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Abstract:  
 

Animals are proposed to learn the latent rules governing their environment in order to 

maximize their chances of survival. However, rules may change without notice, forcing 

animals to keep a memory of which one is currently at work. Rule switching can lead to 

situations in which the same stimulus/response pairing is positively and negatively rewarded 

in the long run, depending on variables that are not accessible to the animal. This fact rises 

questions on how neural systems are capable of reinforcement learning in environments 

where the reinforcement is inconsistent. Here we address this issue by asking about which 

aspects of connectivity, neural excitability and synaptic plasticity are key for a very general, 

stochastic spiking neural network model to solve a task in which rules change without being 

cued, taking the serial reversal task (SRT) as paradigm. Contrary to what could be expected, 

we found strong limitations for biologically plausible networks to solve the SRT. Especially, 

we proved that no network of neurons can learn a SRT if it is a single neural population that 

integrates stimuli information and at the same time is responsible of choosing the 

behavioural response. This limitation is independent of the number of neurons, neuronal 

dynamics or plasticity rules, and arises from the fact that plasticity is locally computed at 

each synapse, and that synaptic changes and neuronal activity are mutually dependent 

processes. We propose and characterize a spiking neural network model that solves the 

SRT, which relies on separating the functions of stimuli integration and response selection. 

The model suggests that experimental efforts to understand neural function should focus on 

the characterization of neural circuits according to their connectivity, neural dynamics, and 

the degree of modulation of synaptic plasticity with reward. 
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Introduction: 
 

Natural environments are complex places in which animals strive to survive, with hidden 

variables and stochastic factors such that the information available at any moment is partial, 

and it must be sampled at several time points and integrated. What is more, the rules 

governing the environment might change with time, leading to conflicting information. For 

example, an animal might learn how and where to seek for food, but if the place for feeding 

cyclically changes, or the means of obtaining food change, the animal has to switch 

strategies along [1]. In this case, no unique strategies exist, but several strategies must be 

learned. More importantly, the value of a response not only depends on the current scenario, 

but in the history of events, for example, the history of recent success of a given strategy. 

Therefore, it is relevant to study tasks in which rules might change over time and thus 

reinforcement of stimulus/response pairings might be inconsistent, i.e. Inconsistent-

Reinforcement tasks (IRTs). Learning an IRT through a neural network model can be 

problematic: since each stimulus/response pairing is positively and negatively reinforced in 

the long run, learning of one rule may lead to the erasure of information regarding other 

rules, conforming a case of catastrophic forgetting [2]. Thus, it is of special interest to 

understand the neural mechanisms involved during learning of this kind of tasks. 

The goal of this work is to find the essential properties required by biologically plausible 

neural networks to solve a Serial Reversal Task (SRT), which is an IRT where two rules 

alternate over time, demanding the animal to keep track of previous events in order to 

maximize reward. We focus on stochastic spiking neural networks (SSNN), a very general 

kind of neural network model that has been employed to explain how key features of neural 

circuits, like excitatory-inhibitory balance [3] and spike timing-dependent plasticity (STDP) 

[4], can lead to Bayesian inference [5] and reinforcement learning [6]. For a very general 

family of SSNNs, we show analytically that strong limitations to learning the SRT emerges 

when the functions of integration of stimuli information and response selection are 

conducted by the same neural population. We propose a model that is able to learn the SRT 

and discuss the implications of the results regarding the neural mechanisms of decision-

making. 

 

 

Results: 
 

We will study the characteristics of an agent controlled by a biologically plausible neural 

network that learns to solve a SRT, conforming to what we will define as the hypothesis of 

functionality by learning, which states that the set of configurations that gives functionality is 

a small subset of the set of initial configurations. In this way, functionality is acquired by a 

learning mechanisms that always leads the system from any random initial condition to one 

of the functional configurations. The hypothesis implies that the system is not initially 

designed to solve a given task from start. 

A SRT is a discrimination task in which the mapping between the stimulus and the correct 

response is reversed after a given (random) number of trials (Fig. 1a). One out of two 
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possible cue stimuli ( 1s  or 2s ) is presented to the agent. During cue presentation the agent 

has to execute one out of two possible responses ( 1R or 2R ) in order to get a reward. Which 

response is correct depends on the current rule (rule 1 1 1 2 2: ,L s R s R  ; rule 

2 1 2 2 1: ,L s R s R  ). A reward stimulus is shown after cue presentation: 1r  for correct 

responses or 0r  for incorrect ones. One rule withstand until a switch of rules occurs at 

random. Switching occurs with low probability, to ensure that a considerable number of trials 

with the same rule are presented. 

The structure of the task implies that any agent that follows only one stimulus/response 

mapping as strategy will fail to get reward in half of the trials. Moreover, information provided 

by the stimuli is useless unless the agent is capable of retaining information about the current 

rule. Optimal performance can be achieved by adhering to a successful strategy, and to 

switch strategies when the current one is no longer successful. 

We will consider an agent that is controlled by a spiking stochastic neural network 

composed of a sensory module Y  and an integration/decision module K  (Fig. 1b). Neurons 

in module Y  code the sensory stimuli and project to module K , while neurons in module 

K  project to the response neurons and to other K  neurons. One half of the K  population 

projects to response neuron 1R  (the 
1RK  subset of module K ), the other half to response 

neuron 2R  (the 
2RK  subset of module K ). We assume that the firing of any neuron within 

a RK  group is enough to trigger the corresponding behavioural response. Therefore, the K  

module integrates sensory information together with information from within the network, 

and at the same time it defines the response that is going to be executed. 

We assume that the neural network sketched in Fig. 1b fulfils the Markov condition: the 

probability of transitioning to a given state is only defined by the current state. This means 

that information about past events can only by carried on in the current state of the system. 

In the case of a SRT, a same stimulus should elicit either the responses 1R  or 2R , depending 

on the current rule. For example, 1s  should elicit response 1R  only during rule 1L , or 2R  only 

during rule 2L . This implies that 1s  should elicit a response from a subset of the 
1RK  group 

when 1L  rule is current, or from the 
2RK  group when 2L  rule is current. Since there is no 

explicit stimulus acting as a cue of the rule, the differential response of the K  module in 

front of the same stimulus can be achieved only if the K  neurons integrate inputs from the 

Y  module together with inputs from the K  module itself. This means that each stimuli must 

be coded by different groups of K  neurons depending on the current rule. Then, the 

occurrence of an error should act as pivot, leading the system to the set of states associated 

with the other strategy. 

In what follows we will show that the network sketched in Fig. 1b (referred to as simple 

network) is incapable of learning to solve the SRT without contradicting the hypothesis of 

functionality by learning. First we will consider a “reduced” example of the simple network of 

Fig. 1b that nevertheless puts in evidence the nature of the problem (see Methods section 

for a proof regarding both the reduced network and a general version of the simple network). 
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The firing state of module K  will be represented by a vector ( )n t , where each element 

( ) {0,1}in t   represent the firing state of the ith K  neuron. Indistinctly ( )in t  will be used to 

indicate that the ith K  neuron is active. Similarly, we define a vector ( )y t  where each 

element ( ) {0,1}iy t   represents the state of neuron 
iy ; 

iy  will also be used to indicate that 

neuron 
iy  is active. 

We will consider a network with a Y  module composed of 4 neurons such that each 

stimulus is perfectly codified by one specific neuron, i.e. ( ( | ) 1i ip y S   and ( | ) 0i jp y S   

i j  ) where 
iS  is the ith element of 

1 2 1 0( , , , )S s s r r . Module K  is composed of 8 neurons, 

which is the minimum number of neurons required to solve the SRT: one neuron for each 

stimulus (cue or reward) for each rule. Each trial T  has two time points ( t  and 1t  ), one 

for cue presentation and another for reward stimulus presentation. The 
1RK  group comprises 

neurons from 1 to 4; 
2RK  comprises neurons from 5 to 8. At each time point only one Y  

neuron and one K  neuron fires, and the decision is evaluated during cue presentation (Fig. 

