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Abstract

Background. Mathematical modeling has an extensive history in vector-borne disease epidemiology,

and is increasingly used for prediction, intervention design, and understanding mechanisms. Many

of these studies rely on parameter estimation to link models and data, and to tailor predictions

and counterfactuals to specific settings. However, few studies have formally evaluated whether

vector-borne disease models can properly estimate the parameters of interest given the constraints

of a particular dataset.

Methodology/Principle Findings. Identifiability methods allow us to examine whether model

parameters can be estimated uniquely—a lack of consideration of such issues can result in mis-

leading or incorrect parameter estimates and model predictions. Here, we evaluate both structural

(theoretical) and practical identifiability of a commonly used compartmental model of mosquito-

borne disease, using 2010 dengue epidemic in Taiwan as a case study. We show that while the

model is structurally identifiable, it is practically unidentifiable under a range of human and

mosquito time series measurement scenarios. In particular, the transmission parameters form

a practically identifiable combination and thus cannot be estimated separately, which can lead

to incorrect predictions of the effects of interventions. However, in spite of unidentifiability of

the individual parameters, the basic reproduction number was successfully estimated across the

unidentifiable parameter ranges. These identifiability issues can be resolved by directly measur-

ing several additional human and mosquito life-cycle parameters both experimentally and in the field.

Conclusions. While we only consider the simplest case for the model, without explicit environmental

drivers, we show that a commonly used model of vector-borne disease is unidentifiable from human
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and mosquito incidence data, making it difficult or impossible to estimate parameters or assess

intervention strategies. This work illustrates the importance of examining identifiability when linking

models with data to make predictions, and particularly highlights the importance of combining

experimental, field, and case data if we are to successfully estimate epidemiological and ecological

parameters using models.

Author Summary

Mathematical models have seen increasing use in understanding transmission processes, developing

interventions, and predicting disease incidence and prevalence. Vector-borne diseases in particular

present both a challenge and an opportunity for modeling, due to the complex interactions between

host and vector species. A key step in many of these studies is connecting transmission models

with data to infer parameters and make useful predictions, which requires careful consideration of

identifiability and uncertainty of the model parameters. Whether due to intrinsic limitations of

the model structure, or practical limitations of the data collected, is common that many different

parameter values may yield the same or very similar fits to the data, making it impossible to

successfully estimate the parameters. This issue of parameter unidentifiability can have broad

implications for our ability to draw conclusions from mechanistic models—in some cases making

it difficult or impossible to generate specific predictions, forecasts, or parameter estimates from

a given model and data. Here, we evaluate these questions for a commonly-used model of vector-

borne disease, examining how parameter uncertainty and unidentifiability can affect intervention

predictions, estimation of the basic reproduction number, and other public health conclusions drawn

from the model.

1 Introduction 1

Arboviral diseases are a global threat of increasing importance. Particularly for diseases propagated 2

by Aedes mosquitoes, such as dengue, chikungunya, and Zika [1, 2], incidences have been increasing 3

at alarming rates worldwide, with over approximately 3.9 billion individuals believed to be at risk 4

for dengue infection alone [3–5]. These increases are primarily attributed to the habitat expansion 5

of Aedes spp. caused by changes in anthropogenic land use and human movement [6–11]. Given 6

the ecology and life-cycle of Aedes mosquitoes, the transmission dynamics of these mosquito-borne 7
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diseases are heavily driven by complicated interactions between environmental factors [12–17]. These 8

factors, combined with human behavior and transmission dynamics, make vector-borne diseases 9

highly complex—presenting both challenges and opportunities for mathematical modeling [18–20]. 10

Modeling has increasingly been viewed as a useful tool to quantify these complex transmission 11

systems by integrating various data sources and specifying nonlinear mechanistic relationships and 12

feedbacks. Numerous recent efforts at combating mosquito-borne diseases have directly incorporated 13

the use of mathematical models, such as in planning for Zika and chikungunya response [21–26], 14

and evaluation of potential vaccine candidates [27–30]. 15

Indeed, mathematical modeling has a long history in vector-borne diseases, beginning with the 16

original development of the Ross-Macdonald or so-called Susceptible-Infectious-Recovered (SIR) 17

model to examine malaria [31], and expanding to account for an enormous range of factors affecting 18

both human and vector population dynamics [32,33]. A wide range of modeling approaches, including 19

ordinary and partial differential equations (ODE and PDE) [34,35] as well as agent/individual-based 20

models have also been applied to these questions [27, 36–39]. Common goals for many of these 21

modeling efforts have been to make quantitative predictions of disease dynamics and to estimate 22

the underlying mechanistic parameters [26,40–42]. 23

To do so often requires using parameter estimation to connect these models with disease data, 24

mainly using incidence or prevalence over time in humans. An important step in this process 25

is examining parameter identifiability, the study of whether a set of parameters can be uniquely 26

estimated and what parameter information may be gleaned from a given model and data set. 27

