a tau trimer is the minimal assembly size that triggers endocytosis and intracellular seeding(6). These experiments depended on spontaneous cell uptake, since no Lipofectamine was added to the reactions. A prior study had also indicated the role of disulfide linkages in promoting tau aggregation, potentially by dimer formation(3). Thus, for our initial studies we engineered and purified full-length (FL) tau monomer that lacks any internal cysteines due to alanine substitution (C299A and C322A), termed tau (2A). FL tau (2A) cannot self-associate based on disulfide linkages, which helped prevent the formation of cryptic dimers that could confound our studies. These substitutions do not affect tau purification, heparin-induced fibrillization, and sonication protocols, which we performed as described previously(6). We covalently labeled the fibril preps prior to sonication and isolation of recombinant FL tau (2A) assemblies of various sizes by size exclusion chromatography (SEC)(6). In parallel, we also studied FL wild type (WT) tau. We used methods identical to those described previously, which included controls of fluorescence correlation spectroscopy (FCS), and crosslinking to confirm purification of bona fide monomer(6). We purified unfibrillized recombinant FL tau (2A) monomer by SEC (Fig. 1A), and isolated SEC fractions of sonicated fibrils that contained putative monomer, dimer, trimer and $\sim 10-\mathrm{mer}$ (Fig. 1B).

Fibril-derived monomer exhibits seeding activity in cells and in vitro

To test the seeding activity of the tau preparations, we used a previously described "biosensor" cell reporter line(8).These cells stably express 4R tau repeat domain (RD)
containing the disease-associated P301S mutation fused to cyan and yellow fluorescent proteins (tau-CFP/YFP). Exogenously applied seeds induce intracellular aggregation with resultant fluorescence resonance energy transfer (FRET) measured via flow cytometry $(8,11)$. The degree of aggregation is scored using "integrated FRET density" (IFD), which is the product of the percent positive cells and the mean fluorescence intensity of FRET-positive cells, and from this we determine a titer of tau seeding activity(8). Lipofectamine directly transduces tau assemblies across the plasma membrane and increases the assay's sensitivity by approximately 100-fold. Upon incubation with Lipofectamine, we readily observed seeding by larger assemblies, whether FL WT or 2A. Surprisingly, we also observed seeding activity in the monomer fractions (Fig. 1C). There was no difference between FL WT tau, and FL tau (2A) (Fig. 1C). We termed the inert monomer " M_{i}," and the seed-competent monomer " M_{s}." We confirmed our observations using epifluorescence microscopy, which revealed induction of intracellular inclusions after exposure of cells to M_{s}, but not M_{i} (Fig. 1D). These surprising results inspired us to check whether heparin itself could lead to the formation of a seed-competent monomer. We exposed FL WT tau to heparin for varying amounts of time, before purifying different assembly sizes by SEC and testing for seeding activity. After 15 min of heparin exposure, we detected low but significant amounts of seed-competent monomer, while larger assemblies were more rare (Fig. 1E). Recombinant monomer not treated with heparin had no seeding activity at any time point (Fig. 1E). At later time points (1h, 4h) monomer fractions as well as larger assemblies all had strong seeding activity (Fig. 1E). To rule out an artifact of the Lipofectamine transduction, we tested FL (2A) tau preparations in an in vitro seeding assay that induces fibril formation by full-length tau (0N4R) through iterative polymerization and agitation steps(18). M_{i} had no intrinsic seeding activity. However M_{s} induced amyloid formation, albeit more slowly than trimer or unfractionated fibrils (Fig. 1F). We concluded that the M_{s} fraction contains seeding activity that enables intracellular aggregation of tau RD-CFP/YFP in cells, or full-length tau in vitro, and that heparin-exposed monomer also developed seeding activity prior to its formation of larger assemblies.

Comparison of $\mathbf{M}_{\mathbf{i}}$ and $\mathbf{M}_{\mathbf{s}}$ by CD and FCS

We were intrigued to observe seeding activity in a monomer fraction, and thus attempted to detect multimers. To begin, we tested for obvious structural differences between M_{i} and M_{s} using CD spectroscopy, which revealed none (Fig. 2A). We confirmed the sizes of species isolated after sonication using FCS, which measures particle diffusion through a fixed volume (Fig. 2B). As we previously observed(6), we accurately estimated the sizes of small assemblies ($\leq 10-m e r$), but not larger assemblies (>10-mer) (Fig. 2B). Next, we used doublelabel FCS in an attempt to identify multimers within the M_{s} fraction. We engineered a cysteine onto the amino terminus of FL tau (2A) to enable covalent modification (Cys-Tau (2A)). We then prepared Cys-tau (2A) fibrils, or monomer, and labeled them simultaneously with Alexa488 (green) and tetramethylrhodamine (TMR, red) via maleimide chemistry. We carried out sonication and purification by SEC as before, isolating assemblies of various sizes. We evaluated each for cross-correlation between red and green signal, which indicates the presence of at least two tau molecules in a particle. We analyzed >300 events for each assembly. When we evaluated M_{i} and $M_{s}, 100 \%$ of events in each case showed a diffusion time consistent with a molecule of $\sim 50 \mathrm{kD}$, which corresponds to the tau monomer (Fig. 2C,D). Furthermore we observed no cross-correlation between red and green signal, indicating that neither preparation had detectable multimeric assemblies (Fig. 2C,D,H). By contrast, when we evaluated larger species such as dimer, trimer, or ~ 10-mer, we observed longer diffusion times consistent with the predicted assembly sizes, and significant cross-
correlation values (Fig. 2E-H), consistent with the presence of multimers. In summary, we found no evidence of multimers in the M_{s} fraction using FCS.

SEC preparation efficiently purifies $\mathbf{M}_{\mathbf{s}}$ monomer

To test for contamination of the M_{s} preparation with larger seed-competent assemblies during SEC, we took three approaches. First, we determined what degree of contamination would be required to give a substantial signal. We titrated M_{s} to determine an EC_{50} of $\sim 10 \mathrm{nM}$ (Fig. 3A), and also titrated dimer and trimer into a solution of $100 \mathrm{nM} \mathrm{M} \mathrm{M}_{\mathrm{i}}$ (assuming that those species would most likely account for contamination, if there were any)(Fig. 3B). We observed similar seeding efficiencies from dimer and trimer, with an EC_{50} of $\sim 10 \mathrm{nM}$ monomer equivalent (Fig. 3B). In our estimation, these data indicated that to account for signal observed in the seeding assay, contamination of an otherwise inert monomer with larger seed-competent assemblies would have to be substantial.

We next tested the ability of SEC to exclude larger seeds from the monomer fraction. We first isolated M_{s} and larger assemblies from a sonicated fibril preparation. Removing the fraction that contained M_{s} (B5), we then pooled the remaining fractions, and spiked them with M_{i}. We re-fractionated the material on SEC to isolate again the monomer in fraction B5 (Fig. 3C). As previously observed, M_{s} and other fibril-derived assemblies had seeding activity (Fig. 3D). However, in the second case, while we observed seeding activity in larger assemblies, the monomer (which we take to be M_{i}) re-isolated from a pool of larger fibril-derived assemblies had no seeding activity (Fig. 3E). This confirmed that larger, seed-competent assemblies do not appreciably contaminate the monomer fraction during SEC.

Finally, we used heat-mediated dissociation of oligomeric assemblies to test for the possibility that M_{s} in fact represented a uniquely compact multimer that somehow purifies as a monomer. We collected M_{s} by SEC, and heated the sample to $95^{\circ} \mathrm{C}$ for 3 h . We then reisolated the sample via SEC. We carried out the same procedure with trimer and $\sim 20-m e r$. In each case, we tested the resultant fractions for seeding activity. In the first instance, after heating we re-isolated M_{s} purely as monomer that retained its seeding activity (Fig. 3F). The trimer assembly (fraction B8) broke down to smaller assemblies, predominantly monomer, each of which retained seeding activity (Fig. 3G). The ~20-mer (fraction A5) was largely stable following heat treatment, and retained its seeding activity (Fig. 3H). Based on these experiments, we concluded that our purification protocols leave virtually no contamination of M_{s} by larger assemblies, and that all detectable seeding activity of M_{s} in fact derives from monomer.

Differential heat lability of tau assemblies

In the preceding experiment M_{s} retained seeding activity even after 3 h at $95^{\circ} \mathrm{C}$, a condition sufficient to dissociate trimers. These experiments implied that M_{s} consists of a surprisingly stable seed-competent structure, largely resistant to heat denaturation. Consequently, we used more nuanced heat denaturation of seeding activity to probe the relative stabilities of M_{s}, dimer, trimer, and larger assemblies of FL WT tau. We first isolated tau monomer, dimer, trimer, $\sim 10-\mathrm{mer}$, and $\sim 20-\mathrm{mer}$ on SEC. We then incubated the various assemblies at a range of temperatures $\left(65,75,85,95^{\circ} \mathrm{C}\right)$ and times $(0,3,12,18,24,48,72 \mathrm{~h})$ before measuring seeding activity. Lower temperatures only slightly reduced seeding activity, whereas exposure of M_{s}, dimer, and trimer to temperatures $\geq 85^{\circ} \mathrm{C}$ for $18-24 \mathrm{~h}$ eliminated most of it (Fig. 4A-D). By contrast, the seeding activities of $\sim 10-\mathrm{mer}$ and $\sim 20-\mathrm{mer}$ were relatively heatresistant (Fig. 4A-D). This is consistent with our prior observations that tau seeds derived
from cultured cells are resistant to boiling (10). M_{s}, dimer, and trimer lost seeding activity at roughly the same rate, while larger assemblies remained intact. To determine a putative energy barrier between M_{s} and an inert form, we evaluated the denaturation data for M_{s}, comparing two models for the transition of M_{s} to an inert form (which we assumed to be an unfolding reaction): a unimodal unfolding model vs. a multimodal model that assumes intermediate seed-competent states. The unimodal model did not account for the data at early time points, which indicated a lag phase in denaturation, whereas the multimodel model performed better (Fig. 4E). The lag phase in denaturation implies an ensemble of seedcompetent states that define M_{s}, each separated by smaller barriers. Using this multimodal model, we calculated the barrier to conversion of M_{s} to an inert form to be $\sim 18 \mathrm{kcal} / \mathrm{mol}$.

$\mathbf{M}_{\mathbf{s}}$ has unique properties of self-assembly

Aggregation of M_{i} in vitro is relatively slow, requires high protein concentration (micromolar), and polyanions such as heparin $(12,13)$. Based on the seeding activity of M_{s} we predicted that it might more readily self-associate. We incubated FL WT tau M_{i} and M_{s} alone, or dimer or trimer at equimolar ratios, keeping total particle concentration constant at 500 nM . We then monitored change in assembly size over $24 \mathrm{~h} . \mathrm{M}_{\mathrm{i}}$, dimer, and trimer showed no evidence of self-association in this timeframe (Fig. 5A,C,D). By contrast, when incubated alone, M_{s} readily formed larger assemblies (Fig. 5B). When we incubated M_{i} with dimer or trimer, we saw no change in the assembly population over 24 h (Fig. 5E,F). By contrast, when we mixed M_{s} with dimer or trimer we observed a growth of larger assemblies with a concomitant reduction in dimer and trimer peaks (Fig. 5G,H). We conclude that M_{i}, dimer, and trimer do not form larger assemblies at an appreciable rate, while M_{s} self-assembles or adds on to larger assemblies.

AD brain contains seed-competent monomer

Given our experiments with M_{i} and M_{s}, we wished to test whether similar structures exist in vivo, and thus isolated tau monomer from AD and control patient brains. We extracted brain samples using a dounce homogenizer gently to try to avoid liberating significant monomer from fibrils. We immunoprecipitated tau using an antibody that targets the amino-terminus, and resolved the eluates by SEC, followed by ELISA to determine tau levels (Fig. 6A,B). Whereas tau from control brain extract eluted in the monomer fraction (Fig. 6A), tau from AD brain distributed across multiple fractions, corresponding to monomer and larger assemblies (Fig. 6B). When we tested each fraction for seeding activity, we observed none in any control brain fraction, including monomer (Fig. 6C). However all AD fractions contained seeding activity, including monomer (Fig. 6C). A seed-competent tau monomer is thus present in AD brain, but not in control brain. To test for its self-association in vitro, we incubated control and AD monomer for up to 24 h . We then resolved the assemblies via SEC and tested each fraction for seeding activity. At Oh, AD monomer exhibited seeding activity (Fig. 6D). Over time we observed a transition to larger seed-competent assemblies (Fig. 6E, F). Tau monomer derived from AD brain thus has an intrinsic capacity for self-association into seedcompetent assemblies.

