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Abstract 

Some microbial public goods can provide both individual and community-wide benefits, and are 

open to exploitation by non-producing species. One such example is the production of metal-

detoxifying siderophores. Here, we investigate whether heavy metals select for increased 

siderophore production in natural microbial communities, or whether exploitation of this 

detoxifying effect reduces siderophore production. We show that the proportion of siderophore-

producing taxa increases along a natural heavy metal gradient. A causal link between metal 

contamination and siderophore production was subsequently demonstrated in a microcosm 

experiment in compost, in which we observed changes in community composition towards taxa that 

produce relatively more siderophores following copper contamination. We confirmed the selective 

benefit of siderophores by showing that taxa producing large amount of siderophores suffered less 

growth inhibition in toxic copper. Our results suggest that ecological selection will favour 

siderophore-mediated decontamination, with important consequences for potential remediation 

strategies.  
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INTRODUCTION  

It is becoming increasingly apparent that many public goods benefit not only conspecifics but also 

other species. For example, many bacterial proteases show extracellular activity, providing potential 

nutritional benefits to neighbouring bacteria regardless of taxa (Suleman 2016); and immune-

repressing molecules produced by parasitic nematodes provide a potential benefit to all co-infecting 

parasites (Maizels et al. 2001). Regardless of whether public goods are solely conspecific or also 

have interspecific benefits, there is the potential for non-producing cheats to outcompete producers 

assuming public good production carries some metabolic cost (Hamilton 1964; Hamilton & Axelrod 

1981; Frank 1994). Hence, the evolution of costly public goods is crucially dependent on the extent 

to which benefits are reaped by the producer, other individuals carrying the public good gene and 

non-producers. While the evolution of public goods has been studied extensively within species, we 

know very little about how ecological species sorting acts to shape the production of interspecific 

public goods within natural communities. Here we combine surveys and experiments to determine 

how ecological selection acts on a microbial interspecific public good: siderophore-mediated heavy 

metal decontamination. 

Heavy metals are ubiquitous components of the Earth’s crust, and large amounts have been 

released into the environment as a result of human activities (Nriagu & Pacyna 1988). Most heavy 

metals are toxic to microbes to varying degrees (e.g., Giller et al. 1998) and their presence can have 

a major impact on microbial communities (e.g., Gans et al. 2005). In the face of long-term selection 

imposed by heavy metals (Silver 1998), microbes have evolved mechanisms to cope with their 

toxicity, including metal reduction, reduced cell permeability and extracellular sequestration (Nies 

1999; Bruins et al. 2000; Valls & De Lorenzo 2002). One such detoxification mechanism is the 

production of siderophores. While the canonical function of siderophores is to scavenge poorly 

soluble iron (Ratledge & Dover 2000), bacteria also use these secreted molecules to bind heavy 

metals (Braud et al. 2010; Schalk et al. 2011). Siderophore production can be induced by the 

presence of non-iron metals (Hofte et al. 1993; Teitzel et al. 2006), which they bind with various 
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affinities (Braud et al. 2009). These siderophore-metal complexes, unlike siderophore-bound iron, 

are unable to enter bacterial cells, thereby reducing the concentration of free toxic metals in the 

environment (Schalk et al. 2011). This has led to the suggestion of adding siderophores or 

siderophore-producing microbes to remediate heavy metal contaminated environments (Diels et al. 

1999; Gadd 2000; Rajkumar et al. 2010; O'Brien & Buckling 2015). However, to understand how 

siderophores may both contribute to the natural decontamination of environments and the long-term 

success of remediation strategies, it is crucial to determine how toxic metals affect selection, within 

and between species, for siderophore production in natural communities. Note that we do not 

simultaneously address within species selection alongside ecological selection, largely because the 

genetic resolution of the sequencing methods used to identify taxa is only at the level of genus. 

 Given their detoxifying effect, increasing metal toxicity might be expected to result in 

ecological species sorting in favour of species with greater siderophore production. However, the 

production of siderophores in the context of decontamination not only benefits the producer (or its 

close relatives), but potentially also neighbouring cells, both con- and hetero-specific, in the 

community. Siderophore production is often associated with a fitness cost, hence selection may 

favour cells that produce fewer siderophores, but still receive the same detoxifying benefits of 

siderophore production from neighbours (West et al. 2007; O'Brien et al. 2014). Limited diffusion 

of such public goods (Kummerli et al. 2009; Kummerli et al. 2014) and positive assortment of 

producing cells resulting from spatial structure (Hamilton 1964; West et al. 2007; Mitri & Foster 