Unfortunately, under many circumstances, the underlying model parameters are unidentifiable (also 28

denoted non-identifiable), so that many different sets of parameter values produce the same model 29

fit. The unidentifiability (non-identifiability) may be due to the model structure (i.e. structural 30

non-identifiability) or the constraints of a specific dataset (i.e. practical unidentifiability). In either 31

case, the data does not provide sufficient information for unique parameter estimation. Incorrect 32

parameter estimates and ignorance of the uncertainty in prediction from an unidentifiable model 33

can result in misleading epidemiological inferences, which could further lead to failures of public 34

health interventions. 35

However, in spite of the abundance of transmission models in mosquito-borne diseases and the 36

common use of parameter estimation in fitting these models to data, relatively few efforts have been 37

made to examine questions of parameter identifiability in these models. [43–50]. Two studies that 38

directly evaluated the issues include: Denis-Vidal, Verdière, and colleagues assessed the structural 39
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(theoretical) identifiability of a chikungunya transmission model assuming all the states in human 40

population and mosquito larva are observable [46,49]; Tuncer et al. [50] examined both structural 41

and practical identifiability of a within-to-between host model of Rift Valley fever, addressing how 42

the multi-scale nature of such immuno-epidemiological problems affects model identifiability. 43

Building on these results, we examine the identifiability of a simple compartmental model based 44

on the Ross-Macdonald framework with various scenarios of measurement assumption [51]. This 45

model is commonly used for both theoretical [52–55] and applied epidemiological studies in a wide 46

range of settings [56–61], and is often used in an expanded form where temperature or environmental 47

dependence is explicitly included [62–65]. We consider the structural and practical identifiability of 48

this model in the baseline case without explicit environmental drivers, using dengue incidence data in 49

Kaohsiung, Taiwan as a case study. Additionally, the inclusion of mosquito population data has been 50

considered helpful for parameter estimation in models involving mosquito life cycles [33,63,66,67]. 51

However, obtaining mosquito population data is difficult in practice: it requires substantial time and 52

resources which are often limited; spatial and behavioral variability in mosquito populations pose 53

significant logistic challenges as well. Therefore, we also evaluate whether and to what degree that 54

alternative mosquito data available in the field will reduce parameter uncertainty and improve model 55

inference on mosquito control strategies. Finally, we present an example showing the consequences 56

of ignoring unidentifiability in model-based intervention design. 57

Vector-borne disease modeling is often complex, and has been widely used in forecasting and 58

the design of interventions [26,28,68–71]. Through our simple model, we hope to draw attention 59

to identifiability issues in vector-borne disease models and their implications in the application of 60

models with more complexity. 61

2 Methods 62

In the following sections, we will describe the model development, identifiability analysis, and 63

parameter estimation processes. The flow chart in Fig. 1 summarizes the overall analytical process. 64

The model and analyses were implemented in Python 2.7.10, with code available at https://github. 65

com/epimath/dengue_model. 66
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Fig 1. Summary of the parameter estimation and identifiability analysis process.

2.1 Model 67

Our SEIR-based model is adapted from [51,63,72], and shown in Fig 2. We chose this model mainly 68

because of its simplicity as well as its potential to be used for intervention design and epidemic 69

prediction accounting for environment factors [59–61,63–65,68,72]. The model includes the disease 70

transmission process between the human (h) and mosquito (m) populations. In addition, we specify 71

an aquatic stage of mosquitoes combining larvae and pupae (A). These larvae/pupae then grow into 72

adults (Sm) and leave the aquatic environment. Since dengue virus is transmitted by the female, we 73

only consider female mosquitoes in the model. The susceptible adult mosquitoes become infected 74

and enter compartment Em by having blood meals from infectious human beings carrying the 75

dengue virus (Ih). After the extrinsic incubation period (8-12 days) [73–75], the infected mosquitoes 76

are capable of transmitting the virus and stay contagious during their lifetime. Susceptible human 77

individuals (Sh) can be infected (Eh) through bites from the mosquitoes, and then become infectious 78

(Ih) after a 4-10 day intrinsic incubation period [73–75]. With proper treatment, individuals in 79

the infectious stage can recover from dengue and are considered immune in the model. Note that 80

multiple serotypes are not considered in the model, so potential interactions or antibody-dependent 81

enhancement between serotypes are not included. We assume there is only mosquito-to-human 82

and human-to-mosquito transmission in the model given the relatively low probability of other 83

transmission pathways [73]. 84

5

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 20, 2017. ; https://doi.org/10.1101/164079doi: bioRxiv preprint 

https://doi.org/10.1101/164079


!" #" $" %"

& !' #' $'

Fig 2. Diagram of the SEIR-based model. Subscript h indicates human, v indicates vector, and
S,E, I,R represent susceptible, latent (exposed), infectious, and recovered humans or adult
mosquitoes. A represents immature mosquitoes (larvae and pupae).