XL-MS reveals distinct, stable conformational states in recombinant tau monomer

 To probe the structures of various forms of recombinant tau monomer, we employed crosslinking with mass spectrometry (XL-MS). This method creates restraints for structural models of single proteins or protein complexes(21,26,27). We studied FL WT tau monomer from a variety of conditions: recombinant protein purified from E. coli $\left(\mathrm{M}_{\mathrm{r}}\right)$; the same protein exposed to heparin for 1 min and purified by SEC $\left(\mathrm{M}_{\mathrm{h}}\right)$; recombinant monomer subsequentlypurified by SEC $\left(M_{i}\right)$; and seed-competent monomer purified after sonication of fibrils $\left(M_{s}\right)$. In each case, we performed reactions at low protein concentrations and short crosslink times, avoiding inter-protein crosslinks. We reacted samples with DSS, digested them with trypsin, enriched crosslinked peptides with by SEC, and analyzed them by capillary liquid chromatography tandem mass spectrometry. We assigned the complex fragment ion spectra to the corresponding peptide sequences using xQuest (22). Denaturation of recombinant tau with 8M urea prior to crosslinking produced no intramolecular cross-links (data not shown), indicating that crosslinks observed under native conditions represent local structure.

Given our observation that four forms of WT FL tau ($M_{r}, M_{h}, M_{i}, M_{s}$) had two distinct activities (inert vs. seed-competent), we compared their structures using XL-MS. M_{r} and M_{h}, despite different seeding activities, exhibited relatively similar intramolecular crosslink patterns. These were dominated by short-range crosslinks (Fig. 7A,B). In M_{r}, we identified 21 unique crosslinks evenly distributed within the repeat domain (RD: aa243-367, composed of four repeated ~ 30 aa sequences, RD1-4), and the projection domain (PD: aa1-242), with an average sequence separation of 16.5 aa between modified lysines (Fig. 7A; S1A; Table S1). In $M_{h}, 57$ unique crosslinks had a similar average sequence separation of 16 aa between modified lysines (Fig. 7B; S1B; Table S1). We observed an increased abundance of short range crosslinks clustered into two main regions: PD (aa130-175), RD2 (aa270-290), and RD4 (aa350-400) (Fig. 7B, S7B and Table S1). M_{i} exhibited 7 crosslinks, and M_{s} exhibited 8 (Fig. 7C,D; S1C,D; Table S1). M_{i} and M_{s} shared only two common crosslinks, K224-K347 and K225-K347, and crosslinks differed within the RD and in regions just upstream and downstream (Fig. 7C,D). The average sequence separation for M_{i} was 113 aa, and for M_{s} it was 136 aa. We note differences between M_{i} (purified by SEC), and M_{r} (which was not). This may be due to residual cell components (e.g. RNA) bound to Mr. In summary, we observed mostly short-range crosslink patterns for M_{r} and M_{h} with different distributions in the RD. Importantly, the crosslink pattern of M_{h} was very different from that of M_{s}, indicating that heparin exposure alone does not account for the structure of M_{s}.

To test patient-derived tau monomer, we immunopurified tau from brains of 3 AD brains and 3 age-matched controls, using the established SEC protocol to purify seed-competent monomer followed by our XL-MS protocol. In control tau we observed 5-7 intramolecular crosslinks (Fig. 7E; Table S1) and in AD-derived tau we observed 10-13 intramolecular crosslinks (Fig. 7F; Table S1). Similar to recombinant M_{s}, in all AD tau monomer samples we observed a discrete set of crosslinks between aa150 and aa259-290 (Fig. 7E, red lines). To evaluate the variability in the preparation of the brain derived samples more precisely, we homogenized tissue from a single AD brain using different approaches ranging in severity: dounce homogenization, pulse sonication, mechanical homogenization, and mechanical homogenization with pulse sonication (Fig. S2A-D, Table S1). While there was variation in the total number of crosslinks ($3,11,57$, and 8 , respectively) the core set of crosslinks between aa150 and 259-290 were present independent of homogenization method (Fig. S2A-D, red lines). The consistency of the crosslinks between aa150 and 259-290 focused our attention on the domains they implicated, especially the amyloid-forming sequences within the RD.

Models of seed-competent monomers suggest exposure of VQIINK and VQIVYK

To understand how core elements of tau might play a role in its aggregation, we employed ROSETTA to create models of tau structure for M_{r}, M_{h}, M_{i} and M_{s}, using restraints from the crosslink patterns, and length of the DSS crosslinker (Fig. 8A-D, Table S1, Supp. Movies: M_{r},
$\mathrm{M}_{\mathrm{h}}, \mathrm{M}_{\mathrm{i}}, \mathrm{M}_{\mathrm{s}}$). We prioritized low energy structures that excluded additional contacts with the N and C-termini, as suggested by the crosslink patterns (see methods for details). We next calculated protein contact maps for representative M_{r} and M_{i} (inert), and M_{h}, and M_{s} (seed competent) structures (Fig. S3A-D), which highlight how the XL-MS derived restraints drive the topology of each tau structure (Fig. S3E-H, green dots). The M_{r} structural model was based on short range contacts clustered throughout the entire RD (Fig. 8A), and this predicted masking of VQIINK and VQIVYK sequences, which have previously been proposed as critical for tau amyloid formation(28,29). The model of M_{i} structure was based on a dramatically different crosslink pattern, with the RD1/2 (Fig. 8C, red-green interface) and RD2/3 (Fig. 8C, green-blue interface) regions in discretely formed hairpins similar to the conformation of tau bound to microtubules indicated by NMR (30). In this model, the core elements of VQIINK (green spheres) at the beginning of the RD2, and VQIVYK (blue spheres) at the beginning of the RD3(29) are buried in hairpins (Fig. 8C, S3C). Remarkably, despite different crosslink patterns, our models suggested that both M_{r} and M_{i} feature VQIINK/VQIVYK sequences relatively obscured from solvent accessibility. Crosslink studies of tau monomer from control patients also suggested a structural model in which these core residues are less accessible (Fig. 8E, Table S1; Supp. Movie: Control 1), although we place important caveats on these interpretations. Our ability to resolve high confidence structural models using XL-MS in patient-derived samples is more limited due to fewer high confidence crosslinks, possibly from sample heterogeneity (multiple isoforms, and multiple tau structures).

For seed-competent forms of tau, and despite distinct crosslink patterns, we also observed common predicted effects on VQIINK/VQIVYK exposure. The M_{h} structural model was predominantly influenced by short-range crosslinks, consistent with local contacts within the PD and the RD2 that result in burial of the VQIINK sequence but exposure of the VQIVYK sequence (Fig. 8B; Supp. Movie: M_{h}). This is consistent with recent observations that heparin binds directly to residues 270-290 which include VQIINK (33). By contrast the model of M_{s} was influenced by more long-range crosslinks, which nonetheless predicted an exposed conformation of VQIINK/VQIVYK (Fig. 8D; Supp. Movie: M_{s}). Lastly, in AD brain-derived tau we also observed crosslinks between aa ~ 150 to aa259-290, which we think help define an exposed configuration of VQIINK/VQIVYK in a seed-competent monomer (Fig. 8F, Table S1; Supp. Movie: AD1). In summary, despite profound differences in overall crosslink patterns, the models suggested by XL-MS highlight relative exposure of VQIINK/VQIVYK in forms of tau with intrinsic seeding activity $\left(M_{h}, M_{s}\right)$, while forms of tau that are inert $\left(M_{r}, M_{i}\right)$ feature VQIINK/VQIVYK buried in hairpins. These models will obviously require additional tests using advanced biophysical methods, but provide a plausible explanation for the distinct activities of tau monomer that we have observed.

Discussion

The simplest interpretation of our data is that consistent with it being an intrinsically disordered protein, tau monomer can occupy several unique and stable conformational states. One set of structures is relatively inert, while another has intrinsic ability to selfassemble, and acts as a template, or seed, for fibril growth in vitro and in cells. We confirmed with multiple controls that M_{s}, derived from sonicated fibrils, was in fact a monomer and not a larger assembly, and that there was no detectable cross-contamination of larger species into the putative monomer fraction upon SEC. Heat denaturation of seeding activity was
consistent with a complex folding state for M_{s}, comprised of several seed-competent intermediates. Tau monomer purified from AD brain also had intrinsic seeding activity, and self-associated to produce seed-competent assemblies. Finally, we used XL-MS to compare conformations of different tau monomers. A model restrained by our XL-MS data suggested that VQIVYK and VQIINK sequences might assume an open configuration in $\mathrm{M}_{\mathrm{s}}, \mathrm{M}_{\mathrm{h}}$, and ADderived monomer, all of which have intrinsic seeding activity. By contrast, the model suggested that M_{i} and M_{r}, and control brain monomer, all of which are inert, lack VQIINK/VQIVYK exposure. Taken together, these data establish a new concept for tau: this intrinsically disordered protein has multiple, stable monomeric states, functionally distinguished by the presence or absence of seeding activity.

Amyloid proteins form progressively larger assemblies over time, and it has been difficult to define the composition of the minimal seed. Mandelkow and colleagues studied tau aggregation in vitro and concluded that a seed of 8-12 molecules existed in their experimental system(3). By contrast, Kuret and colleagues posited an "intermediate" of tau that could subsequently initiate self-assembly, and their data, based on extrapolation of tau concentrations needed to enable development of thioflavin fluorescence in vitro, were consistent with a monomeric seed(1). Wetzel and colleagues also proposed that a monomer is the basis of a "thermodynamic nucleus" that templates the aggregation of synthetic polyglutamine peptides(31). However, no prior study has previously identified stable forms of tau that seed amyloid formation. This provides an opportunity to study the earliest events in aggregate formation.

The actual cause of tau aggregation in tauopathies is unknown. It has been proposed that dissociation of tau monomer from microtubules, possibly due to phosphorylation, allows selfassociation to form pathogenic assemblies(32). In this study, using a single source of recombinant protein, we define distinctly structured seed-competent and inert forms of tau. We have similarly identified seed-competent species in patient-derived preparations. We fully recognize that in reality "seed-competent" and "inert" forms of tau represent multiple structural ensembles separated by defined energy or kinetic barriers. The barrier blocking conversion of an inert to a seed-competent form of tau can apparently be overcome by incubation with heparin and/or incorporation into a fibril. In neurons, other factors such as post-translational modifications and heterologous binding events likely play a role. Identification of the factors that trigger conversion from inert to seed-competent forms will thus have obvious implications for understanding disease mechanisms.

Isolation of seed-competent monomer from AD brain, with a very mild purification that explicitly excludes sonication or vigorous tissue homogenization, strongly suggests that this form of monomer freely exists in vivo. Furthermore, we observed that both recombinant M_{s} and AD -derived monomer build multimeric assemblies in vitro far more efficiently than M_{i} or control-derived monomer. Thus we hypothesize that a uniquely structured form of tau may be required for efficient assembly growth in cells. This contrasts with the idea that multimeric assemblies uniquely stabilize the conformation of otherwise unstructured proteins as they incorporate into the growing fibril. Taken together, we imagine that the initiation of aggregation in human brain might begin with conversion of tau monomer from an inert to a seed-competent form. To fully study this process will require more extensive biochemical purification of tau monomer from the earliest stages of disease.
M_{s} has a remarkably stable structure, as it resists heat denaturation at $95^{\circ} \mathrm{C}$ for up to 3 h . This suggests a heretofore unrecognized conformation of tau that, to account for its slow heat denaturation, likely involves multiple intra-molecular interactions involving short and long range amino acid contacts. XL-MS provides some indication of what these might be, and indicates a predominance of more long-range intramolecular interactions in M_{s} vs. M_{i}. In agreement with the XL-MS results, we observed that heat inactivation of M_{s} seeding activity occurs with a lag phase, rather than first order time-dependent decay. This is implies a complex tertiary structure in which M_{s} has multiple seed-competent intermediates. Future XLMS studies performed at different temperatures could reveal these structures. With more advanced methods to interrogate the structure of monomeric tau in patient material, we imagine that "seed-competent monomer" will in fact represent myriad structures, depending on the underlying disease. This could provide an explanation for how a single protein might self-assemble into diverse amyloid strains.