2013; Ghoul & Mitri 2016; Pande et al. 2016) may, however, limit the community-wide benefits of 

siderophores and prevent overexploitation by non-producing cells (Kummerli et al. 2009; Oliveira 

et al. 2014). The situation is further complicated by the iron-scavenging function of siderophore 

production, which is also open to exploitation within (Griffin et al. 2004; Buckling et al. 2007; 

Lujan et al. 2015) and between species (Barber & Elde 2015; Galet et al. 2015). It is therefore 

unclear if siderophore production will increase or decrease in natural communities as a function of 
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metal toxicity, or whether it will result in stable coexistence of producing and non-producing taxa 

(Hibbing et al. 2010; Cordero et al. 2012; Morris et al. 2012; Morris 2015; Estrela et al. 2016).  

 To investigate how heavy metal contamination affects ecological selection for siderophore 

production, we first confirm that siderophores can act as an interspecific public good in an in vitro 

siderophore-addition experiment. We then conducted a simple survey along a natural gradient of 

metal contaminated soil. We correlated total metal concentration with species composition and 

estimates of siderophore production determined from the proportion of culturable bacteria that show 

detectable extracellular iron-chelation in vitro. We then conducted an experimental study in 

compost communities to determine causal links between metal contamination and siderophore 

production 

 

METHODS 

Siderophores as interspecific public goods  

To test whether siderophores can act as interspecific public goods we quantified whether the 

presence of yersiniabactin, a copper-chelating siderophore produced by Yersinia pestis (Chaturvedi 

& Henderson 2014), can ameliorate growth of a non-producing strain of Pseudomonas aeruginosa 

in toxic copper broth. Both species are Gram-negative opportunistic pathogens belonging to the γ-

Proteobacteria, and share many, potentially cooperative, functional traits (e.g., type III secretion 

system; Rundell et al. 2016). We inoculated ~104 colony forming units (CFU) of a producing strain 

of P. aeruginosa (PA01) and an isogenic non-producing mutant strain (PA01ΔPvdDΔPchEF) in 

isolation into four replicate micro-centrifuge tubes, containing 900 µl of KB broth with or without 

0.6 mM CuSO4, which reduces relative non-producer fitness (O'Brien et al. 2014). In addition, ~104 

CFUs of either strain were inoculated in 900 µl KB supplemented with equal molarities of CuSO4 

and yersiniabactin, which typically binds to Cu(II) at a 1:1 ratio (Koh & Henderson 2015). Copper 

is a common heavy metal (Nriagu & Pacyna 1988), and is one of dominant metals found at our field 

site (Fig. 2A); hence this is why we used copper sulphate in our in vitro assays. Bacterial cultures 
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were horizontally shaken at 37°C for 24hr, after which serial-diluted culture was plated onto KB 

agar to obtain cell densities and calculate population growth: m=ln(Nf/N0), where N0 and Nf are the 

initial and final bacterial densities.  

 To test whether non-producers can exploit the detoxifying benefit of yersiniabactin, we used a 

two-way ANOVA with strain (2 levels) x treatment (3 levels: KB-, copper- and yersiniabactin + 

copper broth) as explanatory variables.  

 

Natural microbial communities 

Soil collection and characterization 

Soil samples were collected in a former poly-metallic mining area situated in the Poldice Valley (N: 

50°14.56; W: 5°10.10) in Cornwall (UK). The valley is rich in heavy metals, as apparent from the 

significant production of tin, copper, arsenic, lead, zinc and silver during the 18-19th centuries (Burt 

1998), which fuelled the industrial revolution. The area, once referred to ‘the richest square mile to 

be found anywhere on earth’, is no longer worked leaving a legacy of untreated mining waste. 94 

samples were collected by pushing sterile bulb planters into the ground near calciners, chimneys, 

slag heaps and regenerated areas, representing a wide range of metal contamination. The upper part 

of the soil core was discarded to rule out possible contamination from the ground surface. Samples 

were then transferred to sterile 50 millilitre (ml) falcon tubes and stored at 4°C until further 

processing. Samples were sieved (1 millimetre mesh) prior to DNA extraction and quantification of 

pH and heavy metals. 