2.1.1 Model Equations 85

In the model, we assume a constant human population (N = Sh +Eh + Ih +Rh). We also consider 86

all variables in units of individuals (i.e. humans, mosquitoes, and pupae/larvae). 87

dSh
dt

= µ(N − Sh)− βmhShIm
N

dEh
dt

=
βmhShIm

N
− αEh − µEh

dIh
dt

= αEh − ηIh − µIh
dRh
dt

= ηIh − µRh
dA

dt
= ξ(Sm + Em + Im)(1− A

C
)− πA− µaA

dSm
dt

= πA− βhmSmIh
N

− µmSm
Em
dt

=
βhmSmIh

N
− γEm − µmEm

Im
dt

= γEm − µmIm

(1)

It should be noted that βmh and βhm are transmission rates between host and vector populations, 88

which are the products of average bites per mosquito and the probability of successful transmission 89

per infected mosquito bite. C is the carrying capacity of aquatic environment, and π is the maturation 90

rate to adult mosquitoes. We also include a parameter to account for underreporting in human 91

incidence and prevalence, so that the incidence in the model is measured as yh = κhαEh, where κh 92

is the reporting fraction. Similarly, for counts and prevalence of mosquitoes, we assume that only a 93

small fraction of the total mosquitoes are counted, assumed to be κa and κm for aquatic immature 94

and mature mosquitoes, respectively. This yields the (simulated) observed immature mosquitoes to 95
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be ya = κaA and observed adult mosquitoes to be ym = κm(Sm + Em + Im). Descriptions of the 96

other parameters are given in Table 1. 97

2.1.2 Rescaled Model 98

Transmission models such as the one considered here can often be rescaled without changing the 99

observed output. For example, in this model we could rescale the human variables to be larger 100

(thereby also increasing the population size N), but reduce the reporting rate (κh) and adjust 101

the value of βmh to yield the same apparent observed number of cases over time from the model. 102

However, because each of these parameters (the reporting rate, transmission parameters, and size 103

of the total population at risk) are all unknown parameters for our model, there is an inherent 104

(structural) unidentifiability of these parameters, so that they cannot all be estimated simultaneously 105

(i.e. for any population size, we can set βmh and the reporting rate to yield the same observed 106

number of cases). Similar issues can be found in the mosquito equations as well. 107

One way to correct these types of identifiability problems in the model is to rescale the model 108

variables (e.g. Sh, Eh, Ih, Sm, etc.) by model parameters such as the total population size (in many 109

cases this is equivalent to nondimensionalizing the system). In this case, we re-write the human 110

model variables to be in terms of fraction of the population instead of numbers of individuals, e.g. 111

letting the new variable for susceptible humans be: S̃h = Sh/N (and similarly for Eh, Ih, and Rh). 112

We also normalize the larvae A by their carrying capacity C (letting Ã = A/C) and the remaining 113

variables (Sm, Em, and Im) by both C and π (i.e. letting S̃m = Sm/(Cπ)). Rewriting the equations 114

and omitting the ∼’s yields: 115

dSh
dt

= µ(1− Sh)− β∗
mhShIm

dEh
dt

= β∗
mhShIm − αEh − µEh

dIh
dt

= αEh − ηIh − µIh
dRh
dt

= ηIh − µRh
dA

dt
= ξ∗(Sm + Em + Im)(1−A)− µ∗

aA

dSm
dt

= A− βhmSmIh − µmSm
Em
dt

= βhmSmIh − γEm − µmEm
Im
dt

= γEm − µmIm

(2)
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where β∗
mh = βmhCπ/N , ξ∗ = ξπ, and µ∗

a = π + µa. Similarly, the reporting rate parameters are 116

now κ∗h = κhN , κ∗a = κaC, and κ∗m = κmCπ, so that the observed human cases or mosquito counts 117

are the same as in the original model. Doing so allows us to reduce the number of parameters 118

explicitly included in the model and correct some of the immediately apparent identifiability issues. 119