Without further studies to identify structures of tau at higher resolution, we cannot know for certain why one form acts as a seed and the other does not. However, we gained important insights when we modeled tau structures using ROSETTA, using XL-MS results as restraints. Despite obvious caveats, our models predict that the local environment surrounding two hexapeptide motifs, VQIINK and VQIVYK, which are required for tau to form amyloid structures, may explain the differences between seed-competent and inert forms. In the models of M_{i} and M_{r}, and control brain-derived tau, these motifs lie buried in hairpin structures, whereas in M_{s} and AD-derived tau, both are exposed, and in M_{h} VQIVYK is exposed. VQIINK/VQIVYK thus might serve as substrates for intermolecular interaction in a growing assembly. Interestingly, M_{s} has a very different pattern of crosslinks compared to the M_{h}, yet both seed aggregation. Indeed, it has been recently observed that heparin binding involves residues spanning 270-290, and promotes expansion of the remainder of the molecule (33), which is consistent with our predictions of relative exposure of VQIINK/VQIVYK. We hypothesize that conformers of tau monomer differentially present the core VQIINK/VQIVYK sequences. The diversity of exposed core elements (potentially beyond VQIINK/VQIVYK) could specify the formation of assemblies that give rise to distinct strains. Consistent with this idea, a recent structural study indicates that in AD-derived tau fibrils the VQIVYK sequence plays a key role in the core amyloid structure along with adjacent amino acids, but the VQIINK sequence does not (34). We also note that multiple disease-associated mutations in tau affect residues in close proximity to VQIINK/VQIVYK. For example, our models predict that serine or leucine substitutions at P301 (which cause dominantly inherited tauopathy) would destabilize the local structure, and promote exposure of the
VQIINK/VQIVYK sequences. Future experiments will test these ideas more definitively.

Conclusion

Our findings indicate that tau monomer has at least two dominant structural configurations, one of which has intrinsic activity as a seed and a self-assembly factor. We cannot exclude other models of seed formation based on these studies, and they may also play a key role in amyloid formation. Thus even temporary, critical local elevations in the concentration of an aggregation-prone protein may enable clustering, with an as yet unspecified conformational transition to form a seed. This would be consistent with a "molten globule" as the origin of a seed, perhaps reflecting the multimeric tau assembly described originally by Mandelkow and colleagues (3). However, our observations in this case suggest an alternative possibility, whereby events triggered by aging, genetics, beta amyloid toxicity, brain trauma, or other
insults, enable tau monomer to transition to a stable conformation that mediates selfassembly and initiates tauopathy.

Acknowledgements

We thank Peter Davies for generously providing antibody reagents and ELISA protocol guidance. This work was supported by grants from the Tau Consortium and NIH grants awarded to 1R01NS071835 (M.I.D.), R01NS089932 (R.V.P. and M.I.D.), and the Effie Marie Cain Endowed Scholarship (L.A.J.). We appreciate the help of the Live Cell Imaging Core Facility administered by Katherine Luby-Phelps, Ph.D., and the Proteomics Core Facility at the University of Texas Southwestern Medical Center.

Competing Interests

A patent disclosure has been filed by H.M., L.A.J. and M.I.D. related to the use of unique crosslinks to create biomarkers for neurodegenerative diseases.

References

1. Chirita CN, Congdon EE, Yin H, Kuret J. Triggers of full-length tau aggregation: a role for partially folded intermediates. Biochemistry. 2005 Apr 19;44(15):5862-72.
2. Kar K, Jayaraman M, Sahoo B, Kodali R, Wetzel R. Critical nucleus size for diseaserelated polyglutamine aggregation is repeat-length dependent. Nat. Struct. Mol. Biol. 2011 Mar;18(3):328-36. PMCID: PMC3075957
3. Friedhoff P, Bergen von M, Mandelkow EM, Davies P, Mandelkow E. A nucleated assembly mechanism of Alzheimer paired helical filaments. Proc. Natl. Acad. Sci. U.S.A. National Academy of Sciences; 1998 Dec 22;95(26):15712-7. PMCID: PMC28109
4. Neurodegenerative tauopathies. 2001;24(1):1121-59. Retrieved from: http://www.annualreviews.org/doi/abs/10.1146/annurev.neuro.24.1.1121
5. Sanders DW, Kaufman SK, Holmes BB, Diamond MI. Prions and Protein Assemblies that Convey Biological Information in Health and Disease. Neuron. Elsevier; 2016 Feb 3;89(3):433-48. PMCID: PMC4748384
6. Tau Trimers Are the Minimal Propagation Unit Spontaneously Internalized to Seed Intracellular Aggregation. 2015 Jun 12;290(24):14893-903. PMCID: PMC4463437
7. Frost B, Jacks RL, Diamond MI. Propagation of tau misfolding from the outside to the inside of a cell. J. Biol. Chem. American Society for Biochemistry and Molecular Biology; 2009 May 8;284(19):12845-52. PMCID: PMC2676015
8. Proteopathic tau seeding predicts tauopathy in vivo. 2014 Oct 14;111(41):E4376-85. PMCID: PMC4205609
9. Holmes BB, Devos SL, Kfoury N, Li M, Jacks R, Yanamandra K, et al. Heparan sulfate proteoglycans mediate internalization and propagation of specific proteopathic seeds. Proc. Natl. Acad. Sci. U.S.A. National Acad Sciences; 2013 Aug 13;110(33):E3138-47. PMCID: PMC3746848
10. Sanders DW, Kaufman SK, Devos SL, Sharma AM, Mirbaha H, Li A, et al. Distinct Tau Prion Strains Propagate in Cells and Mice and Define Different Tauopathies. Neuron. 2014 May 21. PMCID: PMC4171396
11. Furman JL, Holmes BB, Diamond MI. Sensitive Detection of Proteopathic Seeding Activity with FRET Flow Cytometry. J Vis Exp. 2015;(106):e53205-5. PMCID: PMC4692784
12. Goedert M, Jakes R, Spillantini MG, Hasegawa M, Smith MJ, Crowther RA. Assembly of microtubule-associated protein tau into Alzheimer-like filaments induced by sulphated glycosaminoglycans. Nature. Nature Publishing Group; 1996 Oct 10;383(6600):550-3.
13. Pérez M, Valpuesta JM, Medina M, Montejo de Garcini E, Avila J. Polymerization of tau into filaments in the presence of heparin: the minimal sequence required for tau-tau
interaction. J. Neurochem. 1996 Sep;67(3):1183-90.
14. Frost B, Ollesch J, Wille H, Diamond MI. Conformational diversity of wild-type Tau fibrils specified by templated conformation change. J. Biol. Chem. American Society for Biochemistry and Molecular Biology; 2009 Feb 6;284(6):3546-51. PMCID: PMC2635036
15. Acker CM, Forest SK, Zinkowski R, Davies P, d'Abramo C. Sensitive quantitative assays for tau and phospho-tau in transgenic mouse models. Neurobiol. Aging. 2013 Jan;34(1):338-50. PMCID: PMC3474864
16. Measurement of microsecond dynamic motion in the intestinal fatty acid binding protein by using fluorescence correlation spectroscopy. 2002 Oct 29;99(22):14171-6.
Retrieved from:
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed\&id=12381795\&ret mode=ref\&cmd=prlinks
17. Spectroscopic Study and Evaluation of Red-Absorbing Fluorescent Dyes. 2003 Jan;14(1):195-204. Retrieved from: http://pubs.acs.org/doi/abs/10.1021/bc025600x
18. Morozova OA, March ZM, Robinson AS, Colby DW. Conformational features of tau fibrils from Alzheimer's disease brain are faithfully propagated by unmodified recombinant protein. Biochemistry. American Chemical Society; 2013 Oct 8;52(40):6960-7. PMCID: PMC4142060
19. Laidler KJ. The development of the Arrhenius equation. Journal of Chemical Education. 1984.
20. Burnham KP, Anderson DR. Model selection and multimodal inference: a practical information-theoretic approach. p. 61-3.
21. Leitner A, Joachimiak LA, Bracher A, Mönkemeyer L, Walzthoeni T, Chen B, et al. The Molecular Architecture of the Eukaryotic Chaperonin TRiC/CCT. Structure. 2012 May;20(5):814-25.
22. Rinner O, Seebacher J, Walzthoeni T, Mueller LN, Beck M, Schmidt A, et al. Identification of cross-linked peptides from large sequence databases. Nat. Methods. Nature Publishing Group; 2008 Apr;5(4):315-8. PMCID: PMC2719781
23. Grimm M, Zimniak T, Kahraman A. xVis: a web server for the schematic visualization and interpretation of crosslink-derived spatial restraints. Nucleic acids 2015.
24. Kahraman A, Herzog F, Leitner A, Rosenberger G, Aebersold R, Malmström L. Crosslink guided molecular modeling with ROSETTA. Fernandez-Fuentes N, editor. PLoS ONE. Public Library of Science; 2013;8(9):e73411. PMCID: PMC3775805
25. Lange OF, Rossi P, Sgourakis NG. Determination of solution structures of proteins up to 40 kDa using CS-Rosetta with sparse NMR data from deuterated samples. 2012.
26. Lasker K, Förster F, Bohn S, Walzthoeni T, Villa E, Unverdorben P, et al. Molecular
architecture of the 26 S proteasome holocomplex determined by an integrative approach. Proc. Natl. Acad. Sci. U.S.A. National Acad Sciences; 2012 Jan 31;109(5):1380-7. PMCID: PMC3277140
27. Joachimiak LA, Walzthoeni T, Liu CW, Aebersold R, Frydman J. The structural basis of substrate recognition by the eukaryotic chaperonin TRiC/CCT. Cell. 2014 Nov 20;159(5):1042-55. PMCID: PMC4298165
28. Bergen von M, Friedhoff P, Biernat J, Heberle J, Mandelkow EM, Mandelkow E. Assembly of tau protein into Alzheimer paired helical filaments depends on a local sequence motif ((306)VQIVYK(311)) forming beta structure. Proc. Natl. Acad. Sci. U.S.A. National Academy of Sciences; 2000 May 9;97(10):5129-34. PMCID: PMC25793
29. Bergen von M, Barghorn S, Li L, Marx A, Biernat J, Mandelkow EM, et al. Mutations of tau protein in frontotemporal dementia promote aggregation of paired helical filaments by enhancing local beta-structure. J. Biol. Chem. 2001 Dec 21;276(51):48165-74.
30. Kadavath H, Jaremko M, Jaremko Ł, Biernat J, Mandelkow E, Zweckstetter M. Folding of the Tau Protein on Microtubules. Angew. Chem. Int. Ed. Engl. WILEY-VCH Verlag; 2015 Aug 24;54(35):10347-51.
31. Bhattacharyya AM, Thakur AK, Wetzel R. polyglutamine aggregation nucleation: thermodynamics of a highly unfavorable protein folding reaction. Proc. Natl. Acad. Sci. U.S.A. 2005 Oct 25;102(43):15400-5. PMCID: PMC1266079
32. Mandelkow E-M, Mandelkow E. Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb Perspect Med. 2012 Jul;2(7):a0062477. PMCID: PMC3385935
33. Zhao J, Huvent I, Lippens G, Eliezer D, Zhang A, Li Q, et al. Glycan Determinants of Heparin-Tau Interaction. Biophys. J. 2017 Mar 14;112(5):921-32. PMCID: PMC5355497
34. Fitzpatrick AWP, Falcon B, He S, Murzin AG, Murshudov G, Garringer HJ, et al. CryoEM structures of tau filaments from Alzheimer's disease. Nature. 2017 Jul 5;56:343.

FIGURE LEGENDS

Figure 1: Isolation of recombinant tau assemblies and seeding activity of monomer derived from fibrils in cells and in vitro. (A, B) FL Cys-Tau(2A) was labeled with Alexa488 and resolved by SEC (A), or was fibrillized in the presence of heparin, labeled with Alexa488, sonicated, and the assemblies resolved by SEC (B). The column was calibrated using MW standards of the indicated sizes. Color codes indicate the putative assembly sizes. (C) Tau assemblies purified by SEC were evaluated by seeding onto tau RD-CFP/YFP biosensor cells. M_{i} represents "inert" monomer purified by SEC without fibrillization, which has no seeding activity; M_{s} represents "seed-competent" monomer purified after prior fibrillization and sonication. (D) FL WT tau and FL Cys-Tau(2A) were similarly fibrillized, sonicated, and the fragments resolved by SEC. Seeding activity of each fraction was evaluated by SEC. Ms and larger assemblies of both forms of tau exhibit seeding activity, but not M_{i}. Fractions were evaluated by FCS. IFD = Integrated FRET Density. (E) Heparin treatment of FL WT tau was carried out for $15 \mathrm{~min}, 1 \mathrm{~h}$, or 4 h . Samples were resolved by SEC, and fractions of various sizes were compared using the biosensor seeding assay. "Pre-SEC" refers to the sample prior to fractionation. At 15 min , a small, but significant seeding activity was observed in the monomer fraction. By 1 h this was very strong, and was comparable to the signal from monomer derived from sonicated fibrils. NT = monomer not treated with heparin. (F) Fulllength (ON4R) tau aggregation in vitro was measured using induced thioflavin fluorescence. Fibril-derived samples were purified by SEC. M_{i} had no seeding activity, whereas M_{s}, trimer, and unfractionated fibrils had strong seeding activity.