 Quantification of heavy metals and metalloids (e.g., Fe, Cd, Cr, Cu, Mn, Hg, Ni, Ti, V, Zn, 

Pb, Sn, As) was carried out by ALS global (Loughrea, Ireland), using an aqua regia digest (EPA 

3050b). To assess the total content of these determinants, samples were analysed using emission 

spectroscopy (ICP-OES). For each sample, we quantified pH by suspending 1 gram (g) of soil in 5 

ml of 0.01M CaCl2 (Hendershot & Lalande 2008). The suspension was shaken for 30 minutes (min) 
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and left to stand for 1 hour (h), after which the pH of the supernatant was measured using a Jenway 

3510 pH meter (Stone, UK). 

 

Siderophore production 

The relationship between siderophore production, soil acidity and metal contamination was tested 

by screening a subset of clones for siderophore production. Siderophore production was necessarily 

measured under common garden conditions, to avoid the confounding effect of environmental 

variation if conducted in situ, causing both differential induction of siderophore production as well 

as different metal-chelating activities of the different soil types themselves, which could directly 

affect the siderophore assay. For each sample, 1 g of soil was transferred to 6 ml of M9 solution in 

30 ml glass vials, which were shaken for 2h at 28°C and 180 rpm, after which serial-diluted 

supernatant was plated onto LB agar. Thirty individual colonies per sample were randomly selected 

and grown for 48h independently in 200 microliter (µl) KB broth at 28°C. A 2 µl sample from each 

colony was then spotted on blue-tinted iron-limited CAS agar plates (Schwyn & Neilands 1987) 

using a pin replicator. Plates were incubated at 28°C for 48h, after which we scored the presence of 

orange halos, a qualitative indicator of siderophore secretion, to obtain an estimate of the proportion 

of siderophore-producing clones in each community.  

 

DNA extractions and real time PCR 

To determine how microbial abundance and community composition varied across soils we 

extracted genomic DNA from 250 milligram (mg) soil per sample, using the MoBio Powerlyzer 

PowerSoil© DNA isolation kit (Carlsbad, CA, USA), following the manufacturer’s protocol with 

the bead beating parameter set to 4500 rpm for 45 seconds (s). The integrity of DNA was confirmed 

using 1% TAE agarose gels stained with 1x Redsafe DNA Stain (20 000X): based on quality 

checks, 5 samples were discarded from subsequent analyses, yielding 89 DNA samples in total.  
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Community density was quantified using real-time PCR (StepOnePlus Real-Time PCR, 

Applied Biosystems, Foster City, CA, USA) on 1:10 and 1:100 diluted samples with primers 16S 

rRNA 338f (ACT CCT ACG GGA GGC AGC AG) and 518r (ATT ACC GCG GCT GCT GG) 

(Øvreås & Torsvik 1998). Triplicates of each sample were run along gDNA standards (5 x 102-6 16S 

rRNA genes of Pseudomonas fluorescens) and non-template controls. All assays were based on 15 

µL reactions, using 1x Brilliant III Ultra-Fast SYBR® Green QPCR Master Mix (Agilent 

technologies, Santa Clara, CA, USA), 150nM 338f and 300nM 518r primers, 300nM ROX and 

100ng/µL BSA. Thermal conditions were set to: 3 min at 95ºC for initial denaturation, followed by 

40 cycles of 5s at 95ºC and 10s at 60ºC (after which fluorescent data were collected), followed by a 

melting curve at 95ºC for 15s, 60ºC for 1 min ramping up to 95ºC in steps of +0.3ºC for 15s. 

Melting curves and confirmation of non-template controls was analysed using StepOne Software 

version 2.3 (Applied Biosystems). Baseline corrections, Cq values and efficiencies (1.89 ± 0.07 and 

1.89 ± 0.08 for standards and samples) were determined using LinRegPCR version 2016.0 (Ruijter 

et al. 2009). 16S rRNA gene quantities were calculates using the one point calibration method 

(Brankatschk et al. 2012). Bacterial counts were estimated by dividing 16S rRNA gene quantities 

by a mean copy number of 4.7 (ribosomal RNA operon copy number database rrnDB; version 5.1; 

February 16, 2017) (Stoddard et al. 2014), corrected for variation in dry weight. 

 

Statistical analyses 

Because of strong collinearity among heavy metals, we carried out a principal component analysis 

(PCA) on centred and scaled data. Most of the quantified metals loaded positively on the first 

principal component (PC1; Fig. 2A). For this reason, we used PC1 as a proxy for total metal 

contamination in all subsequent analyses. To test how PC1 and pH affect siderophore production 

we used individual generalized linear models (GLMs) with a binomial response variable and a 

quasi-binomial error structure. The effect of these environmental variables on microbial density was 

tested using individual GLMs on log10-transformed data.  
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Sequencing, OTU picking and diversity analyses 

Library preparation and sequencing was performed by the Center for Genomic Research (University 

of Liverpool, Supplementary Methods). 