1c). Then, each neuron in module K  has a probability of firing that is given by: 

  

  
( ( ) ( ))

( ( 1) 1| ( ), ( ), ( ))

( ( ) ( ))
K

i
i N

j

j

f w t z t
p n t w t y t n t

f w t z t

  


, (1) 

 

where w  stands for all synaptic weights in the network, 
iw  is a vector containing the 

synaptic weights of afferent connections from all Y  and K  neurons onto the ith neuron in 

module K , and z  is vector containing the firing states of all Y  and K  neurons such that 

ijw  is the synaptic weight of the jth neuron with firing state 
jz  that projects to neuron i . The 

function f  can be any function with the sole condition of being strictly increasing with
ijw . 

Equation (1) endorses the K  module with characteristics of a “soft winner-take-all” circuit in 

which a highly excited neuron inhibits the other neurons in the module through a global 

inhibitory circuit [5].  

Synaptic weights ijw  change according to the local pre/post synaptic activity and the reward 

stimuli r . The change 
ijw  of a synaptic weight 

ijw  is given by a function g : 

 

 ( ), ( 1), ( )( 1) ( ( ), ( 1), ( ))
i jij i j z t z t rew tw t g z t z t rew t       , (2) 

  

where ( )iz t  and ( 1)jz t   are the respective pre and post synaptic states, and rew   is a 

function of the delivery of reward, such that 1rew   during the cue and reward presentation 

for trials in which the response was correct, and 0rew   otherwise. The g  function can be 

in principle any function adopting real values  . 
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Now we can write the transition probability of the Markov chain that describes the dynamic 

of the whole system (network, stimuli and rules): 

 

 
( ( 1), ( 1), ( 1), ( 1), ( 1) | ( ), ( ), ( ), ( ))

( ( 1) 1| ( ), ( ), ( )). ( ( 1) | ( 1)). ( ( 1)). ( ( 1))

p s t L t y t n t w t s t y t n t w t

p n t w t y t n t p y t s t p s t p L t

     

     
. (3) 

 

Equation (3) is obtained by applying the chain rule of conditional probabilities, and using 

the fact that L  is independent of stimulus, and that firing state ( 1)n t   is independent of any 

other variable when conditioned to ( )n t , ( )y t  and ( )w t . Note that, since plasticity is 

assumed deterministic, eq. (3) is true if ( 1)w t   is the resulting synaptic weight configuration 

of applying function g  given ( ( ), ( ), ( 1))n t y t n t  . Any transition to a different synaptic weight 

configuration will have zero probability.  

Now we can find the transition probabilities that solve the SRT and study under what 

conditions a learning process is capable of reaching the solution. Figure 2 shows the 

directed graph for the transitions in the state space that solve the SRT. Under rule 
1L , 

neurons 
1n  and 

2n  fire with cue 
1s  and cue 

2s  respectively, while neuron 
3n  codes 

1r  and 

4n  codes 
0r . For rule 

2L , neurons 
5n  and

6n  fire with cue 
1s  and cue 

2s , while neuron 
7n  

codes 
1r  and 

8n  codes 
0r . Neurons 

4n  and 
8n  are responsible for the strategy switching in 

the behaviour of the agent. Each time a transition between rules occurs, an error is 

committed, and the corresponding error neuron fires. Equation 1 tells us that the only way 

to change the transition probabilities is by adjusting the synaptic weights. Since the f  

function is strictly increasing with ijw , weights must be increased to favour a transition, or 

decreased to make a transition less probable. For example, the synaptic weights 

configuration must ensure that only neuron 
3n  fires when 

1 1( , )r n  or 
1 2( , )r n  are the 

presynaptic active neurons (Fig. 3). 

It is evident that the transition matrix that solves the SRT has very specific probabilities, 

in which some transitions must not occur if other transition does. Conversely, this specificity 

is translated to the synaptic weight matrix that is solution for the SRT (Fig. 4a). The network 

will learn if the plasticity function g  leads the system to the solution weight matrix regardless 

of the initial conditions, something that is questionable given that for the SRT any stimulus 

response pairing can be rewarded. To understand this, Fig. 4b shows the solution weight 

matrix for a discrimination task (DT) with two rules like in the SRT, but with the difference 

that rules are cued, so that the Y  module can codify them. In this case, the set of 

stimulus/response pairings that leads to reward and the set that leads to no reward are 

disjoint sets. This fact is what makes possible to find a network that converge to the solution 

matrix for this DT by choosing a suitable g  function (for example a Hebbian plasticity rule) 

that leads to increments in the synaptic weights only when a reward is obtained. But in the 

case of the SRT there are no disjoint sets of stimulus response pairings that separates 

reward from no reward. In fact, since we assume that the system is initiated without any 
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information about how to solve the task, it can be seen that:

1 0

1
( | , ) ( | , ) ,

2
x y x yp r s n p r s n x y   , and 

1 0( | ) ( | ) ( )p n r p n r p n  . In particular: 

 

 
1 0( , | ) ( , | ) ( , )i j i j i jp z z r p z z r p z z  . (4) 

 

This allows us to write the average change 
ijw   for a given

ijw : 

 

 

1 0

1 0

1 0

1 1 , , , ,

1

0 0

, , 0 , ,

, , , , ,

( , | ) ( ) ( , | ) ( )

( , ( ) ( , ( )

1
( ,

) )

1
)( )

22

i j i j

i j

i j i j

i j

i j i j i j

i j

ij i j z z r i j z z r

z z

i j z z r i j z z r

z z

i j z z r z z r z z

z z

w p z z r p r p z z r p r

p z z p r p z z p r

p z z p

 

 

  

  





 











, (5) 

 

where , ( ( 1, 1),( ( 1, 0),( ( 0, 1),( ( 0, 0))
x yz x x y x y x y x yp p z z p z z p z z p z z          and 

111 110 101 100 011 010 001 000( , , , )             . 

 

 

As expected, 
ijw  is independent of the occurrence of reward. The 

ijw  can be 

understood as the inner product between the vector ,x yz zp  representing the probability 

distribution of the pre/post synapsis pair, and  , which contains the net change in 
ijw  for 

each pre/post configuration. The inner product implies a kind of correlation between the two 

vectors, and changing two 
ijw  in specific directions requires specific adjustment of this inner 

product:  

 

 
, ,i j m nij mn z z z zw w p p        (6) 

 

Thus, to get to the solution weight matrix pictured in Fig. 4a, a detailed adjustment 

between the probability distribution of ( )n t  and the plasticity function must hold. Adjusting 

   to ,x yz zp  would mean that the plasticity was designed to solve a specific task for a specific 

initial condition, contradicting the hypothesis of functionality by learning. Adjusting ,x yz zp  to 

  would mean that the initial synaptic weights were specifically chosen to solve the task, 

again contradicting the hypothesis. Therefore, since the requirements for reaching the 
ijw  

that are solution to the SRT necessarily contradicts the hypothesis, we must conclude that 

the neural network sketched in Fig.1b and described by equations 1,2 and 3 cannot learn to 

solve a SRT. 
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Learning to solve a SRT requires segregation of stimulus history coding from 

decision making 

 

The incapacity of the model depicted in Fig. 1b for solving the SRT stems from the fact 

that the solution weight matrix cannot be reached by any plasticity function g . Conversely, 

this characteristic arises from two facts: 

 

1) Correct stimulus/response pairings change over time, and there are no cues 

that give information about the current rule. Thus, in order to keep information about 

the current rule, the responsivity of the system towards the stimuli must be specially 

conditioned by the previous states of the system. 

 

2) The population that codes information about the current rule is the same 

population that defines the behavioural motor response. 

 

Fact number 1 implies that the task cannot be solved as a DT, since the reward does not 

separate stimulus/response pairs into any two disjoint subsets. Fact number 2 implies that 

coding of stimuli cannot be done freely, because when a neuron codes a stimulus by firing, 

it is also defining a motor response that is expected to lead to reward. Fact number 1 cannot 

be skipped because it originates from the very nature of the task. But fact number 2 can be 

circumvented in a model in which coding and decision functions are performed in separated 

neural populations. Figure 5a depicts such a model (referred to as complex network; see 

Methods for description of the implementation). There, module K  integrates information 

about cues and reward as before, and about the response executed as well, but does not 

defines the motor response. Neurons in the integration module K  project to two decision 

neurons 
1D  and 

2D . Which decision neuron fires univocally defines which response neuron 

(
1R  or 

2R ) will activate, leading to the corresponding motor response. 