Figure 2: Fluorescence correlation spectroscopy (FCS) analyses of $\mathbf{M}_{\mathbf{i}}$ and $\mathbf{M}_{\mathbf{s}}$. (A) CD spectra of M_{i} and M_{s} were similar. (B) FCS Diffusion times for M_{i}, M_{S}, dimer, trimer, and ~ 10 mer, and the cross-correlation for $\mathrm{M}_{\mathrm{i}}, \mathrm{M}_{\mathrm{s}}$, dimer, trimer, and ≥ 10-mer were determined after labeling of fibrils with Alexa488, or double labeling with tetramethylrhodamine prior to sonication. Table reflects the predicted diffusion time based on a molecular weight, and the actual diffusion time. The variance between predicted vs. observed times is reported. (C-G) FCS for double-labeled tau assemblies. Cross correlation between the two dyes is indicated in grey lines. (H) Summary of FCS cross-correlation, including free dyes. Neither free dye, M_{i} nor M_{s} showed any cross-correlation, indicating single species predominate. All multimeric assemblies exhibited cross-correlation, indicating the presence of both dyes within a single particle.

Figure 3: Seeding potency, SEC purification fidelity, and heat stability. (A,B) Titration of assemblies was performed. (A) M_{s} exhibited an EC_{50} of approximately 10 nM (monomer equivalent); (B) Dimer and trimer had similar potencies. Concentration is reflected as monomer equivalent. (C) SEC fidelity was tested by isolating M_{s} from fractions after fibril sonication. Remaining fractions were combined with M_{i}, and the mix was re-isolated by SEC. (D) In Group 1, after the first isolation, the monomer fraction (which contains M_{s}) contained seeding activity. (E) In Group 2, after the second purification by SEC, the monomer fraction (which contains M_{i} spiked in) did not exhibit seeding activity. (F-H) Heat-induced dissociation of assemblies. (F) The SEC fraction containing M_{s} (B5) was heated to $95^{\circ} \mathrm{C}$ for 3 h and reisolated by SEC prior to testing the FRET biosensor assay. No loss in seeding activity was observed. (G) When the SEC fraction containing trimer (B8) was heated similarly, seeding activity shifted to fractions that contain dimer and monomer (B7, B5). (H) ~20-mer (A5) was largely stable to heating, although some smaller seed-competent assemblies were liberated.

Figure 4: Heat denaturation of assemblies. (A-D) Various assemblies were subjected to heat denaturation at the indicated temperatures and times, followed by analysis of seeding activity in the FRET biosensor assay. Whereas $\sim 10-\mathrm{mer}$ and $\sim 20-\mathrm{mer}$ were relatively stable from $65-95^{\circ} \mathrm{C}$, monomer, dimer and trimer showed temperature-dependent loss of seeding activity. (E) Plot of denaturation data with multimodel regression curves superimposed.

Figure 5: M_{s} uniquely self-assembles. M_{i} and M_{s} were incubated at 500 nM or with equivalent amounts (monomer equivalent) of dimer and trimer for various times prior to resolution by SEC. (A) M_{i} alone shows no capacity for self-association. (B) M_{s} exhibits selfassociation over time. (C,D) Dimer and Trimer are stable when incubated over time. (E,F) M_{s} reacts with dimer and trimer to form larger assemblies. $(\mathbf{G}, \mathbf{H}) \mathrm{M}_{\mathrm{i}}$ does not react with dimer or trimer to form larger assemblies.

Figure 6: AD brain contains seed-competent monomer. Tau from AD and control brains was immunoprecipitated and subjected to SEC. (A) SEC from control brain shows predominantly tau monomer. (B) SEC from AD brain shows a range of tau assembly sizes. (C) Monomer from AD brain has seeding activity, but not monomer from control brain. Tau Unit refers to the putative number of molecules per assembly; C = Lipofectamine control. (D,E) Control or AD tau monomer was incubated for 0 (graph D) or 24h (graph E) prior to SEC, and seeding activity was determined from each fraction. Pre-SEC samples are shown at the first data point. After 24 h incubation, AD-derived tau monomer exhibited seeding activity in fractions consistent with larger assemblies. (F) AD-derived tau monomer was incubated for the indicated times prior to SEC and determination of seeding activity in each fraction. Larger seed-competent assemblies formed in a time-dependent fashion.

Figure 7. Unique XL-MS patterns for different forms of tau monomer. Tau monomer was prepared as described and subjected to chemical crosslinking, digestion, and mass spectrometry to define intramolecular crosslinks. Cartoons represent crosslinks within the tau protein. Tau is shown in grey; RD is colored in red (R1), green (R2), blue (R3) and indigo (R4). High confidence XL-MS crosslinks are shown as light yellow lines; crosslinks consistent between the M_{s} and AD monomer are shown in red. (A) M_{r} : tau monomer prior to SEC. (B) M_{h} : tau monomer exposed to heparin, isolated by SEC; (C) M_{i} : tau monomer isolated by SEC; (D) M_{s} : tau monomer from fragmented fibrils, isolated by SEC. (E) AD brains contain long-range intramolecular crosslinks very similar to those observed in M_{s} (from 150 to 259290). (F) Tau monomer from controls lacks the long range contacts observed in monomer from AD.

Figure 8. Models of different tau structures.

XL-MS results were used as restraints in Rosetta to create selected structural models of (A) M_{r}, (B) M_{h}, (C) M_{i}, (D) M_{s}, (E) Control monomer and (F) AD monomer. Tau protein sequence is shown in ribbon with the RD colored as in Figure 7. Regions between RD1/2 and RD2/3 are expanded, highlighting the two amyloid forming regions, VQIINK (green spheres) and VQIVYK (blue spheres). Note that in $\mathrm{M}_{\mathrm{h}}, \mathrm{M}_{\mathrm{s}}$ and AD monomer the VQIINK and VQIVYK sequences are presented at the protein surface. In contrast, these regions are buried in M_{r}, M_{i} and control monomer. Please see Supplemental Movie files to better visualize the 3D orientation of specific regions.

Figure S1. XL-MS reveals differences in intramolecular crosslink distances between forms of tau monomer. Contact plots for XL-MS data for (A) M_{r}; (B) M_{h}; (C) M_{i}; (D) M_{s}
reveal different crosslink distances. The sites of XL-MS pairs are shown as green dots. Magenta boxes highlight differences in crosslink distance between the tau conformers. RD = repeat domain. PD = projection domain.

Figure S2. Different brain homogenization methods yield similar crosslink patterns. AD brain sample was homogenized using four different treatments (A) Dounce homogenization, (B) Pulse sonication, (C) Mechanical homogenization and (D) Mechanical homogenization followed by pulse sonication. Cartoons represent crosslinks within the tau protein. Tau is shown in grey; RD is colored in red (R1), green (R2), blue (R3) and indigo (R4). High confidence XL-MS crosslinks are shown as light yellow lines; crosslinks consistent with the M_{s} and $A D$ monomers are shown in red.

Figure S3. Crosslinks maps in models reveal local structure. Models from Figure 8 protein contact map tau monomer structures reveal differences in crosslink distances in the repeat domain. (A-D) Models of tau monomer structure with crosslinks (yellow lines) superimposed. (E-F) Plot of crosslink distance colored according the atom pair distance in angstroms ($\AA \AA$) with a gradient from blue-red-yellow). The sites of XL-MS pairs are shown as green dots.

Table S1. Summary of XLMS datasets.

Supplemental Movie Files. PyMol was used to create rotating movies of all structural models for recombinant forms of tau ($\mathrm{M}_{\mathrm{r}}, \mathrm{M}_{\mathrm{h}}, \mathrm{M}_{\mathrm{i}}$ and M_{s}) and monomer derived from Control 1 and AD 1 patient brains. We note that the model predicts that seed-competent forms of tau ($\mathrm{M}_{\mathrm{h}}, \mathrm{M}_{\mathrm{s}}, A D$) feature one or both VQIINK/VQIVYK sequences exposed. Inert forms of tau M_{r}, M_{i}, Control) feature these sequences relatively buried in hairpin structures. In tau derived from Control 1, the model predicts that VQIINK and VQIVYK sequences interact with one another within the monomer.

C

E

D

F

Figure 1

B

Fraction	Size (KD)	Units (n)	$\mathrm{T}_{\text {predicted }}$ $(\mu \mathrm{s})$	$\mathrm{T}_{\text {actual }}$ $(\mu \mathrm{s})$	Variance *
B5	46	1	210	211	0.005
B7	92	2	264	270	0.022
B8	138	3	303	309	0.020
A7	667	10	452	561	0.241
A4	>667	>10	518	1880	0.724

*Variance: 1-(Predicted Diffusion Time/ Actual Diffusion Time)

Figure 2

B

C

Group 1

Group 2

Tau units

Heat at $95^{\circ} \mathrm{C}$

Tau units

Heat at $95^{\circ} \mathrm{C}$

Heat at $95^{\circ} \mathrm{C}$

A

B

C

D

E

Figure 4
A

- $24 h$ $-8 h$ $-4 h$ $-0 h$

B

D

F

D

Figure 6

A

Controls

Figure 7

A
(400 (

C

B

D

A

Dounce Homogenization

B

Pulse Sonication

C

Mechanical Homogenization

D

Mechanical Homogenization Pulse Sonication

D

Supplemental Figure 3

G

H

Description of Column Headers

ld Potein1 Protein1 XL Type AbsPos1 bsPos2 deltaAA Mr Mz z Error [ppm] d-score

Assigned peptides and cross-linking sites within the peptide sequences. The longer peptide is designated as (a)lpha, the shorter as (b)eta. Multiple positions are given in case of ambiguous assignments. SwissProt/UniProt accession number and identifier of the protein 1 (containing peptide desginated as alpha).
SwissProt/UniProt accession number and identifier of the protein 2 (containing peptide desginated as beta)
Type of cross-linked peptide
Position in the protein sequence of protein 1, multiple positions are given in case of ambiguous assignments.
Position in the protein sequence of protein 2 , multiple positions are given in case of ambiguous assignments. Delta between the absolute positions of the cross-linked residues
Molecular mass calculated from experimental m / z and z (neutral mass).
Experimentally observed mass-to-charge ratio of the precursor ion in Da.
Experimentally observed precursor charge.
Deviation between experimental and theoretical mass in ppm.
Identification score as assigned by xQuest.

Mi XL-MS Data												
Id	Protein1	Protein2	Type	XLType	AbsPos1	AbsPos2	deltaAA	Mr	Mz	z	Error_rel[ppm]	Id-Score
EPKKVAVVR-LDFKDR-a4-b4	TAU_HUMAN P10636-8	TAU_HUMAN P10636-8	xlink	intra-protein x	225	347	122	1955.113	652.712	3	-3.8	12.57
TPSLPTPPTREPKK-SEKLDFKDR-a13-b7	TAU_HUMAN P10636-8	TAU_HUMAN P10636-8	xlink	intra-protein x	224	347	123	2822.511	941.845	3	-2.4	11.97
VTSKCGSLGNIHHKPGGGQVEVKSEK-KVAVVR-a14-b1	TAU_HUMAN P10636-8	TAU_HUMAN P10636-8	xlink	intra-protein x	331	225	106	3540.91	886.235	4	-2.7	11.61
SEKLDFKDR-VQIINKK-a3-b6	TAU_HUMAN P10636-8	TAU_HUMAN P10636-8	xlink	intra-protein $\times 1$	343	280	63	2116.186	706.403	3	-1.7	11.27
AKGADGKTK-KIETHK-a7-b1	TAU_HUMAN P10636-8	TAU_HUMAN P10636-8	xlink	intra-protein x	148	370	222	1766.99	590.004	3	0.5	11.23
VAVVRTPPKSPSSAK-LTFRENAKAK-a9-b8	TAU_HUMAN P10636-8	TAU_HUMAN P10636-8	xlink	intra-protein x	234	383	149	2837.603	710.409	4	-3.4	10.92
TPPKSPSSAKSR-TKIATPR-a10-b2	TAU_HUMAN P10636-8	TAU_HUMAN P10636-8	xlink	intra-protein x	240	150	90	2165.223	722.749	3	2.9	10.39
SKIGSTENLK-EPKKVAVVR-a2-b4	TAU_HUMAN P10636-8	TAU_HUMAN P10636-8	xlink	intra-protein x	259	225	34	2238.284	747.103	3	-4.6	10.26