 Base-calling and de-multiplexing of indexed reads was performed by CASAVA version 1.8.2 

(Illumina, San Diego, CA, USA) to produce 89 samples from the 1st lane of sequence data, which 

were trimmed to remove Illumina adapter sequences using Cutadapt version 1.2.1 (Martin 2011). 

The 3' end of reads matching the adapter sequence over >3 bp was trimmed off. Reads were further 

trimmed to remove low quality bases, using Sickle version 1.200 with a minimum window quality 

score of 20. After trimming, reads <10 bp were removed. If both reads from a pair passed this filter, 

each was included in the R1 (forward reads) or R2 (reverse reads) file. If only one of a read pair 

passed this filter, it was included in the R0 (unpaired reads) file. 

 Sequences were processed with the default parameters of the SmileTrain pipeline 

(https://github.com/almlab/SmileTrain/wiki/), including reads quality and chimera filtering, paired-

end joining, de-replication and de novo distribution-based clustering using USEARCH (version 

7.0.1090, http://www.drive5.com/usearch/) (Edgar 2019), Mothur (version 1.33.3) (Schloss et al. 

2009), Biopython (version 2.7), dbOTUcaller algorithms (Preheim et al. 2013; 

https://github.com/spacocha/dbOTUcaller, version 2.0) and custom scripts. We generated an OTU 

table that was filtered to minimize false OTUs using the filter_otus_from_otu_table.py QIIME 

script (Caporaso et al. 2010; http://qiime.org/; version 1.8) by removing OTUs observed <10. We 

assigned taxonomy, post-clustering, using the 97% reference OTU collection of the GreenGenes 

database (http://greengenes.lbl.gov; release 13_8). Taxonomy information was added to the OTU 

table using biom add-metadata scripts (http://biom-format.org/). A total of 8 604 074 sequences 

were obtained, ranging from 39 253 to 192 455 reads per sample, with a median of 91 646. This 

dataset was clustered into 45 891 OTUs.  

 Diversity calculations were based on non-rarefied OTU tables. β-diversity was calculated 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 15, 2017. ; https://doi.org/10.1101/163774doi: bioRxiv preprint 

https://doi.org/10.1101/163774


	
   11	
  

using the Jensen-Shannon Divergence (JSD) metric (Fuglede & Topsoe 2004; Preheim et al. 2013), 

which is robust to sequencing depth variation. The R ‘phyloseq’ package (version 1.19.1) 

(McMurdie & Holmes 2013; https://joey711.github.io/phyloseq/) was used to transform the OTU 

table into relative abundances, which were square-root-transformed into Euclidean metrics 

(Legendre & Gallagher 2001). Finally, we used Nonmetric Multidimensional Scaling (NMDS) plots 

(Shepard 1962; Kruskal 1964) to order bacterial community composition. Differences in 

community structure were tested using PERMANOVA (Anderson 2001), implemented using 

adonis() from the R ‘vegan’ package (version 2.4-1) with 999 permutations.  

 To confirm that pH and PC1 shape community structure, we used K-means partitioning 

algorithms (MacQueen 1967) implemented with cascadaKM() from the ‘vegan’ package with 999 

permutations. K-means is a completely independent way of binning samples. We Hellinger-

transformed (Rao 1995) the OTUs table using decostand(x. method=”hellinger”) and tested whether 

our samples naturally clustered into 2-10 groups based on their composition using the Calinski-

Harabasz index (Caliński & Harabasz 1974).  

 To investigate how environmental variables contributed towards explaining variation in 

community composition, we used a multivariate regression tree analysis (MRT; Breiman et al. 

1984; De'Ath 2002) for pH and PC1 separately, using mvpart() and rpart.pca() from the R ‘mvpart’ 

package (De’Ath 2007; Therneau et al. 2015). The OTU table was first Hellinger-transformed (Rao 

1995) before carrying out the analyses (Ouellette et al. 2012). After 200 cross-validations (Breiman 

et al. 1984), we plotted and pruned the tree using the 1-SE rule (Legendre & Legendre 2012) to 

select the least complex model. We used rpart.pca() from the ‘mvpart’ package to plot a PCA of the 

MRT.  