Therefore, module K  needs to codify all the information required to solve the task. 

Ideally, it would suffice that neurons in module K  codified the cue presented and the current 

rule. Nevertheless, no cue informs about the current rule, and module K  only sees stimuli. 

Therefore, information about the current rule must be extracted from the history of perceived 

stimuli. For example, the sequence (
1 1 1, ,s R r ) shows that rule 

1L  was currently working, and 

it should continue to do so except a reversal occurs, which is unpredictable but relative rare. 

In this manner, a possible solution is that neurons in module K  codify each stimulus 

differently, depending on the previous stimulus history or contingency. This can be done 

following the model presented in Kappel et al [7]. There, it was shown that spike timing-

dependent plasticity (STDP) in a soft winner-take-all stochastic neural network leads to the 

formation of groups of neurons that code stimuli distinctively, depending on stimuli history. 

In our case, module K  should divide in groups of neurons codifying sequences of 4 stimuli: 

( ( 1), ( 1), ( 1), ( ))s T R T r T s T   , implying 16 possible contingencies. 
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The SRT structure for the following simulations is depicted in Fig. 5b. Each trial starts 

with the presentation of one cue, 25 ms long. At 
decisiont = 15 ms from trial onset, the state of 

neurons in the R  module are actualized based on which neuron is firing in module D . At 

the same time, the response is characterized as correct or incorrect. During the interval [15 

ms,25 ms] the synapsis from module K  to module D  are modified following eq. (24). The 

state of the R  neurons are sustained unaltered between actualizations. The reward 

stimulus, also 25 ms long, is presented immediately after cue offset, being 
1r  or 

0r  depending 

on the correctness of the response. The rule is reversed every 15-20 trials, unless otherwise 

stated. 

Conceptually, learning is achieved in two steps. In the first place, neurons in module K  

need to form subpopulations that respond differently to each cue at time t , given the past 

contingency up to the cue presentation at trial 1T  . This is achieved by plasticity rule 

described by eq. (23), provided that the system has enough memory so that events in trial 

1T   have an impact at trial T . Next, neurons in module D  need to read the firing of module 

K , mapping each contingency coded in module K  to the correct response. This is achieved 

thanks to the learning rule described by eq. (24), which is proved to reduce the distance 

between module D  firing probabilities 
1( | )p d r  and ( )p d , leading in turn to an increase in 

1( )p r  (see Rueckert et al .[8]). 

The model effectively learns to solve a SRT, as can be seen in Fig. 6a. After 10000 trials 

of training, the model is capable of changing strategies in the trial immediately following rule 

reversal (Fig. 6b). The dynamics of synaptic weights along training depends on each kind of 

connection (Fig. 7).  

After learning, neurons in module K  fire in sequences (Fig. 8) which presumably contain 

the information employed by module D  to choose the right response. We studied the firing 

profile of the K  module by computing the probability of firing of each K  neuron during 
decisiont  

(Fig. 9a). It can be seen that each one of the 16 possible contingencies has a firing profile 

that is almost unique. Some contingencies are codified by one single neuron each (for 

example, contingency 15), while other contingencies are codified by a set of neurons that 

fire more evenly (for example, contingency 14). This can be seen more clearly by computing 

a Similarity Index (SI) for firing profiles between all contingency pairs (Fig. 9b). Most pairs 

have a small SI, and many contingencies are coded by unique sets of neurons. Therefore, 

the firing state of the K  module together with the response executed conform a set of states 

that can be separated in two disjoint subsets when conditioned to reward, which allows the 

D  module to map each firing state in module K  to the correct motor response by means of 

plasticity rule described in eq. (12). 

It is interesting to note that only half of the 16 contingencies are possible within blocks of 

trials under rule 
1L , being the other half only possible within the block of trials under rule 

2L

. This implies that learning the contingencies could be subjected to a problem of catastrophic 

forgetting. However, this was seldom the case as can be seen from Fig. 9, at least for the 

protocol of 15-20 trials for each rule. To further explore this issue, we trained networks during 

10000 trials under protocols with blocks of crescent number of trials with the same rule, and 

computed the SI and average performance (Fig. 10a-b). Performance dropt as quickly as 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 18, 2017. ; https://doi.org/10.1101/163725doi: bioRxiv preprint 

https://doi.org/10.1101/163725
http://creativecommons.org/licenses/by/4.0/


9 
 

the SI values went up, as trials per block were increased, reaching a plateau for the longest 

blocks. However, it is worth noting that high performance (69%) is still attainable for blocks 

of 320 trials, showing that the model has a remarkable resilience to catastrophic forgetting 

of information regarding contingencies.  

To better understand the dynamics of learning, we computed how well neurons in module 

K  codified each element of the contingency vector ( ( 1), ( 1), ( 1), ( ))s T R T r T s T    along 

training. Every 1000 trials of training we employed the last actualized synaptic weights in a 

separated simulation of 200 trials without plasticity, and assessed contingency coding by 

training a tree bagger classifier to classify each of the 16 contingency based on the firing of 

all K  neurons during 
decisiont . Then, the classifier was used to classify trials sharing one of 

each of the components of the contingency vector (Fig. 11a). Classification performance 

(CP) before training was around 50% for each separate element, and around 6% for the 

whole contingency, matching the CP values expected by chance. After 1000 trials of training, 

the CP of ( )s T , ( 1)R T   and ( 1)r T   were almost 100%. The response stimulus is the only 

stimulus that lasts 50 ms, and is only changed after 
decisiont , meaning that its coding demands 

the least memory and thus is expected to be the easiest to code, along with ( )s T . Coding 

of reward stimulus ( 1)r T   demands more memory from the system, but nevertheless is 

coded with similar proficiency to that of ( )s T  and ( )R T . On the other hand, the CP of 

( 1)s T   grows following a sigmoid-shaped function that resembles the temporal dynamics 

of the synaptic weights within the K  module. Within the contingency vector, ( 1)s T   is the 

first stimulus to be presented, and presumably the one having the strongest memory 

requirements. Moreover, it is followed by the ( 1)r T   stimulus, which could act as an 

interferent. The coding dynamics of ( 1)s T   is almost identical to the coding dynamics of 

the entire contingency vector, and also grows similar to the growth in behavioural 

performance (Fig. 6a), suggesting that coding ( 1)s T   is the bottleneck for contingency 

coding, and presumably for behavioural learning. 

Results in Fig. 11a show that module K  has enough memory to retain information for at 

least 50 ms. To further explore the memory capacity of the system, we tested the model that 

learned the SRT by simulating 2000 trials without plasticity. Trials were sorted according to 

their membership to each contingency and a Naive Bayes classifier was trained to classify 

trials according to their membership to a given contingency, based on the activity of the K  

neuron population at time points ranging from the start of ( )s T  to the end of ( 5)s T   

presentation (300 ms of consecutive activity). The CP was assessed for each contingency 

separately, and for the set of 16 contingencies (global performance), (Fig. 11b). Global 

performance starts around 50% at 0t   ms, which means that the ( 1)s T  , ( 1)R T   and 

( 1)r T   components were already codified at trial initiation; uncertainty remained regarding 

( )s T , which is expected since this stimulus had not been presented at 0t   ms. Global 

performance picked rapidly, reaching its maximum of 97% at t =15 ms. At this time, the 
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response is actualized and thus can differ from the response in the contingency being 

analysed, explaining that the maximum global performance is found at 
decisiont . 

For good performance, information about the previous trial must be retained until 
decisiont . 