Ms XL-MS Data

Id
IGSTENLKHQPGGGKVQIINK-GADGKTKIATPR-a8-b7 AKTDHGAEIVYKSPVVSGDTSPR-KVAVVRTPPK-a12-b1 EPKKVAVVR-LDFKDR-a3-b4 AKTDHGAEIVYKSPVVSGDTSPR-KVAVVRTPPK-a2-b1 EPKKVAVVR-LDFKDR-a4-b4 TPPKSPSSAKSR-KIETHKLTFR-a10-b6
KLDLSNVQSK-TKIATPR-a1-b2
$\begin{array}{ll}\text { in2 } & \text { Type } \\ \text { P10636-8 } & \text { xlink } \\ \text { P10636-8 } & \text { xlink } \\ \text { P10636-8 } & \text { xlink } \\ \text { P10636-8 } & \text { xlink } \\ \text { P10636-8 } & \text { xlink } \\ \text { P10636-8 } & \text { xlink } \\ \text { P10636-8 } & \text { xlink }\end{array}$

AbsPos1 $\begin{array}{ll} & \\ \text { ra-protein } \times \quad 267\end{array}$ | ntra-protein $\times \quad 397$ |
| :--- | :--- | ntra-protein $\lambda 395$ ntra-protein > 224 ntra-protein » 385 ntra-protein > 225 ntra-protein » 240 ntra-protein > 281

AbsPos2
150
225
347
225
347
375
150

Error_rellpp
-0.4
-0.4
3.8
-4.9
3.8
-4.9
-0.3
3.3
d-Score
18.94
14.62
13.25
12.98
12.25
10.79
10.38

Mh XL-MS Data

VQSKIGSLDNITHVPGGGNK-SEKLDFKDR-a4-b7 VQSKIGSLDNITHVPGGGNK-SEKLDFKDR-a4-b3 IGSLDNITHVPGGGNKK-IETHKLTFR-a16
IGSTENLKHOPGGGK-VOUNKK-a8-b6 OKTDHGAEIVYK IETHKITRR-a8 KTDHGALUV-GGKLR-a2-b SDGGEIVKSPVVSGDTSPR GAEIVYK-a16-b2 VOSKIGSIDNITHVPGGGNK-IDAKAR-a4-b4 SKDGTGSDDKK-TKIATPR-a2-b2 AKGADGK-TKIATPR-a2-b2 DLSNVQSKAGSK-VQIINKK-a9-b AKGADGK-TKIATPR-a2-b2
AKTPPAPK-TKIATPR-24
kLDLSNVQSK-AGSKDNIK-a1-b4
GSLDNITHVPGGGNKK-IETHKLTFR-a16-b5 QSKIGSLDNITHVPGGGNKK-LDFKDR-a4-b GAAPPGQKGQANATR-GADGKTK-a8-b5 SKDGTGSDDKK-GADGKTK-a10-bs KDGTGSDDKK-TKIATPR-a10-b2 IGSTENLKHQPGGGK-KLDLSNVQSK-a8-b1 HOPGGGKVQIINK-KLDLSNVQSK-a7-b1 ETHKLTFR-SEKLDFKDR-a5-b3 AKTDHGAEIVYK-KIETHKLTFR-22-b6 AKTDHGAEIVYK-SEKLDFKDR-a2-
AGSKDNIK-VQIINKK-a4-b6
IPAKTPPAPK-TKIATPR-a4-b2
VQSKIGSLDNITHVPGGGNK-KIETHK-a4-
VQSKIGSLDNITHVPGGGNK-KIETHK-a4-b1 SKDGTGSDDKk-AKGADGK-a10-b2 AKGADGK-xVSKSK-a2-b4
TPPKSPSSAK-KVAVVR-a4-b HQPGGGKVQIINK-SKIGSTENLK-a7-b2 DGTGSDDKK-MVSKSK-a8-b4
HQPGGGKVQIINK-SKIGSTENLK-a7-b2 SKDGTGSDDKK-AKGADGK-a2-b2
LDLSNVQSK-SKIGSTENLK-a1-b
VQSKIGSLDNITHVPGGGNK-KIETHK-a4-b1
AKTDHGAEIVYK-LDFKDR-a2-b4
STPKSSPSSAKSR-KVAVVR-a10-b1
GSLDNITHVPGGGNKK-LDFKDR-a16-b4 KIATPR-XVSKSK-a2-b4
IGSLDNITHVPGGGNKK-SEKLDFKDR-a16-b3
HQPGGGKVQIINK-KLDLSNVQSK-a7-b1
SAAPPGQKGQANATR-IPAKTPPAPK-a8-b4
TPPKSPSSAKSR-KVAVVR-a10-b1
KDGTGSDDKK-IPAKTPPAPK-a10-b4
ESPLOTPTEDGSEEPGSETSDAKSTPTAEDVTAPLVDEGAPGK gicsodk-Givgkik-az-bs
GTEM
SSTENLKHQPGGGK-VQIINKK-a8-b6
TPPKSPSSAK-KVAVVR-a4-b1
SGIGGTGSDDKK-GADGKTK-a10-b5
GAAPPGQKGQANATR-SKDGTGSDDKK-a8-b10
GAAPPGQKGQANATR-TKIATPR-a8-b2
DGTGSDDKKAK-XVSKSK-a8-b4

Protein1
TAU_HUMAN P10636-8 TAU_HUMAN P10636-8 TAU_HUMAN P10636-8 AU_HUMAN P10636-8 TAU HUMAN P10636-8 AU HUMAN P10636-8 AU HUMAN P10636-8 AU HUMAN P10636-8 TAU HUMAN P10636-8 AU HUMAN P10636-8 TAU_HUMAN P10636-8 AU_HUMAN P10636-8 TAU_HUMAN P10636-8 TAU_HUMAN P10636-8 AU_HUMAN P10636-8 TAU_HUMAN P10636-8 TAU_HUMAN P10636-8 TAU_HUMAN P10636-8 AU_HUMAN P10636-8 AU_HUMAN P10636-8 TAU_HUMAN P10636-8 TAU_HUMAN P10636-8 TAU HUMAN P10636-8 AU-HUMAN P10636-8 AU HUMAN P10636-8 -HUMAN P10636-8 AU HUMAN P10636-8 AU HUMAN P10636 AU_HUMAN P10636-8 AU HUMAN P10636-8 TAU_HUMAN P10636-8 AU_HUMAN P10636-8 TAU_HUMAN P10636-8 TAU_HUMAN P10636-8 TAU_HUMAN P10636-8
TAU HUMAN P10636-8 TAU_HUMAN P10636-8 TAU_HUMAN P10636-8 AU_HUMAN P10636-8 AU_HUMAN P10636-8 TAU_HUMAN P10636-8
TAU HUMAN P10636-8 TAU HUMAN P10636-8 TAU HUMAN P10636-8 TAU_HUMAN P10636-8 TAU_HUMAN P10636-8 TAU_HUMAN P10636-8 TAU_HUMAN P10636-8

Protein2
TAU_HUMAN P10636-8 TAU_HUMAN P10636-8 TAU_HUMAN P10636-8 TAU_HUMAN P10636-8 TAU HUMAN P10636-8 TAU HUMAN P10636-8 TAU HUMAN P10636-8 TAU_HUMAN P10636-8 TAU HUMAN P10636-8 TAU_HUMAN P10636-8
TAU_HUMAN P10636-8 TAU_HUMAN P10636-8 TAU HUMAN P10636-8 TAU_HUMAN P10636-8 TAU HUMAN P10636-8 TAU_HUMAN P10636-8 TAU HUMAN P10636-8 TAU HUMAN P10636-8 TAU HUMAN P10636-8 TAU_HUMAN P10636-8 TAU_HUMAN P10636-8

Type
xlink
an
XLType
AbsPos 1

AbsPos | Mr |
| :---: |
| 3294.73 |
| 294 | Mz^{2}

82.692 3294.736 824.692 2987.631 747.916 834.811
654.109 654.109
794.678 3011.535 2950.565 2950.565
2060.082 2060.082
1568.892 603.315
591.121
516.028 $\begin{array}{ll}1568.892 & 393.231 \\ 2325.337 & 582.342\end{array}$ $\begin{array}{ll}1568.337 & 582.342 \\ 1568.893 & 393.231\end{array}$ $\begin{array}{ll}1942.17 & 486.55 \\ 2100.152 & 701.05\end{array}$ $2987.633 \quad 747.91$ $\begin{array}{ll}3078.657 & 616.739 \\ 2236.164 & 560.049\end{array}$ $1949.962 \quad 650.995$ 2060.083
2790.5 $\begin{array}{ll}2643.48 & 598.639 \\ 2418.297 & 48.70\end{array}$ $\begin{array}{ll}2740.297 & 484.667 \\ 2740.501 & 686.336\end{array}$ 2605.351 1811.06 2912.585 2697.344
1919.951 1919.951
1477.786 1477.786
1807.063 1807.063
2588.442 2588.442
1737.851 $\begin{array}{ll}1737.851 & 580.291 \\ 2588.441 & 648.11\end{array}$ $\begin{array}{ll}1737.81 .441 & 648.118 \\ 1919.953 & 480.996\end{array}$ 2344.296 2912.584 2261.178 $2060.085 \quad 6867.70$ 2060.085
2050.197 2636.399 2636.399
1617.919 2980.576 $\begin{array}{ll}2579.43 & 882.166 \\ 2050.89\end{array}$ $\begin{array}{ll}2050.199 & 513.558 \\ 2293.224 & 765.416\end{array}$ 1734.835 $1734.835 \quad 579.28$ $\begin{array}{ll}17247.794 & 812.966 \\ 2501.409 & 62636\end{array}$ $\begin{array}{ll}2501.409 & 626.36 \\ 1807.063 & 452.774\end{array}$ $2044.087 \quad 512.03$ $1949.961 \quad 488.498$ $\begin{array}{ll}2346.287 & 783.104 \\ 1952.981 & 489.253\end{array}$

Error_rel[ppm]
4.8
4.7
4.1
4.7
3.5
3.8
4.9
4.8
3.4
2.1
4.5
3.1
4.5
4.4
4.6
3.5
3.7
3.9
3.7
4.6
3.5
2.5
3.5
4.8
4.9
3.7
4.5
4.4
4
3.7
3.3
5
2.9
4.7
5
4.5
4.2
3.9
4.9
3.6
2.6
4.3
4.7
2.8
4.6
4.3
3.4
4.3
4.8
3.7
5
3.5
3.5
3.5
4.7
4.5
4.3

Mr XL-MS Data
Id
TDHGAEIVYKSPVVSGDTSPR-ENAKAK-a10-b4
IGSLDNITHVPGGGNKK-IETHKLTFR-a16-b5
AKTDHGAEIVYK-IETHKLTFR-a2-b5
LDLSNVQSKAGSK-VQIINKK-a9-b6
IPAKTPPAPK-TK1ATPR-a4-b2
IGSLDNITHVPGGGNKK-AKTDHGAEIVYK-a16-b2
AKGADGK-TKIATPR-a2-b2
IPAKTPPAPK-TKIATPR-a4-b2
AGSLGNIHHKPGGGQVEVK-SEKLDFKDR-a10-b3
AKTDHGAEIVYK-IETHKLTFR-a2-b5
KLDLSNVQSK-SKIGSTENLK-a1-b2
HVPGGGSVQIVYKPVDLSK-kLDLSNVQSK-a13-b1
AKGADGK-TKIATPR-a2-b2
KLDLSNVQSK-AGSKDNIK-a1-b4
AGSLGNIHHKPGGGQVEVK-HVPGGGSVQIVYKPVDLSK-a10-b13
TPPKSPSSAK-kVAVVR-24-b1
GAAPPGQKGQANATR-TKIATPR-88-b2
VQSKIGSLDNITHVPGGGNK-LDFKDR-a4-b4
DNIKHVPGGGSVQIVYKPVDLSK-LDLSNVQSKAGSK-a4-b9
GAAPPGQKGQANATR-TKIATPR-88-b2
TDHGAEIVYKSPVVSGDTSPR-LDFKDR-a10-b4
VQSKIGSLDNITHVPGGGNK-AGSLGNIHHKPGGGQVEVK-a4-b10
HVPGGGSVQIVYKPVDLSK-SKIGSTENLK-a13-b2
TDHGAEIVYKSPVVSGDTSPR-ENAKAK-a10-b4
THKLTF