We will show in Section 2.3 below that this also resolves the overall structural identifiability of the 120

model. 121

For the rescaled model, we can calculate the disease-free steady state value for the mosquito 122

population, with nonzero solution A =
ξ∗−µ∗

aµm

ξ , yielding Sm =
ξ∗−µ∗

aµm

ξµm
at the disease-free 123

equilibrium. We assume steady state for the initial condition of mosquito population. For simplicity, 124

from here on we will work entirely with the rescaled model (Eq. (2)), and so omit the ∗’s on the 125

rescaled parameters in the subsequent sections. 126

2.1.3 Basic Reproduction Number 127

The basic reproduction number (R0) is the total number of secondary cases generated by introducing 128

a single infected individual into a completely susceptible population [76,77]. Mathematically, R0 is 129

a threshold parameter controlling the stability of the disease-free equilibrium given by an entirely 130

susceptible human and mosquito population. Using the next generation matrix [76], we construct 131

R0 as: 132

R0 =

√
Smαβhmβmhγ

(α+ µ)(η + µ)(γ + µm)µm
(3)

2.2 Parameter Estimation 133

2.2.1 Data 134

Weekly incidence of dengue cases since 1998 is available from the Taiwan National Infectious Disease 135

Statistics System of Taiwan Centers for Disease Control (CDC) [78]. Confirmed dengue cases are 136

reported from local hospitals and are released every week to the CDC online platform. In the study, 137

we used 2010 dengue incidence data in Kaohsiung, the main city in southern Taiwan. Dengue 138

outbreaks in Taiwan always start from and are often confined to the south because of the favorable 139

environment for Aedes spp. Kaohsiung is usually the main epidemic area during outbreaks, and 140

also has annual outbreaks regularly [79]. The 2010 epidemic curve of dengue in Kaohsiung is very 141

typical with one main peak. Since our model does not handle spatial heterogeneity and multiple 142

strains, we chose to focus only on the 2010 data in Kaohsiung for these analyses. 143
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2.2.2 Parameter Estimation 144

We neglect population birth/death dynamics in the model (µ = 0) because the outbreak only lasts 145

for 32 weeks. We also fix α and γ as 0.14 and 0.1 respectively based on previous studies [73–75], 146

and let η be 0.1 since the infection usually lasts for about 10 days [73]. We estimated the remaining 147

6 parameters using weekly dengue incidence in Kaohsiung with least squares, assuming normally 148

distributed errors. Nelder-Mead from NumPy in Python 2.7.10 was used for the estimation process. 149

2.2.3 Simulated Data 150

As discussed in Identifiability Analysis below, we also simulated noise-free data using the fitted 151

model from previous step. These data were generated by simulating the given variables at either 152

daily or weekly frequency. This allowed us to examine identifiability of the model in a case where 153

the “true” parameters are known (so that errors in estimation can be assessed) and to consider 154

a range of alternative measurement scenarios examining how adding different types of mosquito 155

count data might improve parameter identifiability. We synthesized the following four alternative 156

simulated data sets corresponding to different surveillance methods available in the field––dengue 157

incidence, ovitrap/house index, BG-trap, and Gravid trap, respectively: 158

• Scenario 1: human incidence data only, given by yh = κh(αEh) (integrated to a weekly 159

cumulative incidence) 160

• Scenario 2: human incidence data (yh) and daily aquatic (immature) mosquito counts, given 161

by ya = κaA 162

• Scenario 3: human incidence data (yh), aquatic mosquito counts (ya), and daily adult mosquito 163

counts, given by ym = κm(Sm + Em + Im) 164

• Scenario 4: human incidence data (yh), aquatic mosquito counts (ya), and daily adult mosquito 165

counts broken down by infection status, allowing us to break ym into yms = κmSm and 166

ymei = κm(Em + Im). 167

2.2.4 Estimation with Simulated Data 168

For parameter estimation using the simulated data, we fit the model with weighted least squares to 169

account for the different scales for mosquito and human data sets. The weights are the same for 170

each point within each individual dataset (i.e. weighted by the average data value). 171
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2.3 Identifiability Analysis 172

We evaluated the structural and practical identifiability of the parameters, given the model and 173

different possible data sets described above. We will give a brief overview of the identifiability 174

definitions and methods used here. For a more complete review, please refer to [80–83]. 175