We can see that the memory of the system far exceeds this minimum requirement, with a 

CP of 22% at t =300 ms. Notably, CP values per contingency are clustered in two well 

defined groups that differ in how quick classification performance drops. The group of 

contingencies for which the system has shorter memory (CP drops fast) is composed of 

contingencies where 
0( 1)r T r   (red curves), while memory is longer for rewarded 

contingencies. It is important to note that 
0r  is less and less presented as learning 

progresses, leading to an underrepresentation of contingencies containing
0( 1)r T r  . This 

suggests that the number of times a given contingency was presented during training 

defines for how long the system retains information about that contingency. To test this 

hypothesis, we performed a new training in which both 
1r  and 

0r  have equal chances of 

been presented regardless of the chosen motor response. In this case, the CP of all 

contingencies followed a similar temporal course, as expected (Fig. 11c). 

 

 

Discussion: 

 

In this work we have studied under what conditions a biologically plausible neural network 

is capable of solving a serial reversal task. The distinctive feature of this paradigm is that 

each stimulus/response pairing is eventually reinforced, since correct responses depend on 

the current rule. Thus, the sole information about the perceived stimulus and executed 

response collected at any single point in time is not sufficient to solve the task. This problem 

is reminiscent of the problem of catastrophic forgetting, also called the stability/plasticity 

dilemma, which is usually stated as the difficulty that many neural networks models have in 

acquiring new information without erasing old information [2,9]. Catastrophic forgetting 

studies usually focus on paradigms where a set of stimulus response pairings must be 

learned sequentially. Thus, the difficulty of the task strives in the distributed representations 

of stimuli in the neural network, where the same set of synaptic weights are modified each 

time a new pairing is presented. It has been shown that forgetting can be alleviated in models 

that incorporates different levels of plasticity, i.e. mataplasticity [10,11]. Moreover, previously 

acquired information can be preserved in the correlated firings of the neural population [12]. 

Thus, it might be reasonable to think that similar mechanisms could be at work in a related 

behavioural paradigm like the SRT. However, the results presented in this work show that 

no plasticity rule or neural activation function is sufficient to guarantee good performance in 

the SRT, without contradicting the hypothesis of functionality by learning. In particular, we 

showed that the SRT cannot be learned by any network in which the same neural population 

integrates stimuli information, and at the same time defines the motor response through non-

plastic connections.  

It is assumed that learning occurs through neural mechanisms that drive the network to 

a configuration that solves the task. A prerequisite for learning is that the probability of 
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sequences of stimuli and responses must be different when conditioned to reward than when 

conditioned to no reward; the non-fulfilment of this prerequisite means that reward delivery 

is not dependent on behaviour and there is nothing to be learned. Then, the network must 

achieve two properties: to differentially code in its states the sets of rewarded and non-

rewarded sequences of stimulus/response pairings, and to map network states to the correct 

motor response. It is important to note that this last property (mapping) is only attainable 

after the first property (coding) is achieved. In the simple network, once coding is achieved 

the mapping is completely defined, since motor responses are pre-defined based on the 

activity of the integration/decision module K . But adequate mapping requires appropriate 

coding as a prerequisite, implying that simple networks will achieve mappings that allow high 

performance only by chance, which although not impossible, since we considered stochastic 

networks, is something that can hardly be regarded as learning. Moreover, the probability of 

finding a solution in this way would be very low, since the solution trajectories are only a 

small subset of all possible trajectories. For example, the module K  ruled by equations (18-

24) is capable of coding the 16 ( ( 1), ( 1), ( 1), ( ))s T r T R T s T    sequences. Let’s 

considered 16 K  neurons, half of them leading to 
1R  and the other half leading to 

2R . We 

may assume that each neuron will code one of the 16 possible contingencies at random, 

since initial conditions were randomly chosen. Then, there are 8! x 8! out of 16! possible 

assignments between 
iK  neurons and contingencies 

jC  that lead to 100% of correct 

responses. This mean that, by choosing an initial random condition, this K  module will 

exhibit 100% performance with a probability of 7.8x10-5. 

Building from the restrictions exhibited by the simple network scheme, we proposed a 

neural network model capable of solving the SRT, which relies in assigning the functions of 

contingency coding and response selection to different neural populations (integration 

module K  and decision module D  in Fig. 5a). In this way, all the information required to 

solve the SRT (i.e. the coding of the (cue,response,reward) contingencies) is firstly acquired 

in module K , and then the module D  adapts its response through reinforcement learning 

in order to maximize reward.  

It is interesting to note that, although the separation of functions achieved in the complex 

model allows to untie the problem generated by the reversal paradigm, the coding of the 

contingencies themselves implies a possible problem of catastrophic forgetting, because it 

is the same set of synaptic weights that is required to change to learn contingencies which 

are presented in a sequential schedule. Nevertheless, the soft winner-take-all network 

implemented as module K  showed a remarkable resilience to forgetting. Although 

information of contingencies within a block of trials with the same rule could persist long 

enough into the other block, this is not likely, since the memory of the system declines 

considerably after 6 trials (Fig. 11b). A possible explanation for the resilience to forgetting 

could be found by noticing that the distribution of synaptic weights attained among neurons 

in module K  is sparse,  a fact that could lead to decreasing the chances of interfering 

representations [13].  

The impossibility result shown here has special meaning for brain regions typically related 

to decision making like the prefrontal cortex (PFC). The PFC is key to several high level 

cognitive process such as behavioural plasticity [14], working memory [15–17], rule learning 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 18, 2017. ; https://doi.org/10.1101/163725doi: bioRxiv preprint 

https://doi.org/10.1101/163725
http://creativecommons.org/licenses/by/4.0/


12 
 

[18] and decision making [19]. Its function is often described as of integration of information 

and response selection. For example in Mante et al. [20] a target cue informs in each trial 

which sensory dimension is relevant for obtaining reward, and the behavioural and 

electrophysiological data is explained in terms of a single neural network population that 

integrates both relevant and irrelevant sensory information and choose the right motor 

response, given suitable synaptic weights that should be attained through learning. Other 

commonly employed task like delayed matching-to-sample can also be solved by a single 

neural population model as the one depicted in Fig. 1b. Nevertheless, the PFC was also 

shown to be necessary for the SRT [21]. This suggests that in order to understand the PFC 

role in the SRT, and in IRTs in general, it is important to take into account the subpopulations 

within the PFC, from the level of micro circuits to the interconnections between PFC 

subregions. Specially, it would be of interest to characterize subpopulations of neurons 

according to their afferent and efferent projections and in relation to their firing profile. It 

could be expected that the PFC neurons could be sorted in populations of coding neurons, 

that code complex contexts and stimuli histories, and decision neurons, that integrate 

contingency information from the coding population and projects to motor structures like the 

basal ganglia, or the motor cortices.  

Synaptic plasticity in the model depicted in Fig. 5a fulfils two different functions. In module 

K , plasticity allows the system to classify stimuli contingencies. The modulation of plasticity 

by reward would make no difference there, since all contingencies are equally rewarded, at 

least during the beginning of learning. Evidence of sustained plasticity have been found 

experimentally, in the form of the continuous formation and erasure of synaptic spines in 

cortex, which occurs even in the absence of any obvious reward [22]. On the other hand, 

plasticity between module K  and module D  has the function of allowing the D  module to 

read the firing of K  neurons that carries contingency information, and to map it with the 

correct response. In this case a reward-modulated form of synaptic plasticity is essential, 

and related experimental evidence can be found in the known effects that the 

neuromodulator dopamine (DA) has on synaptic plasticity in brain regions like the cerebral 

cortex [23], hippocampus [24] and striatum [25], and in the fact that DA neurons code reward 

and reward-predicting cues [26,27]. This fundamental difference in plasticity modes in the 

model suggests that experimental approaches to understand neural computation should 

focus on searching for subpopulations based in their synaptic plasticity profile, dissecting 

populations of neurons according to how sensitive their synaptic changes are to 

neuromodulators related to reward. Understanding the relationship between connectivity, 

firing profile, and reward and non-reward modulated plasticity could help to discover the 

building blocks of neural computation. 