Protein1	Protein2	Type	XLType	AbsPos1	AbsPos2	deltaA	Mr	Mz	z	Error_rel[ppm]	ld-Score
TAU_HUMAN P10636-8	TAU_HUMAN P10636-8	xlink	intra-protein xI	395	383	12	3011.526	603.313	5	2.1	44.8
TAU_HUMAN P10636-8	TAU_HUMAN P10636-8	xlink	intra-protein xI	369	375	6	2987.63	747.915	4	3.5	44.11
TAU_HUMAN P10636-8	TAU_HUMAN P10636-8	xlink	intra-protein x\|	385	375	10	2612.405	654.109	4	3.5	43.76
TAU_HUMAN P10636-8	TAU_HUMAN P10636-8	xlink	intra-protein xI	290	280	10	2325.333	582.341	4	2.8	42.56
TAU_HUMAN P10636-8	TAU_HUMAN P10636-8	xlink	intra-protein x\|	174	150	24	1942.165	486.549	4	1.8	39.78
TAU_HUMAN P10636-8	TAU_HUMAN P10636-8	xlink	intra-protein x\|	369	385	16	3174.676	794.677	4	2.8	39.35
TAU_HUMAN P10636-8	TAU_HUMAN P10636-8	xlink	intra-protein xI	143	150	7	1568.891	523.971	3	1.3	37.95
TAU_HUMAN P10636-8	TAU_HUMAN P10636-8	xlink	intra-protein x\|	174	150	24	1942.167	486.549	4	2.6	37.35
TAU_HUMAN P10636-8	TAU_HUMAN P10636-8	xlink	intra-protein xl	331	343	12	3158.654	632.739	5	2.3	37.34
TAU_HUMAN P10636-8	TAU_HUMAN P10636-8	xlink	intra-protein x\|	385	375	10	2612.402	654.108	4	2.3	35.62
TAU_HUMAN P10636-8	TAU_HUMAN P10636-8	xlink	intra-protein x\|	281	259	22	2344.293	587.081	4	3.4	34.51
TAU_HUMAN P10636-8	TAU_HUMAN P10636-8	xlink	intra-protein x\|	311	281	30	3247.792	812.956	4	3.2	34.32
TAU_HUMAN P10636-8	TAU_HUMAN P10636-8	xlink	intra-protein x\|	143	150	7	1568.892	523.972	3	2	34.2
TAU_HUMAN P10636-8	TAU_HUMAN P10636-8	xlink	intra-protein xI	281	294	13	2100.149	701.057	3	2.9	33.36
TAU_HUMAN P10636-8	TAU_HUMAN P10636-8	xlink	intra-protein x\|	331	311	20	4001.161	801.24	5	3	32.15
TAU_HUMAN P10636-8	TAU_HUMAN P10636-8	xlink	intra-protein xI	234	225	9	1807.06	452.773	4	1.7	31.88
TAU_HUMAN P10636-8	TAU_HUMAN P10636-8	xlink	intra-protein x\|	163	150	13	2346.28	587.578	4	1.2	31.51
TAU_HUMAN P10636-8	TAU_HUMAN P10636-8	xlink	intra-protein x\|	353	347	6	2950.562	738.648	4	3.8	30.41
TAU_HUMAN P10636-8	TAU_HUMAN P10636-8	xlink	intra-protein x\|	298	290	8	3933.131	787.634	5	2.6	30.29
TAU_HUMAN P10636-8	TAU_HUMAN P10636-8	xlink	intra-protein xI	163	150	13	2346.285	587.579	4	3.6	30.2
TAU_HUMAN P10636-8	TAU_HUMAN P10636-8	xlink	intra-protein x\|	395	347	48	3144.582	787.153	4	2.9	29.63
TAU_HUMAN P10636-8	TAU_HUMAN P10636-8	xlink	intra-protein x\|	353	331	22	4042.146	1011.544	4	2.8	28.7
TAU_HUMAN P10636-8	TAU_HUMAN P10636-8	xlink	intra-protein xI	311	259	52	3192.749	799.195	4	2.9	28.45
TAU_HUMAN P10636-8	TAU_HUMAN P10636-8	xlink	intra-protein x\|	395	383	12	3011.53	603.314	5	3.3	27.63
TAU_HUMAN P10636-8	TAU_HUMAN P10636-8	xlink	intra-protein x\|	369	375	6	2987.627	747.915	4	2.6	26.31

Control XL-MS Data

GAAPPGQKGQANATR-TKIATPR-a8-b2
TPSLPTPPTREPKK-TKIATPR-a13-b2
CGSLGNIHHKPGGGQVEVKSEK-CGSKDNIX-a19-b AKTDHGAEIVYK-MVSKSK-a2-b4
IGSLDNITHVPGGGNKK-SKIGSTENLX-a16-b2

TAU_HUMAN P10636-8 TAU_HUMAN P10636-8 TAU_HUMAN P10636-8 TAU_HUMAN P10636-8 TAU_HUMAN P10636-8 TAU_HUMAN P10636-8 AU_HUMAN P10636-8 TAU_HUMAN P10636-8 TAU HUMAN P10636-8 TAU HUMAN P10636-8

Typ
xlink
xlink
xlink
xlink
link xlink
xlink xlink

abPo
163
224
340
385
369
AbsPos
150
150
294
130
259

Mr	Mz
2346.281	783.101
2471.411	618.86
3489.717	873.437
2147.124	716.716
3033.611	1012.212

Error_rel[pp

 1.8d-Score -0.2 2.2 $2147.124 \quad 716.716$ $3033.611 \quad 1012.212$

Control 2 XL-MS Data

SEKLDFk-KVAVVR-a3-b1
LTFRENAKAX-SEKLDFXDR-a8-b
IPAKTPPAPK-TKIATPR-a4-b2
IETHKLTFR-AKGADGX-a5-b2

Protein 1
Protein2
TAU_HUMAN P10636-8 TAU_HUMAN P10636-8

Type
xlink
xlink
xlin
xlink
xlin
$\begin{array}{ll}\text { deltaAA } & \mathrm{Mr} \\ \mathrm{Mz}\end{array}$
$1673.972 \quad 558.999$
2679.409
1942.156
$\begin{array}{ll}3960.039 & 991.018\end{array}$ $2041.086 \quad 681.37$
rror_rel[ppm]
Id-Scor 0.3 0.3
4
-2.7 -2.7 15.16
9.85 9.85
8.99

Control3 XL-MS Data
GAAPPGQKGQANATR-TKIATPR-a8-b2 SPSSAKSRLQTAPVPMPDLK-KAKGADGK-a6-b3 DGTGSDDKKAK-KVAVVR-a9-b1 CGSKDNIK-SPSSAKSR-a4-b6 TPPAPKTPPSSGEPPX-HQPGGGKVQIINK-a6-b7 SKDGTGSDDKK-SEKLDFKDR-a10-b3 SKDGTGSDDKK-SEKLDFKDR-a2-b3

Protein1
TAU_HUMAN P10636-8 TAU_HUMAN P10636-8 TAU_HUMAN P10636-8 TAU HUMAN P10636-8 TAU_HUMAN P10636-8 TAU_HUMAN P10636-8 TAU_HUMAN P10636-8 TAU HUMAN P10636-8

Protein2
TAU_HUMAN P10636-8 TAU_HUMAN P10636-8 TAU_HUMAN P10636-8 TAU_HUMAN P10636-8 TAU_HUMAN P10636-8 AU_HUMAN P10636-8 TAU HUMAN P10636-8

Type
xlink
xlink
xlink
xlink
xlink
xlink
XLType Abs intra-protein 1 $\begin{array}{ll}\text { intra-protein } & 141 \\ & 294\end{array}$ $\begin{array}{ll}\text { intra-protein } & 294 \\ & 180\end{array}$ $\begin{array}{ll}\text { intra-protein } & 180 \\ \text { intra-protein }\end{array}$ intra-protein 140 intra-protein 132

13

Mr	Mz
2346.279	783.101
3020.641	605.136
1929.056	644.026
1876.928	626.651
3213.702	1072.242
2411.182	603.803
2411.184	603.804

Error_rel[ppm] 0.8 0.8 2.7 1.3
-1.7 -1.7
-4 -4 0.1
1 11.75
11.49
9.08
-Score
3.51
1.51

GAAPPGQKGQANATR-IPAKTPPAPK-a8-b4 LTFRENAKAK-EPXKVAVVR-a8-b4
CGSKDNIK-ENAKAX-a4-b4
AKGADGK-SEKLDFK-a2-b3
GAAPPGQKGQANATR-SPSSAKSR-a8-b6 AKGADGKTK-KIETHX-a7-b1
DGTGSDDKX-KIETHX-a8-b1 SKIGSTENLX-TKIATPR-a2-b2 GADGKTKIATPR-SEKLDFKDR-a5-b3 LQTAPVPMPDLKNVKSK-SKDGTGSDDKX-a15-b2 IETHKLTFR-AKGADGX-a5-b2

Protein 1
TAU_HUMAN P10636-8 TAU_HUMAN P10636-8

Protein 2
AU HUMAN P10636-8 TAU_HUMAN P106366-8 TAU HUMAN P10636-8 TAU_HUMAN P10636-8
$\begin{array}{lcc}\text { Type } & \text { XLType } & \text { AbsPo } \\ \text { xlink } & \text { ntra-protein > } & 163 \\ \text { xlink } & \text { ntra-protein > } & 383 \\ \text { xlink } & \text { ntra-protein > } & 294 \\ \text { xlink } & \text { ntra-protein > } & 143 \\ \text { xlink } & \text { ntra-protein > } & 163 \\ \text { xlink } & \text { ntra-protein > } & 148 \\ \text { xlink } & \text { ntra-protein > } & 140 \\ \text { xlink } & \text { ntra-protein > } & 259 \\ \text { xlink } & \text { ntra-protein } & 148 \\ \text { xlink } & \text { ntra-protein } & 257 \\ \text { xlink } & \text { ntra-protein > } & 375\end{array}$
deltaAA
11
158
89
200
77
222
230
109
195
125
232

Mr	Mz
2579.42	645.863
2453.415	614.362
1831.908	458.985
1648.871	550.632
2379.218	595.812
1881.033	628.019
2041.987	681.67
2113.166	705.396
2488.329	623.09
3253.7	1085.574
2041.088	681.37

9.07
8.48
8.48
8.28
8.02
8.28
8.02
8.01
7.26
8.01
7.26
7.14

AD2 XL-MS Data

SEKLDFK-KVAVVR-a3-b1
KLDLSNVQSK-SPSSAKSR-a1-b6
IETHKLTFR-AKGADGX-a5-b2
NVKSKIGSTENLX-SPSSAKSR-a5-b6
IGSLDNITHVPGGGNKX-TPPSSGEPPKSGDR-a16-b10
IGSTENLKHQPGGGKVQIINX-LTFRENAKAX-a15-b8
GADGKTKIATPR-VQIINKK-a7-b6
SKDGTGSDDKX-LDFKDRVQSX-a10-b4
SRLQTAPVPMPDLKNVK-SKDGTGSDDKX-a14-b10
SRLQTAPVPMPDLKNVX-SKDGTGSDDKK-a14-b2

Protein1 Protein2

 TAU_HUMAN P10636-8 TAU_HUMAN P10636-8 AU_HUMAN P10636-8 TAU_HUMAN P10636-8 AU_HUMAN P10636-8 TAU_HUMAN P10636-8 TAU_HUMAN P10636-8 TAU_HUMAN P10636-8 AU_HUMAN P10636-8 TAU_HUMAN P10636-8 TAU HUMAN P10636-8 TAU HUMAN P10636-8Type \quad XLType AbsPos1
xlink

Mr	Mz
1673.972	558.999
2087.127	696.717
2041.088	681.371
2487.328	622.84
3368.695	843.182
3760.031	941.015
2193.278	732.1
2737.345	913.456
3281.68	821.428
3281.677	821.427

$2087.127 \quad 696.717$ $2041.088-681.371$ 2487.328 622.84 $3760.031 \quad 941.015$ $2193.278 \quad 732.1$ $\begin{array}{ll}2737.345 & 913.456 \\ 3281.68 & 821.428\end{array}$ $3281.677 \quad 821.427$

Wink ntra-protein 》 xlink ntra-protein > xlink ntra-protein >xlink
xlink
xlink
xlink
xlinkxlink
xlink

tra-protein >
ntra-protein > $\begin{array}{llll}\text { ntra-protein > } & 140 & 347 & 207 \\ \text { ntra-protein > } & 254 & 140 & 114 \\ \text { ntra-protein > } & 254 & 132 & 122\end{array}$
3.67 12.28