 α-diversity was estimated using Shannon (Oksanen et al. 2010; 'vegan' package version 2.4-1) 

and Chao1 (Vavrek & Larsson 2010; 'fossil' package version 0.3.7) indices. We used 

resample_estimate() from the R ‘breakaway’ package (Willis & Bungle 2014, version 3.0) to 

account for sample size variability, setting the number of bootstraps to 500 with replacement. The 
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relationship between α-diversity and environmental variables was tested using betta() from the 

‘breakaway’ package, which accounts for statistical errors associated with estimating Shannon and 

Chao1 indices. 

 

Copper-addition experiment 

Experimental design 

To infer a causal relationship between toxic metals and siderophore production, we set up 

experimental communities in 90 millimetre Petri dishes containing 30g of twice-autoclaved 50% 

peat-free compost (Verve John Innes No. 1). Before sterilization, the natural microbial community 

was isolated by adding 40 g of fresh compost to 200 ml of M9 solution and incubating at 150 rpm at 

28°C for 24h.  

 We established communities by inoculating twelve soil microcosms with 2 ml of soil wash 

(~2.4 x 107 CFUs ml-1). Microcosms were placed in an environmental chamber at 26°C and 75% 

humidity for 24h, after which we supplemented six microcosms with 2 ml of filter-sterilised 0.25M 

CuSO4 or ddH20. This concentration of CuSO4 hindered bacterial growth. Microcosms were then 

returned to the environmental chamber for a total of 6 weeks. After three weeks, another 2 ml dose 

of CuSO4 or ddH2O was added where appropriate. Samples of the community were taken prior to 

copper amendment and 3-6 weeks post-inoculation by transferring 1 g soil to 6 ml of M9 solution in 

30 ml glass vials. Vials were shaken for 2h at 28°C at 180 rpm, after which soil wash supernatants 

were frozen at -80° C in 25% glycerol.  

 

Siderophore and copper resistance assays 

To quantify siderophore production, 24 individual clones per treatment-time combination were 

isolated by incubating serial-diluted soil wash on LB plates at 28°C for 48h. Individual colonies 

were then transferred to 2 ml of KB broth and grown for 48h at 28°C, after which the supernatant 

was assayed for the extent of iron chelation. Siderophore production was quantified using the liquid 
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CAS assay described by Schwyn and Neilands (1987), with the modification that one volume of 

ddH20 was added to the assay solution (Harrison & Buckling 2005). We used the following 

quantitative measure to obtain an estimate of siderophore production per clone: [1 − (Ai/Aref)] 

/[ODi)], where ODi = optical density at 600 nanometre (nm) and Ai = absorbance at 630 nm of the 

assay mixture i or reference mixture (KB+CAS; Aref). Note that CAS assays performed in iron-

limited KB (supplemented with 20 mM NaHCO3 and 100 µg ml-1 human apotransferrin) provided 

qualitatively similar results (data not shown).  

 All final time-point clones were grown at 28°C for 24h, after which ~104 CFUs were 

inoculated into 96-well plate wells containing 200 µl of KB broth supplemented with or without a 

toxic dose of CuSO4  (6.17 mM). Clones were incubated statically at 28°C for 48h, and their OD 

was measured at 600 nm every 8-12h to quantify growth (Varioskan Flash plate reader, Thermo 

Scientific, Waltham, MA, USA).  

 

Sanger sequencing of 16S rRNA of evolved clones 

The 16S rRNA gene of all assayed final-time point clones was sequenced to confirm genus-level 

identity. In short, PCRs were performed in 25µL reactions containing 1x DreamTaq Green PCR 

Master Mix (2X) (Thermo Scientific), 200 nM of the 27F and 1492R primers and 3 µL of 1:100 

diluted culture that had undergone 3 freeze-thaw cycles. The thermal cycling parameters were set to 

94ºC for 4 min, followed by 35 cycles of 1 min at 94ºC, 30s at 48ºC and 2 min at 72ºC, and a final 

extension of 8 min at 72ºC. Following Exo-AP clean-up, high quality samples were Sanger 

sequenced using the 27F primer (Core Genomic Facility, University of Sheffield).  

 The quality of all sequences was assessed using plotQualityProfile() from the R ‘dada2’ 

package (Callahan et al. 2016; version 1.3.0). Based on the obtained plots, sequences were trimmed 

in Genious (version 6.1.8) to achieve an overall quality score >35, by removing >20bp from the 5’ 

end and trimming the 3’ end to a maximum length of 700bp. Using Mother, sequences longer then 
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300bp were aligned to the Silva.Bacteria.Fasta database, and taxonomy was classified using the 

RDP trainset 14 032015 as a reference database. 