In general there are two types of identifiability: structural identifiability, which examines the 176

best-case scenario of perfectly measured, noise-free data, in order to reveal the inherent, theoretical 177

identifiability derived from the model structure itself; and practical identifiability, which examines 178

how parameter identifiability fares when real-world data issues such as noise, sampling frequency, and 179

bias are considered [82]. When a model is unidentifiable, model parameters usually form identifiable 180

combinations, which are combinations of parameters that are identifiable even though the individual 181

parameters in the combinations are not. 182

2.3.1 Structural Identifiability Analysis 183

We first examined structural identifiability using two approaches: differential algebra [81,84–87] and 184

the Fisher information matrix [80, 88–90]. A short overview of both methods, formal definitions, 185

and examples are provided in the Supporting Information. 186

In brief, the differential algebra approach is an analytical method which examines whether is 187

possible, from the model equations and variables measured, to uniquely determine (estimate) the 188

parameter values. The approach is based only on the model and data structure—it assumes perfect, 189

noise-free data, without consideration of real-world issues of noise, bias, or sampling. This represents 190

an idealized, best-case scenario; however many biological and epidemiological models are structurally 191

unidentifiable, making this a useful first step in examining the parameter information available for a 192

given model and data. 193

The differential algebra approach provides global results of model structural identifiability and 194

closed forms of the relationships between parameters, but it is usually very computationally expensive. 195

The Fisher information matrix (FIM) can be used as numerical or analytical approximation to 196

examine structural identifiability for a single point in parameter space (local results), for example, 197

by using very finely sampled simulated data, as discussed in more detail in [90,91]. Given that the 198

FIM is often used as a numerical rather than analytical method, there can be limited generalizability 199

across the parameter space. However, it is significantly faster and less computationally intensive 200

than differential algebra approach. 201

Here, we test the four simulated data scenarios given above, using the differential algebra approach 202
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when possible (using both Mathematica code as well as the freely available packages COMBOS [92] 203

and Daisy [93]), and the FIM when the differential algebra approach was too computationally 204

intensive to converge to a solution. 205

2.3.2 Structural and Practical Identifiability Using the Profile Likelihood 206

Another way to assess identifiability is the profile likelihood [82]. Taking p = {θ1, · · · , θp} as the 207

parameters to be estimated, we fix a parameter (θi) across a range of values, which is denoted as 208

[min(θi),max(θi)], and fit the remaining parameters {θj |j = 1, . . . , p, j 6= i} using the likelihood 209

function L for each value of θi in [min(θi),max(θi)]. In our case, least squares is used to compute 210

the best-fit values of θis, constituting the likelihood profile for the fixed parameter. A minimum in 211

the profile likelihood indicates structural identifiability. A parameter is structurally unidentifiable 212

when its likelihood profile is flat and is practically unidentifiable when the curvature of its likelihood 213

profile is shallow [82,90]. However, the degree of shallowness for a profile is a gradated question, 214

so there is often some question of where to set a threshold for practical unidentifiability. In order 215

to better decide whether the profile is “flat”, we construct an approximate 95% upper confidence 216

bound for the profile likelihood: σ̂2χ2
0.95,p, where σ̂ =

√∑n
i=1[yi−(ŷi)]2

n−p with n denoting the number 217

of observations, p the number of parameters to be estimated, and y and ŷ the observations and 218

model trajectory respectively [82]. Using profile likelihood method, we examine the identifiability of 219

the model with the four simulated data scenarios as well as the real dengue case data from 2010 in 220

Kaohsiung, Taiwan. 221

3 Results 222

3.1 Model Fitting and Parameter Estimation 223

Using 2010 dengue incidence data in Kaohsiung, the fitted model was able to describe the general 224

trend of the dengue epidemic. The left panel in Fig. 3 shows the dengue incidence data in 2010 and 225

the fitted epidemic curve (yh). The model captures the overall epidemic size and the long tail at the 226

end (though it overshoots for some of the tail). The fitted parameter values are given in Table 1. 227
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Fig 3. (A) model (dotted line) fitted to weekly incidence data (black circles) in Kaohsiung, Taiwan
(2010); (B) simulated mosquito population data corresponding to Scenarios 2-4.

As described in the methods, we also simulated both human and mosquito population data which 228

is potentially collectible in the field. The simulated mosquito population data included ya (aquatic 229

stage), ym (adult mosquitoes), and yms (susceptible mosquitoes) and ymei (infected mosquitoes), 230

shown in Fig. 3 (right panel). The fitted model and these simulated data were used for the following 231

identifiability analyses. 232

3.2 Differential Algebra and Fisher Information Matrix (FIM) 233

Using the differential algebra approach, we tested the best-case scenario including all the possible 234

data sets from field, i.e. Scenario 4: dengue incidence, aquatic mosquito counts, infected mosquitoes, 235

and susceptible mosquitoes. With these four types of data together, we proved that the model is 236

structurally identifiable. The detailed proof can be found in the Supporting Information section. 237

However, we were not able to apply the differential algebra method to the remaining three scenarios, 238

due to computational limitations. Therefore, we constructed the FIM to examine the structural 239

identifiability of the model with all scenarios (Scenarios 1-4), using simulated, noise-free dengue 240

incidence and mosquito counts. The FIMs for all the scenarios were full-rank (rank=6, the number 241

of parameters to be estimated), indicating that the model is locally structurally identifiable at the 242
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Parameter description Value Source