AD3 XL-MS Data
GQANATRIPAKTPPAPK-KAKGADGK-a11-b3 SEKLDFK-KVAVVR-a3-b1
AKTDHGAEIVYK-KIETHK-a2-b
TKIATPRGAAPPGQX-SKDGTGSDDKK-a2-b2
EPXKVAVVR-GADGKTX-a4-b5
TPPKSPSSAX-KAKGADGX-a4-b1
SPSSAKSRLQTAPVPMPDLK-KAKGADGK-a6-b3
DRVQSKIGSLDNITHVPGGGNK-SKIGSTENLKHQPGGGK-a6-b10 KLDLSNVQSKCGSX-AKGADGKTK-a10-b7
KDQGGYTMHQDQEGDTDAGLK-VQSKIGSLDNITHVPGGGNK-a1-b4 TPPKSPSSAXSR-CGSKDNIK-a4-b4 KLDLSNVQSKCGSK-TKIATPR-a1-b2 SKIGSTENLK-SEKLDFKDR-a2-b7

Protein1 Protein2 TAU HUMAN P10636-8 TAU Protein2 TAU HUMAN P10636-8 TAU HUMAN P10636-8 TAU HUMAN P10636-8 TAU-HMAN P10636-8 TAU HUMAN P10636-8 TAU HMMAN P10636-8 TAU HUMAN P10636-8 TAU HUMAN P10663-8 TAU HUMAN P10636-8 TAU HUMAN P10636-8 TAU HUMAN P10636-8 TAU HUMAN P10636-8 TAU_HUMAN P10636-8 TAU_HUMAN P10636-8 $\begin{array}{ll}\text { TAU_HUMAN P10636-8 } & \text { TAU_HUMAN P10636-8 } \\ \text { TAU HUMAN P10636-8 } & \text { TAUHUMAN P10636-8 }\end{array}$ $\begin{array}{ll}\text { TAU_HUMAN P10636-8 } & \text { TAU_HUMAN P10636-8 } \\ \text { TAU HUMAN P10636-8 } & \text { TAU HUMAN P10636-8 }\end{array}$ TAU_HUMAN P10636-8 TAU_HUMAN P10636-8 $\begin{array}{ll}\text { TAU_HUMAN P10636-8 } & \text { TAU_HUMAN P10636-8 } \\ \text { TAU HUMAN P10636-8 } & \text { TAU_HUMAN P10636-8 }\end{array}$ TAU_HUMAN P10636-8 TAU_HUMAN P10636-8

Type	XLType	AbsPos1	AbsPos2	deltaAA	Mr	Mz
xlink	ntra-protein >	174	143	31	2628.463	877.162
xlink	ntra-protein >	343	225	118	1673.971	558.998
xlink	ntra-protein >	385	370	15	2223.196	742.073
xlink	ntra-protein >	150	132	18	2880.49	961.171
xlink	ntra-protein >	225	148	77	2066.156	689.727
xlink	ntra-protein >	234	141	93	2138.126	713.717
xlink	ntra-protein >	240	143	97	3020.646	756.169
xlink	ntra-protein >	353	267	86	4166.169	1042.55
xlink	ntra-protein >	290	148	142	2689.407	897.477
xlink	ntra-protein >	24	353	329	4451.124	1113.789
xlink	ntra-protein >	234	294	60	2414.217	805.747
xlink	ntra-protein >	281	150	131	2486.346	899.79
xlink	ntra-protein >	259	347	88	2350.243	784.422

Dounce Homogenization XL-MS Data

GADGKTX-ENAKAX-a5-b4
DGTGSDDKX-KIETHX-a8-b1
SKIGSTENLX-TKIATPR-a2-b2

TAU_HUMAN P10636-8 TAU_HUMAN P10636-8 TAU HUMAN P10636-8

Protein2
TAU_HUMAN P10636-8 TAU_HUMAN P10636-8 TAU HUMAN P10636-8
$\begin{array}{lcr}\text { Type } & \text { XLType } & \text { AbsP } \\ \text { xlink } & \text { intra-protein xI } & 148 \\ \text { xlink } & \text { intra-protein xI } & 140\end{array}$

	intra-protein xl	140

383
370
150
$\begin{array}{lr} & \mathrm{Mr} \\ 1700.872 & \mathrm{Mz}\end{array}$
235
230
109
2041.988
2113.165
681.67
705.396

Error_rel[ppm] 1.5 -2.1 -2.1
-4.6

Mechanical Homogenization XL-MS Data

ld VQSKIGSLDNITHVPGGGNK-SEKLDFKDR-a4-b3
VQSKIGSLDNITHVPGGGNK-SEKLDFKDR
HOPGGGKVOIINK-KLDISNVOSK-a7-b1
HQPGGGKVQIINK-KLDLSNVQSK-a7-b1
VOSKIGSLDNITHVPGGGNK-vQIINKK-a4-b
VQSKIGSLDNITHVPGGGNK-VQIINKK-a4-b6
IGSLDNITHVPGGGNKK-LDFKDR-a16-b4
VTSKCGSLGNIHHKPGGGQVEVK-SEKLDFK-a4-b3
KLDLSNVQSK-SKIGSTENLK-a1-b2
GSTENLKHOPGGGK-KLDLSNVOSK-a8-b1
IGSLDNITHVPGGGNKK-SEKLDFKDR-a16-b3
DNIKHVPGGGSVQIVYKPVDLSK-VQIINKK-a4-b6
LDLSNVQSKCGSK-SKIGSTENLK-a9-b2
VQSKIGSLDNITHVPGGGNK-SKIGSTENLK-a4-b2
LDLSNVQSKCGSK-VQIINKK-a9-b6
DLSK-KLDLSNVQSK-a4-b1
LDLINKGK-LDFKDR-a1-b
HVPGGGSVOIVYKPVDI
GKGSVI
QSKIGSLDNITHVPGGGNK-LDFKDR-a4-b4
TSKCGSLGNIHHKPGGGQVEVK-LDFKDR-a4-b4
-a2-b6
SIKKHVPGGGSVQIVYKPVISNVQSK-a16-b1
NIKHVPGGGSVQIVYKPVDLSK-LDLSNVQSKCGSK-a4-b9俍
 TSKCGSLGNIHHKPGGGQVEVK-VQSKIGSLDNITHVPGGGNK-a4-b4 VPGGGSVQIVYKPVDLSK-KLDLSNVQSK-a13-b1位
NIKHVPGGGSVQIVYKPVDLSK-SKIGSTENLK-a4-b2 NKHVPGGGSVQIVYKPVDLSK-SEKLDFK-a4-b3 VVSKGGGLSVIITVYPGGGNK-LDLSNVQSKCGSK-a4-b VQSKIGSLDNITHVPGGGNK-HVPGGGSVQIVYKPVDLSK-a4-b13 HVPGGGSVQIVYKPVDLSKVTSK-LDFKDR-a19-b4 HQPGGGKVQIINK-SKIGSTENLK-a7-b2 OPGGGGKVOIINK-SEKLDFK-a7-b3
-VPGGGSVQIVYKPVDISKVTSK-SEKLDFK-a19-b3 VOSKIGSLDNITHVPGGGNK-HOPGGGKVQUINK-a4-b GGLGNIHHKPGGGQVEVK-SEKLDFKDR-210-b7
TSKCGSLGNIHHKPGGGQVEVK-HVPGGGSVQIVYKPVDLSK-a4-b13 DNIKHVPGGGSVQIVYKPVDLSK-VTSKCGSLGNIHHKPGGGQVEVK-a4-b4 HVPGGGSVQIVYKPVDLSK-IGSLDNITHVPGGGNKK-a13-b16 HVPGGGSVQIVYKPVDLSKVTSK-KLDLSNVQSK-a19-b1 DNIKHVPGGGSVQIVYKPVDLSK-IGSTENLKHQPGGGK-a4-LDLSNVQSKCGSKDNIK-TKIATPR-a9-b2
HVPGGGSVQIVYKPVDLSK-IGSTENLKHQPGGGK-a13-b8 NIKHVPGGGSVQIVYKPVDLSK-TPPAPKTPPSSGEPPX-a4-b VTSKCGSLGNIHHKPGGGQVEVK-KAKGADGK-a14-b1 IGSTENLKHQPGGGK-LDLSNVQSKCGSK-a8-b9
HVPGGGSVQIVYKPVDLSKVTSK-CGSLGNIHHKPGGGQVEVK-a19-b10 VQIINKKLDLSNVQSK-IGSTENLKHQPGGGK-a6-b8
HVPGGGSVOIVYKPVDLSKVTSK-SKIGSTENLK-a19-b
SKDGTGSDDK-EPKKVAVVR-a2-b4
GSTENLKHOPGGGK-SEKLDFK-a8-b
ETHKLTFR-MVSKSK-a5-b4
PAKTPPAPKTPPSSGEPPX-LDFKDRVQSK-a10-b4
AKGADGKTK-CGSKDNIK-a7-b4

AbsPos1
Abspos
343
281
280
281
347
343
259
281
343
280
259
259
280
281
347
347
343
347
347
280
281
290
259
280
353
281
280
259
343
290
290
311
347
259
343
343
274
347
311

10
7
73
40
22
22
22
22
14
26
18
31
94
10
17
66
67
32
6
6
26
21
88
8
52
51
31
32
30
89
39
45
63
21
42
30
15
69
26
79
16
10
23
58
36
31
140
44
118
190
23
14
13
58
93
76
141
245
167
146

Type
xlink
exin

TAU_HUMAN P10636-8 TAU_HUMAN P10636-8 AU_HUMAN P10636-8 TAU HUMAN P10636-8 TAU_HUMAN P10636-8 TAU_HUMAN P10636-8 TAU_HUMAN P10636-8 TAU_HUMAN P10636-8 TAU_HUMAN P10636-8 TAU_HUMAN P10636-8 TAU HUMAN P10636-8 TAU_HUMAN P10636-8 TAU_HUMAN P10636-8 TAU HUMAN P10636-8 TAU_HUMAN P10636-8 TAU HUMAN P10636-8 TAU HUMAN P10636-8 TAU_HUMAN P10636-8 TAU_HUMAN P10636-8
$\begin{array}{ll} & \text { intra } \\ \text { k } & \text { intra } \\ \text { intra }\end{array}$

nk intra-p

intra-p intra-p

intra-p
intra-p
$\begin{array}{ll}\text { ink } & \text { intra } \\ \text { ink } & \text { intr } \\ \text { intr }\end{array}$
link intr
ink
intr
$\begin{array}{ll}\text { xlink } & \text { intr } \\ \text { xlink } & \text { intr }\end{array}$
$\begin{array}{ll}\text { xlink } & \text { intre } \\ \text { xlink } & \text { int }\end{array}$ TAU_HUMAN P10636-8 TAU HUMAN P10636-8 TAU_HUMAN P10636-8
TAU HUMAN P10636-8 TAU_HUMAN P10636-8
TAU_HUMAN P10636-8 TAU_HUMAN P10636-8
TAU_HUMAN P10636-8 TAU_HUMAN P10636-8
TAU_HUMAN P10636-8 TAU_HUMAN P10636-8
TAU HUMAN P10636-8 TAU_HUMAN P10636-8
TAUMAN P10636-8 TAU_HUMAN P10636-8 TAU_HUMAN P10636-8
TAUMAN P10636-8 TAU_HUMAN P10636-8
TAU_HUMAN P10636-8 TAU_HUMAN P10636-8 TAU_HUMAN P10636-8 TAU_HUMAN P10636-8
TAU_HUMAN P10636-8 TAU_HUMAN P10636-8 TAU_HUMAN P10636-8 TAU_HUMAN P10636-8 TAU_HUMAN P10636-8 TAU_HUMAN P10636-8 TAU_HUMAN P10636-8 TAU_HUMAN P10636-8 TAU_HUMAN P10636-8 TAU_HUMAN P10636-8
TAU_HUMAN P10636-8