In brief, the study of a well-known task as the SRT allowed to gain new insights into the 

computational limits of an important set of biological neural networks that are commonly 

considered as models of learning and decision-making, and to give new theoretical support 

to the experimental exploration of the anatomy and function of neural circuits. Future work 

should focus on the rules of connectivity that allows greater memory for coding more 

complex contingencies, and in the kind of algorithms that can be learned by combining 

different circuit motifs with reward and non-reward modulated plasticity. 
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Methods 

 

Proofs for the impossibility of simple neural networks to learn to solve the SRT 

 

Achieving high performance in the SRT implies that the network responds to stimuli 

according to the transitions depicted in Fig. 2. The behaviour of the network will be inherently 

stochastic, since it is required to respond to stimuli that are themselves stochastic. However, 

given the state of the network at time t , the transition probability for the correct response is 

expected to be close to one, with all other responses having transition probabilities close to 

zero. Without the stochasticity of the stimuli, the network would follow a deterministic limit 

cycle, in which ( ) ( )n t n t m  , being m  the length of the cycle. In this manner, we say that 

the transition probability matrix is a deterministic probability matrix, and that the network 

follows a stochastic limit cycle, where the stochastic component of the behaviour is given by 

external factors that do not depend on the activity of the network. 

With this concepts in mind, we will prove that the reduced neural network cannot learn to 

solve the SRT by showing that, given any excitation function f  and plasticity function g , 

the network either does not converge, or it converges to one of many possible stochastic 

limit cycles, where only a small subset of these limit cycles allow high performance in the 

SRT. 

First, we will study the convergence properties of the reduced neural network, assuming 

that external stimuli are not stochastic. We build on the mathematical framework of decision 

systems as presented in [28]. There, a decision system is defined, which is composed of a 

state space X , a decision space D , and transition probabilities ( ) : ( | )ip x p i x  and 

( , ) : ( | , )iP x A p x A x i  , where x X , i D , and A  is any element of the sigma algebra 

on X . At each time t , a decision i  is taken given ( )x t  and ( )ip x , obtaining ( 1)i t  . Then, 

( 1)x t   is obtained, conditioned to ( 1)i t   and ( )x t  through ( ( ), ( 1))iP x t x t  . 

The evolution of a stochastic spiking network can be represented within this framework 

by the following representation:  

 

{( , )}i jD z z , the set of all possible pairs of firing network states the network can 

assume. Vectors 
iz  is the ith vector of the set of all possible firing state vectors z  

 

{( , , )}X w z rew , the set of all possible combinations of whole system synaptic 

weights configurations ( w ), networks firing states ( z ) and reward function rew . 

 

 
( , , )

( ) (( , ) | ( , , ))
0

m i j

i j m q

i

F w z z q i
p x p z z w z rew

q i

 
  


, 
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1 ,
( , ') ( , , ' | ( , ), ( , , ))

,

0

o q v k

l k v

l

o m q

i

z z z z w is reac
P x x p w z rew z z w z rew

othe

h

r

ab

wise

le  
  


, 

 

where 
iw  is the ith vector of the set of all possible synaptic weight configurations for the 

whole network. By reachable we mean that 
lw  is the whole synaptic configuration that is 

obtained when applying plasticity function g  after transition from 
oz  to 

vz , having rew  the 

value corresponding to that trial given 
vz , s  and L . 

Theorem 1 in [28] shows that a decision system converges with probability 1 to a limit 

cycle if and only if for each state x  there is a decision i  such that: 

 

 ( ) lim ( , ) 0n

i i
n

x Q x X c


   , (7) 

 

where c  is a constant and n

iQ  is defined inductively as 1

'
( , ) ( ', ) ( , ')n n

i i i
x X

Q x A Q x A Q x dx


 

,with 1( , ) ( , ) ( ) ( , )i i i iQ x A Q x A p x P x A  . 

Intuitively, condition (7) is fulfilled only when the probability of transitioning from firing 

state 
iz  to 

jz  infinitely often does not vanish, which happens only if the probability 

converges to 1. 

In the case of a reduced network 

 

 
( )

( , , )

( ( ))
K

i
i j l

N
i

m

m

f w z
F w z z

f w z




, (8) 

 

where l  is the K  neuron that is active in state j . The function f  is any function with the 

condition that is strictly increasing with 
,i jw  . 

It is the fact that synaptic weights change deterministically the reason why ( , ')iP x x  is 

either 1 or 0. This allows us to simplify condition (7) to: 

 

 
, ,

, ,

, ,

( ( ) )
0

( ( ) )
K

n

m q rew i

l z rew N
nn

m q rew j

j

f T w z
c

f T w z




  


, (9) 

 

where l  is the active neuron in the destination state j , z  is the source state, 

1

, , , , , ,( ) ( ) : , { , }; ( , , ), { , }m q rew l m q rew l l k l k lk k kT w T w v v w k m q v w g z z rew k m q       , and 

1

, , , ,( ) ( )n n

m q rew l m q rew lT w T w . The transformation T  takes the vector of synaptic weights of inputs 

to neuron l  and applies a  synaptic change according to plasticity function g  (eq. 2) to the 
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weights corresponding to presynaptic neurons q  and m  (one for a neuron Y , the other for 

a neuron K ) that are active, i.e. 1m lz z  . 

Equation (9) holds only if 
, ,log l z rew  converges, which is an infinite sum of logarithms. In 

turn, the sum converges if the application of T  leads to an increase in the transition 

probability. Since f  is strictly increasing with 
,i jw , eq. (9) holds if 

1,1, 0rew  . In other words, 

the network will converge to a limit cycle if for each pair of active neurons Y  and K  there is 

a transition to a neuron 
ln  such that, if the transition is repeated infinite times, the probability 

of the transition increases, something that occurs if the pre/post activation leads to 

potentiation of the synapse, i.e. Hebbian plasticity. 

As stated before, a neural network that must learn to solve the SRT will not reach a limit 

cycle since it is bonded to follow stimuli that are stochastic. However, the evolution of the 

network can be segmented in transitions that eventually reach probability 1. Namely, for 

states define as ( , , )is n L  and ( , , )jr n L , we can consider transitions conditioned to given s  

and L , i.e. the external stochastic factors which are independent of the network behaviour. 

For example, the transition between a given source state ( , , )is n L  and destination states 

( , , )jr n L  for any neuron 
jn , can be considered a decision system. Then, if condition (9) is 

fulfilled, any of these decision systems will converge to a “limit cycle” in which only one 

destination state ( , , )jr n L  is chosen. The same holds for transitions between source state 

( , , )ir n L  and destination states ( , , ')js n L . It is important to note that a neural network that 

solves the SRT needs to converge to a unique decision even for incorrect trials, i.e. for 

source states 
0( , , )r n L . This means that ( , , ) 0i jg n n rew   for any {1,0}rew .  

Any pair of source and destination states can became the limiting transition, the 

probability of this happening depending on the initial transition probability, which depends 

on the initial synaptic weights. In particular, for networks in which eq. (9) holds, any limiting 

transition is attracting since the transition probability rises with probability equal to itself. The 

SRT is solved with high performance for only a small subset of all the possible limiting 

transitions. Therefore, a simple network which is initialized with random synaptic weights will 

reach a synaptic configuration that solves the SRT with very low probability. In particular, 

the probability of reaching the solution will be high only if the initial transition probabilities 

are close to the solution probabilities. 

 

 

A more general definition for the simple neural network 

 

The reduced neural network can be extended to a more general definition of simple 

network, with arbitrary number of neurons and for which the impossibility result holds. In this 

case, the networks dynamics develops in discrete time steps of 1 ms each. The SRT is 

structured in trials composed of cue stimulus presentation followed by a reward stimulus 

presentation, each one lasting 
stimulust  in ms. The response is observed in the interval 
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[ , ]cue offset response cue offsett t t . The sequence of firing states of module K  during this time 

interval univocally defines the behavioural response R . 