 

Statistical analyses 

The effect of copper on temporal changes in mean per capita siderophore production was tested 

using a linear mixed effect (LME; 'lme4' R package; Bates et al. 2014) model with copper x 

evolutionary time (3-6 weeks post inoculation) as fixed categorical effects and random intercepts 

fitted for each community (n = 12), and individual clones nested within communities (n = 24), to 

account for temporal dependencies.  

 We used NMDS ordination plots to depict pair-wise Bray-Curtis dissimilarities in genus-level 

composition between microcosms. To test whether treatments differed significantly in their 

composition we used PERMANOVA with 999 permutations, and tested for equality of between-

treatment variance using permutation tests for homogeneity of multivariate dispersion.  

 To test for the effect of copper on metal tolerance, we used a LME model with 

ln(ODCu/ODKB) as response variable, copper background as fixed effect and a random slope fitted 

for mean-centred hours: random=~(Hours)|Community/Clone. The model thus accounts for 

intrinsic differences between communities, and nested clones, in their ability to tolerate toxic levels 

of copper over time, and explicitly tests whether pre-adaptation to copper increases mean copper 

tolerance. To test whether tolerance was directly mediated by variation in siderophore production, 

we replaced ‘copper background’ with clone-specific siderophore production.  

 In general, full models were simplified by sequentially eliminating non-significant terms (P > 

0.05) following a stepwise deletion procedure, after which the significance of the explanatory 

variables was established using likelihood ratio tests. In case of significant differences, Tukey 

contrasts were computed using the ‘multcomp’ package (Hothorn et al. 2008), with α < 0.05. We 

used R Version 3.1.3 for all analyses (R Development Core Team; http://www.r-project.org). 
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RESULTS 

Foreign siderophores restore non-producers fitness in toxic copper medium 

 Strains responded differentially to copper (strain x treatment interaction: F2,16 = 18.06, P < 

0.001), with non-producers outperforming producers in KB broth and vice versa in copper broth 

(Fig. 1). Crucially, the addition of yersiniabactin restored the growth of non-producers to levels 

comparable to that of siderophore-producers when propagated in toxic copper (Fig. 1).  

 

Microbial diversity, abundance and siderophore production along a natural heavy metal 

gradient 

We found that the proportion of siderophore-producing isolates was significantly greater in more 

heavily contaminated soils (PC1: χ2 = 4.42; d.f. = 1, P = 0.04 Fig. 2C). Because contamination co-

varied with soil acidity (Pearson’s product-moment correlation: r = 0.61, d.f. = 86 and P < 0.001; 

Fig. 2B), siderophore production also increased as a function of pH (χ2 = 28.16; d.f. = 1, P < 0.001; 

Fig. 2C). Neither pH nor PC1 significantly affected microbial abundance (GLM: F1, 87 = 0.01, P = 

0.99 for PC1 and pH; Fig. 2D). Both environmental variables predicted community structure: 

samples with similar range values of pH (PERMANOVA: R2 = 0.087, P < 0.001) or PC1 (R2 = 

0.065, P < 0.001) had similar community composition. Because the explanatory power of these 

variables was relatively low (Fig. S1 in Supplementary Information), we performed a K-means 

analysis, which showed that samples were naturally divided into 2 or 3 groups differing 

significantly in their PC1 or pH, respectively (Fig. S2 in Supplementary Information). We used 

MRT to confirm these findings and observed that R2 was highest when pH was used as explanatory 

variable (pH: R2 = 0.183 and PC1: R2 = 0.085; Fig. 3). Alpha diversity was largely independent of 

PC1, but varied as a function of pH (Fig. S3 in Supplementary Information; P < 0.001 for both 

indices). 

 

The effect of copper on siderophore production in experimental communities 
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Our assay of siderophore production along a natural gradient showed that siderophore production 

was greater in more contaminated soils. However, it remains unclear whether metals are a 

significant driver explaining variation in siderophore production. Notably, pH is an important 

predictor of soil bacterial diversity and composition (e.g., Fierer & Jackson 2006; Griffiths et al. 

2011), and correlated positively with metal contamination, making any interpretations ambiguous. 