TAU_HUMAN P10636-8 TAU_HUMAN P10636-8
TAU_HUMAN P10636-8 TAU_HUMAN P10636-8
TAU HUMAN P10636-8 TAU_HUMAN P10636-8
TAU HUMAN P10636-8 TAU HUMAN P106366-8 TAU HUMAN P106366-8 TAU-HUMAN P10636-8 TAU HUMAN P106366-8 TAU HUMAN P106366-8 AU_HUMAN P10636-8 AU HUMAN P10636-8 AU HUMAN P10636-8 AU_HUMAN P10636-8 TAU_HUMAN P10636-8 TAU HUMAN P10636-8 TAU HUMAN P10636-8 AU HUMAN P10636-8 _ HUMAN P10636-8
$\begin{array}{cccccc} & & & & \\ & \text { AbsPos1 } & \text { AbsPos2 } & \text { deltaAA } & \mathrm{Mr} & \mathrm{Mz} \\ \mathrm{xl} & 353 & 343 & 10 & 3294.726 & 824.689 \\ \mathrm{xl} & 274 & 281 & 7 & 2643.47 & 529.702 \\ \mathrm{kl} & 353 & 280 & 73 & 2999.684 & 1000.902 \\ \mathrm{xl} & 321 & 281 & 40 & 3656.922 & 1219.982\end{array}$
$\begin{array}{cccccc} & & & & \\ & \text { AbsPos1 } & \text { AbsPos2 } & \text { deltaAA } & \mathrm{Mr} & \mathrm{Mz} \\ \mathrm{xl} & 353 & 343 & 10 & 3294.726 & 824.689 \\ \mathrm{xl} & 274 & 281 & 7 & 2643.47 & 529.702 \\ \mathrm{kl} & 353 & 280 & 73 & 2999.684 & 1000.902 \\ \mathrm{xl} & 321 & 281 & 40 & 3656.922 & 1219.982\end{array}$

$$
\begin{array}{r}
329 \\
264 \\
299
\end{array}
$$

$$
\begin{array}{cc}
3294 . / 26 & 824.689 \\
2643.47 & 529.702 \\
2999.684 & 1000.902
\end{array}
$$

$$
\begin{array}{ll}
2043.47 & 029.102 \\
2999.684 & 1000.902 \\
3656.922 & 1219.982
\end{array}
$$

$$
\begin{array}{ll}
3656.922 & 1219.982 \\
2636.398 & 600.107
\end{array}
$$

$$
\begin{array}{ll}
2636.398 & 660.107 \\
3391.757 & 679.359
\end{array}
$$

$$
\begin{array}{ll}
3391.757 & 679.359 \\
2344.288 & 782.437
\end{array}
$$

$$
\begin{array}{ll}
2344.288 & 782.437 \\
2790.485 & 931.169
\end{array}
$$

$$
\begin{array}{ll}
2790.485 & 931.169 \\
2980.565 & 746.149
\end{array}
$$

$$
\begin{array}{ll}
2980.565 & 746.149 \\
3428.937 & 572.497
\end{array}
$$

$$
\begin{array}{ll}
3428.937 & 572.497 \\
2648.372 & 883.799
\end{array}
$$

$$
\begin{array}{ll}
2648.372 & 883.799 \\
3233.727 & 1078.917
\end{array}
$$

$$
\begin{array}{lc}
3233.727 & 1078.917 \\
2414.319 & 604.588
\end{array}
$$

$$
\begin{array}{ll}
2414.319 & 604.588 \\
3718.026 & 620.679
\end{array}
$$

$$
\begin{array}{ll}
3718.026 & 620.679 \\
2061.112 & 688.045
\end{array}
$$

$$
\begin{array}{ll}
2061.112 & 688.045 \\
1772.017 & 444.012
\end{array}
$$

$$
\begin{array}{ll}
1772.017 & 444.012 \\
2982.609 & 746.66
\end{array}
$$

$$
\begin{array}{cc}
2982.609 & 746.66 \\
2950.557 & 738.647
\end{array}
$$

$$
\begin{array}{ll}
2950.557 & 738.647 \\
3318.714 & 664.751
\end{array}
$$

$$
\begin{array}{ll}
3318.714 & 664.751 \\
2055.194 & 514.806
\end{array}
$$

$$
\begin{array}{ll}
2055.194 & 514.806 \\
2974.609 & 595.93
\end{array}
$$

$$
\begin{array}{cc}
2974.609 & 595.93 \\
4022.12 & 1006.538
\end{array}
$$

$$
\begin{array}{ll}
4022.12 & 1006.538 \\
3192.744 & 799.194
\end{array}
$$

$$
\begin{array}{ll}
3192.744 & 799.194 \\
2958.688 & 592.745
\end{array}
$$

$$
\begin{array}{cc}
2958.688 & 592.745 \\
4546.36 & 1137.598
\end{array}
$$

$$
\begin{array}{ll}
4546.36 & 1137.598 \\
3247.787 & 812.954
\end{array}
$$

$$
\begin{array}{ll}
3247.787 & 812.954 \\
2685.514 & 538.111
\end{array}
$$

$$
\begin{array}{cc}
2685.514 & 538.111 \\
3662.989 & 1222.004
\end{array}
$$

$$
\begin{array}{ll}
3662.989 & 1222.004 \\
3452.857 & 864.222
\end{array}
$$

$$
\begin{array}{ll}
3452.857 & 864.222 \\
3592.846 & 1198.623
\end{array}
$$

$$
\begin{array}{ll}
3592.846 & 1198.623 \\
3551.869 & 888.975
\end{array}
$$

$$
\begin{array}{ll}
3551.869 & 888.975 \\
4137.225 & 690.545
\end{array}
$$

$$
\begin{array}{ll}
4137.225 & 690.545 \\
3324.813 & 665.97 \\
\hline
\end{array}
$$

$$
\begin{array}{cc}
3324.813 & 665.97 \\
2588.429 & 648.115
\end{array}
$$

$$
\begin{array}{ll}
2588.429 & 648.115 \\
2378.297 & 793.774
\end{array}
$$

$$
\begin{array}{ll}
2378.297 & 793.774 \\
3397.851 & 680.578
\end{array}
$$

$$
\begin{array}{ll}
3397.851 & 680.578 \\
3532.912 & 884.236 \\
\hline
\end{array}
$$

$$
\begin{array}{ll}
3532.912 & 884.236 \\
3247.644 & 812.919
\end{array}
$$

$$
\begin{array}{ll}
3247.644 & 812.919 \\
4505.405 & 992.089 \\
\end{array}
$$

$$
\begin{array}{ll}
4505.405 & 902.089 \\
4975.638 & 830.281 \\
\hline
\end{array}
$$

$$
\begin{array}{ll}
4975.638 & 830.281 \\
3823.072 & 1275.365
\end{array}
$$

$$
\begin{array}{ll}
3823.072 & 1275.365 \\
3663.029 & 733.614
\end{array}
$$

$$
\begin{array}{ll}
3663.029 & 733.614 \\
4109.194 & 822.847 \\
\hline
\end{array}
$$

$$
\begin{array}{ll}
4109.194 & 822.847 \\
2828.497 & 566.707
\end{array}
$$

$$
\begin{array}{cc}
2828.497 & 566.707 \\
3638.949 & 12133.991
\end{array}
$$

$$
\begin{array}{cc}
3638.949 & 1213.991 \\
4288.26 & 1073.073 \\
\hline
\end{array}
$$

$$
\begin{array}{cc}
4288.26 & 1073.073 \\
3299.727 & 825.939 \\
2001570 & 771.551
\end{array}
$$

$$
\begin{array}{ll}
3299.727 & 825.939 \\
3094.573 & 774.651 \\
\hline
\end{array}
$$

$$
\begin{array}{ll}
3094.573 & 774.651 \\
4505.388 & 751.906 \\
\hline 105 . & 11.7
\end{array}
$$

$$
\begin{array}{cc}
4505.388 & 751.906 \\
3485.904 & 1162.976
\end{array}
$$

$$
\begin{array}{cc}
3485.904 & 1162.976 \\
3607.99 & 903.005 \\
217115 & 721721
\end{array}
$$

$$
\begin{array}{ll}
3607.99 & 903.005 \\
2171.15 & 724.724 \\
\hline 2525.30 & 623
\end{array}
$$

$$
\begin{array}{cc}
2171.15 & 724.724 \\
2525.302 & 632.333 \\
2050557 & 591.118
\end{array}
$$

$$
\begin{array}{cc}
2525.052 & 652.333 \\
2950.552 & 591.118 \\
1960.09 & 654.371
\end{array}
$$

$$
\begin{array}{cc}
1960.09 & 654.371 \\
3482.866 & 871.724 \\
1932.999 & 645.341
\end{array}
$$

Error_rel[ppm]	Id-Score
1.5	44.99
-0.4	41.49
2.3	40.96
-2.3	40.46
2.2	39.99
0.3	39.92
1.3	39.69
-1	39.44
1	39.26
-0.9	38.63
1.2	38.54
0.6	38.53
-0.4	37.82
-1.1	37.54
0.6	37.04
-1.5	36.8
0.8	36.29
1.9	36.04
-0.1	35.76
-0.2	34.96
0.2	33.69
1.3	32.07
1.3	31.17
-0.9	31.16
-2.4	30.73
1.5	30.46
-1.5	29.47
0.2	28.37
0.5	27.78
-1.5	26.51
0.9	26.46
0.6	26.33
1.4	26.12
0.1	25.97
0.6	25.62
0.4	23.85
0.1	20.45
0.8	19.62
4.3	19.37
0.8	18.29
2.2	17.1
1.1	16.89
0.8	16.16
-3.5	15.32
1.8	15.02
-3.4	14.61
-4.3	12.01
0.3	10.99
0.5	10.52
-4.9	10.29
1.9	9.73
3	9.46
-4	9.22
0.1	8.95
4.3	8.94
-3.3	8.37
2.6	8.06

Pulse Sonication XL-MS Data

GSTENLKHQPGGGK-KLDLSNVQSK-a8-b
HQPGGGKVQIINK-SKIGSTENLK-a7-b2
GSTENLKHQPGGGK-VQIINKK-a8-b6 GSLDNITHVPGGGNKK-SEKLDFKDR-a16-b3
ADGKTK-MVSKSX-a5-b4
KIETHXLTFR-TPPKSPSSAX-a1-b
KKTDHGAEIVYK-MVSKSK-a2-b4
SKDGTGSDDK-EPKKVAVVR-a2-b3
AKTDHGAEIVYK-GADGKTXIATPR-a2-b5
KIGSTENLX-TKIATPR-a2-b2
KLDLSNVQSXCGSK-AKGADGXTK-a1-b2

Protein1
TAU_HUMAN P10636-8 TAU_HUMAN P10636-8 TAU_HUMAN P10636-8 TAU_HUMAN P10636-8 TAU HUMAN P10636-8 TAU HUMAN P10636-8 TAU HUMAN P10636-8 TAU HUMAN P10636-8 TAU_HUMAN P10636-8 TAU_HUMAN P10636-8 TAU_HUMAN P10636-8
Protein2
TAU_HUMAN P10636-8
TAUHUMAN P10636-8
TAU_HUMAN P10636-8

Type

XLType intra-protein xI	AbsPos1 intra-protein xI	267
AbsPo	284	259
intra-protein xI	267	280
intra-protein xI	369	343
intra-protein xI	148	130
intra-protein xI	370	234
intra-protein xI	385	130
intra-protein xI	132	224
intra-protein xI	385	148
intra-protein xI	259	150
intra-protein xI	281	143

Mr

2588.429
2501.4 2636.423
 $\begin{array}{rr}2980.565 & 746.149 \\ 1605.846 & 536.29\end{array}$ $1605.846 \quad 536.2$ $2147.123 \quad 716.71$ $2171.151 \quad 724.725$ $2796.48 \quad 933.16$ $2113.167 \quad 705.39$

Error_rel[ppm]	Id-Score
1.3	33.22
0.3	29.67
1.4	28.05
1.1	19.72
4	12.83
-2	7.52
-3.1	6.87
3.5	6.7
1.2	6.05
-3.4	5.95
1	5.93

Mechanical Homogenization and Pulse Sonication XL-MS Data

GSKDNIK-ENAKAX-a4-b4
LDLSNVQSKCGSK-KVAVVR-a10-b1
TPPSSGEPPKSGDR-IPAKTPPAPK-a10-b4
SRLQTAPVPMPDLKNVX-SKDGTGSDDKK-a14-b2
DGTGSDDKX-KIETHX-a8-b1
LDLSNVQSK-TKIATPR-a1-b2
EKLDFX-VQIINKX-a3-b6
SKDGTGSDDK-LDFKDR-a2-b4

Protein1
TAU_HUMAN P10636-8 TAU HUMAN P10636 TAU_HUMAN P10636-8 TAU_HUMAN P10636-8

Type	XLType
xlink	intra-protein xI

AbsPos
294
290
190
254
140
281
343
132

Abspos
383
225
132

Error_rel[ppm]
-0.1
-0.1
-0.2
-0.2
$0.1 \quad 14$.

-2	10.3

$\begin{array}{ll}1.9 & 10.3 \\ & 9.84\end{array}$
$\begin{array}{ll}1.9 & 9.84 \\ 0.3 & 9.57\end{array}$ 1.2

9.01