µ Human birth and death rate 0 [51]

βmhβmhβmh Rescaled mosquito-to-human infection rate 14.15 Fitted

α Intrinsic incubation rate 0.14 [73–75]

η Recovery rate 0.2 [73]

ξξξ Rescaled oviposition-fertilization rate of larvae 2.03 Fitted

µaµaµa Loss rate for aquatic (immature) mosquitoes (due
to death and maturation)

4.18 Fitted

βhmβhmβhm Rescaled human-to-mosquito infection rate 0.03 Fitted

µmµmµm Mosquito death rate 0.32 Fitted

γ Extrinsic incubation rate 0.1 [73–75]

κhκhκh Fraction of cases reported multiplied by total hu-
man population at risk

1546.74 Fitted

κa Maximum possible immature mosquito counts ob-
served in traps: fraction of aquatic mosquitoes
observed times total carrying capacity of aquatic
mosquitoes (used for simulated data only)

93420 [94]

κm Maximum possible observed growth rate of new
adult mosquitoes: fraction of adults mosquitoes
observed times the maximum maturation rate of
mosquitoes (used for simulated data only)

98.71 [94]

Table 1. Parameter estimates and values. Estimated parameters are marked in bold; confidence
bounds and uncertainty for the fitted parameters are examined further below.

fitted values in Table 1. 243

3.3 Profile Likelihood of Estimated Parameters 244

The parameter profile likelihoods for both the dengue incidence data in 2010, Kaohsiung and the 245

noise-free, simulated incidence data were very similar, with the Scenario 1 profiles shown in Fig. 4 246

and the Kaohsiung data in Supporting Information S4 Fig. Taking βmh in Fig. 4 as an example, the 247

star represents the weighted sum of squared error (SSE) of the original fitted parameter values, and 248

the dots are the SSE after adjusting the βmh value and re-fitting the rest of the parameters. The 249

dashed lines are the thresholds for the approximate 95% confidence bound of the profile likelihood. 250

In principle, the profile likelihood curves of identifiable parameters should cross the thresholds 251

on either side of the minimum (star), and the parameter values where they cross would be the 252

confidence bounds. In this case, all the profiles are flat, meaning the fits are very similar regardless 253
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of the changing parameter values, and the confidence bounds are effectively infinite in one or both 254

directions. This result would initially appear at odds with the structural identifiability of the model 255

we showed earlier; however, upon zooming in the profiles, we can see there are minima in each 256

profile (Supporting Information S5 Fig). This suggests that although the model is structurally 257

identifiable (consistent with the results from differential algebra and FIM approaches), it is not 258

practically identifiable. To investigate the sources of this practical unidentifiability, we generated 259

scatter plots of each pair of parameters, to evaluate whether any parameters are related to one 260

another and form practically identifiable combinations. We were particularly interested in the pair 261

βmh and βhm—since they form a product in R0, they could potentially compensate for one another 262

and maintain the same overall magnitude of the epidemic. Indeed, these two parameters do appear 263

to follow an approximate product relationship in their profiles, as illustrated in Fig. 5. In addition, 264

there was a strong linear relationship between ξ and µa, which are the parameters controlling the 265

size of aquatic mosquito population. The remaining parameter relationships are shown in Supporting 266

Information. 267
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Fig 4. Profile likelihoods (black circles) assuming simulated, noise-free human incidence data
(Scenario 1). Stars indicate the minimum sum of squared error (SSE) and dashed lines indicate the
threshold for 95% confidence bounds. All six fitted model parameters are practically unidentifiable,
with shallow minima which do not cross the confidence interval threshold within realistic biological
ranges (zoomed in versions of the profiles showing the minima are given in the Supplementary
Information).
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Fig 5. Parameter relationship scatter plots derived from the Scenario 1 profiles shown in Fig. 4,
showing the relationships between βhm and βmh as βmh is profiled and between ξ and µa as ξ is
profiled. The two parameters in each pair compensate for one another, leading to the flat profile
observed in Figure 4.