To determine a causal link between heavy metals and siderophore production, we carried out an 

experiment and characterised and measured siderophore production of multiple clones as well as 

their metal tolerance. We found that mean siderophore production was significantly greater in 

communities subjected to copper contamination (LME: copper effect: χ2
 =6.91; d.f. = 1; P < 0.01; 

Fig. 4A). Note, however, that overall siderophore production decreased through time (time effect: 

χ2
 = 16.02; d.f. = 1; P < 0.001) independent of treatment (time x treatment effect: χ2

 = 0.001; d.f. = 

1; P = 0.98). Soil acidity marginally increased following copper contamination (mean pH ± SE after 

3 and 6 weeks of incubation in control = 7.13 ± 0.05, 7.09 ± 0.02 and in copper = 6.90 ± 0.04, 6.60 

± 0.05), indicating that siderophore production was greater in more acidic compost. 

 We identified clones at the genus-level to explore the role of species sorting in driving 

siderophore production. Community composition varied significantly between treatments 

(PERMANOVA: F1, 11 = 3.88, P = 0.015; multivariate dispersion similar across treatments: F1, 11 = 

0.021, P = 0.91; Fig. 4B), with siderophore-producing genera being selectively favoured in copper-

contaminated compost (Fig. 4C). Crucially, clones isolated from the copper treatment were 

significantly less inhibited when grown in toxic copper broth compared to those from the control 

treatment (LME: χ2 = 6.80; d.f. = 1; P < 0.01; Fig. 4D), which was mediated by increased 

siderophore production (LME: χ2 = 16.68; d.f. = 1; P < 0.001). 

 

DISCUSSION 

In this study, we investigated how heavy metals affected ecological selection for siderophore 

production – an interspecific microbial public good – across an environmental gradient of 
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contaminated soil and during a controlled experiment in compost. We hypothesised there could be 

selection for both increased and decreased siderophore production, because of the detoxifying effect 

of siderophores and the potential for interspecific siderophore exploitation, respectively. Our 

findings suggest that the presence of toxic metals resulted in ecological selection for taxa that 

produced large amounts of siderophore. We also confirmed that bacteria investing more in 

siderophores suffered less growth inhibition in the presence of toxic copper.  

 Ecological selection for increased siderophore production contrasts with previous in vitro 

within-species (P. aeruginosa) results, in which non-producing ‘cheats’ were able to outcompete 

siderophore producers in copper-contaminated broth (O'Brien et al. 2014). A key reason for this 

difference is likely to be the spatial structure in soil/compost resulting in localised detoxification, 

such that producers and their immediate neighbours gain the most from their siderophores 

(Hamilton 1964; West & Buckling 2003; Buckling et al. 2007; West et al. 2007; Lujan et al. 2015). 

Hence, low siderophore producers should experience more of the toxic metal effect. Limited 

dispersal would also lead to immediate neighbours having a higher probability of being conspecifics 

- a likely reason as to why taxa that typically produce more siderophores dominated the community 

when exposed to toxic metals. Direct comparison of intra- and inter-specific changes in siderophore 

production in soil would tease apart the differing roles of spatial and community structure in 

determining these results.  

In our survey of a former mining area, soil acidity and total metal contamination positively 

co-varied, with both prolonged metal leaching in acidic soils and precipitation in more basic soils 

likely contributing to this pattern (Alloway 1990; Adriano 2001). This covariance may well have 

contributed to the patterns we observed. First, acidity is a major determinant of microbial diversity 

and composition (e.g., Fierer & Jackson 2006; Griffiths et al. 2011), hence pH-mediated selection 

may have indirectly favoured taxa that produce siderophores in larger amounts. Second, acidity 

affects metal speciation and bio-availability to microbes in variable ways (Lofts et al. 2004; Gobran 

& Huang 2011), with iron becoming largely insoluble at pH > 6.5 (Guerinot 1994). As such, 
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increased siderophore production in basic soils, which also had the highest metal concentrations, 

may have been driven by selection imposed by iron limitation. However, our experimental 

manipulations, where the same compost community was propagated in both the presence and 

absence of copper, strongly suggest a direct effect of heavy-metal imposed selection on siderophore 

production. This manipulation did have a small effect on pH (copper decreased pH from 

approximately 7.1 to 6.6), but in this case there was negative, rather than positive, covariance 

between pH and metal contamination.  

 It was initially surprising to find that microbial densities were similar along the natural 

contamination gradient; several studies have demonstrated that toxic heavy metals reduce microbial 

abundance (reviewed in Giller et al. 1998). These differences may reflect the relatively short time 

scale of exposure in most studies as well as low metal concentrations. Given the mining history of 

the site used in this study, microbes are likely to be relatively well adapted to the toxic conditions, 

through other more direct resistance mechanisms not investigated here (Nies 1999; Bruins et al. 