 We will consider a simple neural network composed of 
YN  neurons in module Y  and 

KN  neurons in module K . The firing state of the ith neuron in module Y  will be represented 

by the variable 
iy , the ith element of vector y . The firing state of the ith neuron in module 

K  will represented by the variable 
in , the ith element of vector n . Neurons in module Y  

fire independently of each other, conditioned to the stimulus presented:  

   

 
1 0

( | ( )) ( | ( )) (1 ( | ( )))

y y

i j

i I j I

p y S i p y S i p y S i
 

    , (10) 

 

where 1

yI  is the set of indexes of Y  neurons that are active in vector y , and 0

yI  is the set of 

indexes of Y  neurons that are inactive in vector y . 

The postsynaptic potential 
,i jPP elicited by the train of spikes of neuron j  onto neuron i  

is defined as the product of the post synaptic potential time course 
jx  and the corresponding 

synaptic weight: 

 

 
, ,( ) ( ) ( )i j j i jPP t x t w t . (11) 

 

The variable jx , the postsynaptic potential time course associated with the spike train of 

neuron j , is defined as:   

 

 ( ) ( )j

t

x t t t


  , (12) 

 

where  is a kernel function, and t  runs over all the firing times up to time t  at which the jth 

neuron of the module fired. 

The excitability of neuron i  in module K  is defined as: 

 

 
,( ) ( )i i j

j

u t f PP . (13) 

 

Conversely, its probability of firing is: 

 

 ( ( ) | ( 1)) ( ( ))i i ip n t PP t F u t  , (14) 

 

where 
, ,( ( )) ( )i j i jsign f PP sign PP , 

,

lim ( )
i j max

ij
w w

f w u


  and 

,
( )

i j maxw w ilim f w j u

  . The 

function F  is such that ( ) 1
u u

lim F u
 , ( ) 0

u u
lim F u

 , ( ) 1F u   for u u  and ( ) 0F u   
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for u u . In this way, neuron i  will fire with probability 1 with the sole firing of a neuron j , 

provided that 
ijw  is maximal, and will remain silent with probability 1 if 

ijw  is inhibitory 

(negative) and maximal in absolute value. 

Any number of neurons may fire at the same time, and all neurons are conditionally 

independent of each other given PP . Thus, the probability of an activation state ( )n t  of the 

whole module K  is given by:  

 

 
1 0

( ) ( )

( ( ) | ( )) ( ( ) | ( )). (1 ( ( ) | ( )))

n t n t

i i j j

i I j I

p n t PP t p n t PP t p n t PP t
 

   , (15) 

 

where 1

( )n tI  and 0

( )n tI  are sets of indexes of neurons that are respectively active and inactive 

in ( )n t . 

Neurons are plastic all the time. Synaptic weight 
,i jw  changes according to the function 

g , defined as: 

 

 
, , ,( ) ( ( ), ( ), ( ), ( ))i j i i j i jw t g z t PP t w t rew t  . (16) 

 

The 
,i jw  values depend on 

,i jw  in such a way that 
,, , ,( ) | |

i i j

n

n z PP rew i j maxlim T w w  . This 

assures that synaptic weights remain within reasonable prefixed limits. In this case, the 

variable rew   is defined as:  

  

 ( ) ( )
t

rew t t t


   (17) 

 

with   a kernel function and 't   the onset times of stimulus 
1r . 

For a simple neural network defined according to eq. (10) to (17), the impossibility result 

holds. In particular, since the plasticity rule is deterministic, transitions with probability one 

will be possible if the corresponding value of 
,i jw  is positive. In this case, all the variability 

in the network will stem from the stochastic nature of stimuli presentation and rule switching, 

and from the uncertainty in the coding of stimuli by the sensory module Y . 

 

 

Implementation of the complex network 

 

In the implementation of the complex network sketched in Fig. 5a, module Y  was 

composed of two Y  neuron for coding each cue stimulus, two Y  neurons for each reward 

stimulus, and one neuron Y  for coding each response. Module K  was composed of 

150KN   neurons. All initial synaptic weights were sampled from a normal distribution of 

mean=0 and standard deviation= 1/64. There were no self-connections (
, 0i iw  ). 
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Each neuron i  in module K  has a variable 
iu :  

 

 
, ( ) ,( ) ( ) ( ) ( ) ( ) ( )i i y Y t i K K iu t w t x t w t x t b t   , (18) 

 

where iyw  is a vector containing the synaptic weights for the connection from each neuron 

in the module Y  to the ith neuron in module K , while 
iKw  is an analogous vector for the 

inputs that neuron i  receives from the other neurons in module K . The vector products 

, ( ) ( )i y Yw t x t  and 
, ( ) ( )i K Kw t x t  represent the postsynaptic potentials ( PP ) at time t associated 

with the train of spikes at each afferent synapse from module Y  and K , respectively. The 

ith element any vector x  represents the temporal course of the PP , which only depends on 

the spike emission times, and is defined as:  

 

 ( ) ( )
t

x t t t


  , (19) 

 

where t  runs over all the firing times up to time t  at which the ith neuron of the module fired, 

and  is a double exponential kernel function: 

 

 1 2( ) ( )e e

 

 
 

   , (20) 

 

where 
1 =2 ms, 

2 =20 ms, and   stands for the Heaviside function. The parameter 
ib  

controls the excitability of the neuron. This parameter was adjusted at each time t  following 

the homeostatic mechanism described in Habenschuss et al. [29]: 

 

 

1
1 ( ) 1

1
(

)

) 0

(

i

K

i

i

K

n t

b

N

t
N

n t





  
   

    
 



, (21) 

 

which assures that each neuron in the module fires with equal probability, helping to exploit 

all neurons in the module, avoiding silent neurons and thus favouring learning. The 

parameter   was set to 0.1. 

The firing probability of neurons in the Y  module where defined by the stimulus they 

coded, such that 
1 2( | ) ( | ) 0.95

i ix i x ip y x p y x   and 
1 2( | ) ( | ) 0,

i ix j x jp y x p y x i j    , where 

i

q

xy  is the qth Y  neuron coding stimulus 
ix . The response executed was coded by one Y  

neuron each, such that 
1 21 2( | ) ( | ) 1R Rp y R p y R  , and 

1 22 1( | ) ( | ) 0R Rp y R p y R  .  

Within module K , the firing probability of neuron i  is defined as: 
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( )

( )
( ( ) 1)

i

j

u t

i u t

j

e
p n t

e
 


, (22) 

 

with index j  going through all neurons in module K . 

The firing probability of the two neurons in module D  are defined just as for neurons in 

module K , with the sum in eq.(22) encompassing only the two D  neurons. Only one neuron 

in module K  and D  fires at each time t . 

Connections from module Y  to module K , from module K  to module D , and between 

neurons in module K  are plastic. The connections from neurons Y  to neurons K  and 

between neurons in module K  change at each time t according to ijw : 

  

 
1( ) ( ( ) ( ) 1)ijw

ij jw t e t x t 


   , (23) 

 

where index i  refers to the postsynaptic neuron, index j  to the presynaptic neuron, x  is 

the time course of the postsynaptic potential associated with neuron j , and 
1 =5x10-4 is a 

learning constant. This plasticity rule is a kind of STDP rule that leads the model to codify 

each stimulus by a different population of neurons. Note that the rule does not depend on 

reward, and weight changes are applied at each time t . 

Connections from module K  to module D  change over time according to: 

 

  

 
2( ) ( ( ) ( )) ( ) ( )ij i i jw t d t u t x t rew t    , (24) 

 

where 
id  stands for the firing state of decision neuron i , iu  is its excitability variable, jx  the 

PP  time course of afferent neuron j  and 
2 =8x10-4 is a learning constant. The variable

rew  equals 1 only during the decision window and only if the motor response was 

respectively correct. Otherwise, 0rew  . Note that this plasticity rule is conditioned to 

reward while rule in eq. (23) is not.  

 

 

Simulations and analysis 

 

In general, a training session in the SRT consisted of 10000 trials, while a test session 

consisted of 2000 trials. For the results in Fig. 10, one network per point in the plot was 

trained during 10000 trials. Each of these training had a specific (fixed) number of trials per 

block with the same rule, starting from 20 trials per block and increasing the number by 

factors of powers of 2. 