3.4 Profile Likelihood with Simulated Mosquito Data 268

To evaluate whether including mosquito data collection could enhance model identifiability, we 269

computed profile likelihood of the parameters using simulated mosquito population data sets 270

(Scenarios 2, 3 and 4). A zoomed-in comparison between the βmh profiles of Scenario 1 (only 271

human incidence data), Scenario 2 (adding larva data), Scenario 3 (adding larva and adult mosquito 272

data), and Scenario 4 (adding larva, adult mosquito and infected mosquito data) is shown in Fig. 273

6. The profile was improved after adding mosquito information, as the curve slightly tilts up on 274

the right-hand side and becomes higher on the left-hand side. However, the profiles including 275

mosquito population data still do not exceed the 95% confidence threshold within a very wide range 276

of βmh, implying that in practice there is not much obvious improvement on the profile likelihood 277

after including mosquito surveillance data (Supporting Information S3 Fig). We note that the 278

small deviations from the profile curve are due to non-convergence of the estimation algorithm for 279

some runs. The profiles for the remaining parameters are similar and are given in (Supporting 280

Information S3 Fig). The one exception to the overall trend of practical unidentifiability was that 281

the reporting fraction parameter for the immature mosquitoes (κa) was identifiable for all Scenarios 282

where mosquito data is measured (this parameter does not appear when only human data is used). 283
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Fig 6. Profile likelihoods for βmh with human incidence data only (Scenario 1), human incidence
and larva count data (Scenario 2), human incidence, larva counts, and adult mosquito counts
(Scenario3), and data for human incidence, larva counts, adult mosquito counts, and infected adult
mosquito counts (Scenario 4).

3.5 Profile Likelihood with Fixed Parameters 284

Another way to resolve practical unidentifability is to decrease the number of parameters to be 285

estimated, which can be done in the real world by having more information about specific parameters, 286

such as using laboratory data to estimate the death rate for mosquito larvae. We examined this 287

situation by fixing different sets of parameters to their originally fitted values (Table 1) and fitting 288

the remaining parameters using synthesized dengue incidence data (Scenario 1). We demonstrate 289
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the results for the βmh profile likelihood in Fig. 7. Given the relationship between βhm and 290

βmh, one might expect fixing βhm could resolve βmh’s identifiability; nevertheless, the profiles 291

indicate that fixing only one of the parameters appearing in R0 (βhm or µm) is not sufficient to 292

make βmh identifiable. Fixing any of other combinations of the parameters not shown in R0 does 293

not improve βmh’s identifiability either. However, after fixing βhm as well as either µm or the 294

pair ξ and µa, we obtained profile likelihoods with clear minima, crossing the confidence interval 295

threshold, suggesting with a better idea or prior knowledge about these parameters, we can make 296

βmh identifiable. Unfortunately, as shown in Supporting Information, the whole model does not 297

become identifiable until we fix at least four out of six parameters of interest. A similar idea could 298

also be incorporated in a Bayesian framework by adding sufficiently strong priors to some of the 299

unidentifiable parameters, which could allow successful estimation of the parameters. We note that 300

due to the model unidentifiability, the estimation would thus rely heavily on the priors. 301

0 50 100 150 200 250
βmh

0

500

1000

1500

S
S

E

0.0 0.5 1.0 1.5 2.0 2.5
βmh (fix βhm) 1e2

0

500

1000

1500

0 50 100 150 200 250
βmh (fix µm)

0

500

1000

1500

0 50 100 150 200 250
βmh (fix µm, βhm)

0

500

1000

1500

S
S

E

0 50 100 150 200 250
βmh (fix κh, ξ, µa)

0

500

1000

1500

0 50 100 150 200 250
βmh (fix κh, ξ, βhm)

0

500

1000

1500

0 50 100 150 200 250
βmh (fix κh, βhm, µa)

0

500

1000

1500

S
S

E

0 50 100 150 200 250
βmh (fix ξ, βhm, µa)

0

500

1000

1500

0 50 100 150 200 250
βmh (fix κh, ξ, βhm, µa)

0

500

1000

1500

Fig 7. Profile likelihoods of βmh when only subsets of µa, ξ, κ, µm and βmh are fitted. The fixed
subset (in addition to βmh) is shown in parentheses on the x-axis.
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3.6 Basic Reproduction Number (R0) 302

Since R0 is an important index for understanding disease transmission and predicting future 303

epidemics, a key question is whether we can still estimate R0 even when the model is practically 304

unidentifiable. As an example exploration of this question, we calculate R0 using Eq. (3), while 305

profiling parameters βmh and βhm, using Scenario 1 (human incidence data). Fig. 8 demonstrates 306

that R0 stays stable across the profile of βmh and βhm (the plots of the relationship between R0 307

and other parameters are shown in Supporting Information S6 Fig. The result indicates that we can 308

often still obtain sensible R0 estimates from the model with human incidence data, even though we 309

cannot properly estimate the individual parameters. 310
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Fig 8. Values for R0 as the two transmission parameters, βmh and βhm are varied in the profile
likelihoods in Fig. 4. For each value of the profiled parameter, the plotted R0 value uses to the
best-fit values of the remaining parameters. R0 remains relatively constant over the profiled
parameter range, in spite of large changes in the parameter values.