2000; Valls & De Lorenzo 2002), in addition to siderophore production. As a consequence of this 

resistance, microbial communities were perhaps able to reach high densities in the presence of 

normally toxic metal concentrations. It is important to emphasise that selection of taxa with 

increased copper tolerance occurred very rapidly in our experiment, although as stated above we 

can’t rule out a role of additional resistance mechanisms that positively co-vary with siderophore 

production. 

 Human-imposed heavy metal contamination is a major problem for natural ecosystems and 

several studies have noted that addition of siderophores or siderophore-producing microbes could 

aid in detoxifying contaminated soils, particularly when combined with the use of heavy metal 

hyper-accumulating plants (Lebeau et al. 2008; Dimkpa et al. 2009). Our results provide some key 

insights into the optimal use of siderophores for remediation. The addition of high siderophore-

producing bacteria following recent contamination events is likely to be effective, because these 

organisms should have a selective advantage and hence contribute to increasing the community-
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level production of siderophores. However, their addition is unlikely to significantly improve 

remediation of historically contaminated sites, in which siderophore production will already have 

been stabilised by selection. The direct addition of siderophores, while providing a short-term 

benefit, may actually result in a longer-term negative effect on remediation regardless of length of 

time since contamination, as selection for siderophore production is relaxed.  More generally, our 

results highlight that interspecific public goods production can be maintained at high levels in 

natural microbial communities, despite the potential of exploitation by cheating non-producers. 
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FIGURE LEGENDS 1	
  

Figure 1. Siderophores act as an interspecific public good in toxic copper broth. 2	
  

Growth rate (m) of a non-producer (NP) and producer (P) strain of Pseudomonas 3	
  

aeruginosa in control (0 mM CuSO4) and copper-contaminated broth (0.6 mM CuSO4) 4	
  

with (YBT) and without yersiniabactin. Letters denote significant differences based on 5	
  

post-hoc Tukey contrasts. 6	
  

 7	
  

Figure 2. The effect of soil acidity and heavy metal contamination on microbial 8	
  

abundance and siderophore production in natural soils. (A) Heavy metal loadings on 9	
  

the first principal component (PC1), which explained 27% of the observed environmental 10	
  

variation; (B) Positive correlation between soil acidity (pH) and heavy metal 11	
  

contamination (PC1); (C) Proportion of siderophore producers and (D) microbial density 12	
  

(log10-transformed bacterial cells g-1 soil) as a function of heavy metal contamination and 13	
  

soil acidity. Lines and shaded area depict the fitted relationships ± standard error. 14	
  

 15	
  

Figure 3. Community composition variation changes as a function of soil acidity. 16	
  

Multivariate regression tree (MRT) analysis was used to estimate the impact of soil acidity 17	
  

(pH) and heavy metals (PC1) on community structure, indicating that pH is the main 18	
  

environmental driver explaining variation in community structure. The most parsimonious 19	
  

tree (A) shows that the community could be divided into 3 different leaves (colored 20	
  

symbols) based on microbial abundance and composition. The composition within leaves 21	
  

is represented in a PCA plot (B), where small points represent individual samples and large 22	
  

points represent the group mean (within leaf). The most important taxa in each leaf are 23	
  

summarized in Supplementary Table S1.  24	
  

 25	
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Figure 4. The effect of copper contamination on experimental microbial communities 1	
  

in compost. (A) Copper increases mean per capita siderophore production. Bars depict the 2	
  

mean difference in siderophore production ± 1 S.E. between copper- and control 3	
  

treatments after 3-6 weeks of evolution; (B) NMDS ordination plot depicting the pair-wise 4	
  

Bray-Curtis dissimilarity between soil microcosms after six weeks of incubation (stress = 5	
  

0.096). Points represent individual microcosms belonging to the control (open circles) and 6	
  

copper (black circles) treatment, such that microcosms similar in their genus-level 7	
  

composition are ordinated closer together; (C) Relative abundance of the ten most 8	
  

common genera and their mean siderophore production. Genera are listed in order of their 9	
  

mean across-treatment siderophore production, increasing from top to bottom, such that 10	
  

blue- and red genera are non-producers and producers, respectively; (D) The effect of 11	
  

copper background (filled and open symbols are presence and absence of copper 12	
  

contamination, respectively) on metal tolerance, where more negative values indicate a 13	
  

stronger inhibitory effect of 6.17 mM CuSO4 on bacterial growth. Bars denote 1 SE. 14	
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