The similarity index employed in Fig. 9b was defined as: 
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1

1
2

i jC Cp p
SI


  , 

 

where 
Cp  is a vector in which the ith element is the estimated probability of firing of neuron 

i  conditioned to contingency C . The SI adopts values from 0 (when firing probabilities under 

both contingencies are equal for each neuron) to 1 (when every neuron fire with probability 

1 under one contingency, and with probability 0 under the other contingency. 

We employed classifiers to obtain a measure of the information conveyed by the neuron 

population of module K  about contingencies. Specifically, for the result shown in Fig. 11a 

we employed the TreeBagger function in Matlab R2009b to train 50 trees, to match the firing 

of the K  module at 
decisiont  with their corresponding contingency. The classification 

performance was obtained as CP=100x(1-err), where err is the out-of-bag misclassification 

probability, obtained through the oobError function. For the result shown in Fig. 11b we 

employed the NaiveBayes function. We trained 100 classifiers onto 80% of each training set 

and tested performance in the 20% remaining. The CP in this case was the average 

performance of the 100 classifiers in the test set, expressed as percentage. The results 

shown hold regardless of which classifier was employed.  

 

Acknowledgments 
We thank Sergio Lew for helpful comments. 

 

 

References 

 

1.  Strang CG, Sherry DF. Serial reversal learning in bumblebees (Bombus impatiens). 

Anim Cogn. 2014;17: 723–734. doi:10.1007/s10071-013-0704-1 

2.  French RM. Catastrophic forgetting in connectionist networks. Trends Cogn Sci. 

1999;3: 128–135. doi:10.1016/S1364-6613(99)01294-2 

3.  Haider B. Neocortical Network Activity In Vivo Is Generated through a Dynamic 

Balance of Excitation and Inhibition. J Neurosci. 2006;26: 4535–4545. 

doi:10.1523/JNEUROSCI.5297-05.2006 

4.  Dan Y. Spike Timing-Dependent Plasticity: From Synapse to Perception. Physiol Rev. 

2006;86: 1033–1048. doi:10.1152/physrev.00030.2005 

5.  Nessler B, Pfeiffer M, Buesing L, Maass W. Bayesian Computation Emerges in 

Generic Cortical Microcircuits through Spike-Timing-Dependent Plasticity. PLoS 

Comput Biol. 2013;9. doi:10.1371/journal.pcbi.1003037 

6.  Kappel D, Legenstein R, Habenschuss S, Hsieh M, Maass W. Reward-based 

stochastic self-configuration of neural circuits. 2017; doi:10.1016/j.aqpro.2013.07.003 

7.  Kappel D, Nessler B, Maass W. STDP Installs in Winner-Take-All Circuits an Online 

Approximation to Hidden Markov Model Learning. PLoS Comput Biol. 2014;10. 

doi:10.1371/journal.pcbi.1003511 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 18, 2017. ; https://doi.org/10.1101/163725doi: bioRxiv preprint 

https://doi.org/10.1101/163725
http://creativecommons.org/licenses/by/4.0/


21 
 

8.  Rueckert E, Kappel D, Tanneberg D, Pecevski D, Peters J. Recurrent Spiking 

Networks Solve Planning Tasks. Sci Rep. Nature Publishing Group; 2016;6: 21142. 

doi:10.1038/srep21142 

9.  Abraham WC, Robins A. Memory retention - The synaptic stability versus plasticity 

dilemma. Trends Neurosci. 2005;28: 73–78. doi:10.1016/j.tins.2004.12.003 

10.  Fusi S, Abbott LF. Limits on the memory storage capacity of bounded synapses. Nat 

Neurosci. 2007;10: 485–493. doi:10.1038/nn1859 

11.  Fusi S, Drew PJ, Abbott LF. Cascade models of synaptically stored memories. 

Neuron. 2005;45: 599–611. doi:10.1016/j.neuron.2005.02.001 

12.  Wei Y, Koulakov AA. Long-Term Memory Stabilized by Noise-Induced Rehearsal. J 

Neurosci. 2014;34: 15804–15815. doi:10.1523/JNEUROSCI.3929-12.2014 

13.  French RM. Semi-distributed Representations and Catastrophic Forgetting in 

Connectionist Networks. Connection. 1992;4: 365–377. doi:10.1016/S1364-

6613(99)01294-2 

14.  Birrell JM, Brown VJ. Medial Frontal Cortex Mediates Perceptual Attentional Set 

Shifting in the Rat. J Neurosci. 2000;20: 4320–4324.  

15.  Funahashi S, Bruce CJ, Goldman-Rakic PS. Mnemonic coding of visual space in the 

monkey â€TM s dorsolateral prefrontal cortex. J Neurophysiol. 1989;61: 331–349.  

16.  Goldman-Rakic PS. Cellular basis of working memory. Neuron. 1995;14: 477–485.  

17.  Liu D, Gu X, Zhu J, Zhang X, Han Z, Yan W, et al. Medial prefrontal activity during 

delay period contributes to learning of a working memory task. Science (80- ). 

2014;346: 458–463. doi:10.1126/science.1256573 

18.  Wallis JD, Anderson KC, Miller EK. Single neurons in prefrontal cortex encode 

abstract rules. Nature. 2001;411: 953–956. doi:10.1038/35082081 

19.  Euston DR, Gruber AJ, McNaughton BL. The role of medial prefrontal cortex in 

memory and decision making. Neuron. Elsevier Inc.; 2012;76: 1057–70. 

doi:10.1016/j.neuron.2012.12.002 

20.  Mante V, Sussillo D, Shenoy K V, Newsome WT. Context-dependent computation by 

recurrent dynamics in prefrontal cortex. Nature. Nature Publishing Group; 2013;503: 

78–84. doi:10.1038/nature12742 

21.  Kosaki Y, Watanabe S. Dissociable roles of the medial prefrontal cortex, the anterior 

cingulate cortex, and the hippocampus in behavioural flexibility revealed by serial 

reversal of three-choice discrimination in rats. Behav Brain Res. Elsevier B.V.; 

2012;227: 81–90. doi:10.1016/j.bbr.2011.10.039 

22.  Trachtenberg JT, Chen BE, Knott GW, Feng G, Sanes JR, Welker E, et al. Long-term 

in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature. 

2002;420: 788–794. doi:10.1038/nature01273 

23.  Hertler B, Schubring- M, Molina-luna K, Pekanovic A, Ro S, Luft AR. Dopamine in 

Motor Cortex Is Necessary for Skill Learning and Synaptic Plasticity. 2009;4. 

doi:10.1371/journal.pone.0007082 

24.  Broussard JI, Yang K, Levine AT, Tsetsenis T, Jenson D, Cao F, et al. Dopamine 

Regulates Aversive Contextual Learning and Associated In Vivo Synaptic Plasticity 

in the Hippocampus. Cell Rep. Elsevier Ltd; 2016;14: 1930–1939. 

doi:10.1016/j.celrep.2016.01.070 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 18, 2017. ; https://doi.org/10.1101/163725doi: bioRxiv preprint 

https://doi.org/10.1101/163725
http://creativecommons.org/licenses/by/4.0/


22 
 

25.  Pawlak V, Kerr JND. Dopamine Receptor Activation Is Required for Corticostriatal 

Spike-Timing-Dependent Plasticity. 2008;28: 2435–2446. 

doi:10.1523/JNEUROSCI.4402-07.2008 

26.  Schultz W, Dayan, Montague. A Neural Substrate of Prediction and Reward. Science 

(80- ). 1997;275: 1593–1599. doi:10.1126/science.275.5306.1593 

27.  Waelti P, Dickinson A, Schultz W. Dopamine responses comply with basic 

assumptions of formal learning theory. Nature. 2001;412: 43–48.  

28.  Myjak J, Rudnicki R. Reinforced walk on graphs and neural networks. Stud Math. 

2008;189: 255–268. doi:10.4064/sm189-3-4 

29.  Habenschuss S, Bill J, Nessler B. Homeostatic plasticity in Bayesian spiking networks 

as Expectation Maximization with posterior constraints. Adv Neural Inf Process Syst. 

2012; 1–9.  

 

  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 18, 2017. ; https://doi.org/10.1101/163725doi: bioRxiv preprint 

https://doi.org/10.1101/163725
http://creativecommons.org/licenses/by/4.0/


23 
 

 

Fig. 1. Serial Reversal protocol and simple network connectivity. (a) Each trial is composed of a cue stimulus 

presentation, during which the behavioural response must be executed, and a reward stimulus presentation. 

Correct responses depend on the stimulus presented and the current rule, which changes with probability switchp

. (b) Diagram representing the general connectivity of the simple network. Neurons in module Y  codifies both 

cue and reward stimuli, and projects to the K  module. K  neurons connect with each other and projects to one 

of the two response neurons. Therefore, K  neurons can be sorted in two halves depending on whether they 

project to 1R  neuron (
1RK neurons) or 2R  neuron (

2RK neurons). Firing of any K  neuron elicits their target R  

neuron to fire. Connections between module K  and module R  are assumed to be hardwired prior to any 

learning, such that firing of K  neurons completely defines the executed response. (c) An example sequence of 

3 trials of a SRT for the model depicted in (b) prior to learning, with a minimal K  module composed of 8 neurons. 
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Fig. 2. Graph representing the transition probabilities of the Markov chain associated with the simple 

network of Fig. 1 solving the SRT. The active Y  neuron and the R  neuron are excluded from the global state 

to simplify the representation, since Y  neurons are entirely defined by the stimulus, and the R  neurons are 

entirely defined by the active K  neuron. The size of the arrow head represents the magnitude of the transition 

probability. Dashed lines depict transitions for which a change of rule occurs. Possible transitions that have no 

arrow are considered to have very low probability. The model has one set of stimuli coding neurons for each 

rule, and one neuron per rule to elicit the transition between rules when an error occurs. 
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Fig. 3. Specificity of module K  responses given the presynaptic neurons firing. The matrixes show the 

probabilities/synaptic weights of postsynaptic K  neurons being active according to the state of the presynaptic 

K  and Y  neurons that where active in the previous time step. Probability magnitudes are consistent with the 

Markov chain of Fig. 2. This representation gives a hint about how the synaptic weights ought to be. High 

transition probabilities can be achieved by setting high synaptic weights between a given presynaptic pair and 

the target postsynaptic neuron, and low synaptic weights for all other postsynaptic neurons. 
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Fig. 4. Synaptic weights between neurons of Y  and K  modules. (a) Synaptic weight configuration that 

allows the model to solve the SRT, consistent with the transition probabilities shown in Fig. 2. It can be seen that 

a specific arrangement of synaptic weights are required. (b) Synaptic weight configuration that allows the model 

to solve a DT. In contrast with the SRT, all high synaptic weights correspond to pre-post synaptic neurons that 

are systematically active when reward is obtained. 
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Fig. 5. Serial Reversal protocol and complex network connectivity. (a) Diagram representing the general 

connectivity of the complex network. Each cue and reward stimulus is coded by the Y  neuron population, like 

in the simple network. Besides, the executed motor response gives sensory feedback, such that each response 

is also coded by module Y . Module Y  connects to all neurons in the integration module K , which in turn 

connect with each other and with each neuron in the decision module D . Each neuron D  is hardwired to one 

neuron R , so that the response executed is entirely defined by the D  module. Synapsis between module Y  

and module K , and within module K  are plastic, subject to plasticity rule defined in eq (23), which is applied 

at all times and is not dependent on reward. Synapsis between module K  and module D  are plastic, subject 

to plasticity rule defined in eq (24), which depends on reward. (b) Serial reversal protocol for training of the 

network depicted in (a). Stimuli are presented for 25 ms, and the motor response to be executed is chosen at 

decisiont =15 ms from cue onset. Plasticity between K  and D  neurons is applied only if there was reward and 

within a window spanning from decisiont  to the end of cue presentation. 
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Fig. 6. The complex neural network learns to solve the SRT. (a) Performance of the model during training, 

computed as percentage of correct responses in non-overlapping windows of 50 trials. Reversals during training 

occurred every 15-20 trials. (b) The trained model was tested without further plasticity in 2000 trials, with 

reversals every 20 trials, and performance was computed for each trial, aligning from the trial where the reversal 

took place. Performance is low immediately after reversal, but improves quickly.  Dashed line stands for average 

performance between trials 4 and 20 from reversal. Performance in the first three trials is significantly lower than 

average (binomial test, P<0.01). 
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Fig. 7. Evolution of synaptic weights of a complex network along training. (a-b) Weight distribution for 

Y K  and R K  connections are bimodal, with large values appearing early during training. (c) Synaptic 

weights between K  neurons follow a strongly skewed distribution, with many small values and a long heavy tail 

of relatively few large values that evolve slowly during training. (d) Connections between module K  and module 

D  follows a symmetric distribution around zero, consistent with the function of module D  of filtering K  inputs. 
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Fig. 8. Emergence of sequential firing in the K  module. Spiking activity (a) and corresponding postsynaptic 

potentials time courses (b) of the complex network during 4 consecutive trials of the SRT after achieving high 

performance. Neurons in the K  module fire in sequences of sustained bursts of activity. Postsynaptic potentials 

make each spike has an influence tens of milliseconds after their emission, allowing to link the activity across 

different stimuli presentations. Note that neurons in the D  module change their activity after stimulus onset and 

short before decisiont . Rule 2L  was current along the four trials. Colour bars are in arbitrary units. 
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Fig. 9. Population coding of stimuli contingencies in module K . (a) The estimated firing probability of each 

neuron in module K  computed at 
decisiont , for each one of the 16 possible contingencies. Each row in the heat 

map represents the population firing profile
Cp  for a given contingency C . It can be seen that firing profiles do 

not show significant overlapping. (b) Similarity index (SI) between pairs of contingencies firing profiles, which is 

inversely proportional to the 1-norm between firing profiles, and normalized to the interval between 0 (no 

similarity) and 1 (total similarity). In general the SI values are low. The highest SI was equal to 0.23, between 

contingencies 8 and 16, which only differ in their ( 1)s T  . The second highest SI value was equal to 0.06, 

computed between contingencies 7 and 8, which only differ in ( )s T . There was a tendency for SI values to be 

high for pairs of contingencies that share the same ( 1)s T   or ( )s T . 
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Fig. 10. Effect of trials per block on model performance. Networks were trained in the SRT during 10000 

trials, and average SI (a) and performance (b) were computed in 2000 trials without plasticity. Each point in the 

plot belongs to one network trained with the number of trials per block specified in the x axis. Average SI values 

were computed from the SI values between pairs of contingencies with shared ( )s T  or ( 1)s T  , which are the 

contingencies with the highest SI, as shown in Fig. 9. 
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Fig. 11. Contingency coding and memory after training. (a) The information conveyed by the K  module 

about the contingencies was estimated by employing tree-bagger classifiers trained on the K  module firing 

profile to classify trials according to their membership to a given group of contingencies that share some specific 

element, depicted in the legend. Probe simulations were run before beginning training (Trial = 0) and then every 

1000 trials. Firing profiles where computed at decisiont . Information about ( 1)s T   takes more training to be 

acquired, acting as a bottleneck for the coding of the whole contingency. (b) Memory about the occurrence of 

each contingency was estimated by assessing the classification performance of a Naive Bayes classifier trained 

to correctly classify the 16 contingencies based on the K  module firing profile computed from 0t   of trial T , 

to  the end of trial 5T   (being T  the trial when ( )s T  of the target contingency was presented). The CP value 

picks around decisiont  as expected since contingency may change after that time. For contingencies which involved 

the 1r  stimulus, information is retained above chance levels long after the time of decision. On the contrary, 

information about contingencies involving 0r  was retained for a shorter period, suggesting that information 

retention is proportional to the frequency of occurrence of the contingency. (c) When reward is delivered at 

random, differences in information retention between contingencies involving 1r  and 0r  disappears. 
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