3.7 Example Intervention Simulation 311

We implement a very naive intervention in the model to demonstrate that ignoring unidentifiability 312

can lead to misleading outcomes. We first pick two sets of parameters from the profile in Fig. 4 313

that generate very similar fits (shown in Fig. 9, left panel). We then remove 10% of the aquatic 314

(immature) mosquito population each day to simulate the population control of mosquito larvae, 315

which is a fairly common countermeasure against dengue. With the same implementation, the 316

responses of the two parameter sets differ substantially: one epidemic curve only decreases minimally; 317

however, the other simulation decreases significantly and dies out at an early stage of the outbreak 318

(Fig. 9, right panel). 319
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Fig 9. Illustration of the implications of model unidentifiability on intervention prediction. Left:
two model simulations using different parameter values that give the same fit to data, based on the
profiles in Fig. 4 (red solid line - original fitted parameter values from Table 1; black dashed line -
[βmh = 38.10, κh = 1625.42, ξ = 0.13, µa = 0.15, βhm = 0.02, µm = 0.42] ). Right: Simulated
intervention results for both parameter sets, supposing that 10% of the aquatic (immature)
mosquito population is removed at each time step.

4 Discussion 320

In this study, we explored both structural and practical identifiability of a commonly used SEIR- 321

based model of vector-borne disease. We demonstrated that even when the model is structurally 322

identifiable, it is likely to be difficult or impossible to estimate both human and mosquito parameters 323

from commonly available human incidence data in a single epidemic. In other words, although the 324

likelihood surface of the model has a single optimum, it cannot practically be distinguished from a 325

wide range of neighboring points on the likelihood surface. Moreover, even in cases when human 326

incidence data is combined with the types of mosquito data collected in the field, the practical 327

identifiability of the parameters did not significantly improve. We then showed that more in-depth 328

study of mosquito ecology and behaviors, which can give us direct information about individual 329

parameters, was more efficient in terms of improving model identifiability. Unfortunately, obtaining 330

accurate measurements for any of these parameters can be very difficult in practice, as they often 331

vary depending on environmental and ecological factors such as temperature, weather events such as 332

storms, and predation by other species [17,94–97]. We would also need additional information on 333

most of the parameters to make the model fully identifiable, which may not be feasible in real-world 334
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research. 335

In spite of these identifiability problems, the model generates very similar R0 estimates across a 336

range of profiled parameter values producing the same fit to the data. This means that estimation 337

using the model may still be useful in characterizing the disease outbreak and spread, calculating 338

vaccination coverage, and assessing the risk of vector-borne disease, even if the individual parameters 339

cannot be determined. R0 is an important measure that can be used to evaluate potential interven- 340

tions in public health. For example, we can simulate a model that implements the intervention and 341

compare the R0 with and without the intervention to evaluate the potential effectiveness (e.g. by 342

examining whether R0 becomes less than one, or the magnitude of the reduction). 343

Nevertheless, we cannot solely depend on R0 since it is possible to obtain very different predicted 344

responses with the same intervention implementation, as shown in (Fig. 9). The two alternative 345

parameter sets shown in Fig. 9 both fit the data equally well and have similar R0 values (1.30 and 346

1.33), so that we cannot distinguish which of the predicted intervention responses is more likely. The 347

intervention simulation used here is quite simple, but represents a commonly used control strategy. 348

The example illustrates how a lack of consideration of parameter identifiability can potentially lead 349

to significant errors in evaluating or comparing different intervention strategies. 350

This model is a simple interpretation of the world, and only assumes one outbreak and single 351

viral strain. Despite this simple structure, we still cannot properly estimate the parameters from the 352

model. Models with more complicated designs are more likely to be unidentifiable, underscoring the 353

importance of taking model identifiability into account before making any inferences from the model. 354

Identifiability analysis allows us to understand what a model and data can really tell us, and can 355

help with planning before we invest time and resources into a experimental or field study. Even if 356

unidentifiability is inevitable, as long as we understand the behavior, uncertainty, and the limitations 357

of the model, mathematical models can still be powerful tools to study disease transmission. In the 358

analyses present here, we cover a set of basic (and best-case) scenarios. More comprehensive research 359

is needed to investigate how to handle problems that are commonly encountered in field research— 360

different types of measurement and process noise, missing data, and data resolutions—which can 361

further obstruct parameter estimation. Nonetheless, this work shows that parameter estimation from 362

incidence data alone is likely to be difficult or impossible, highlighting the importance of integrating 363

parameter information directly from experimental or field data. Given that such experimentally 364

measured parameters usually vary as a function of environmental variables such as temperature 365

and rainfall, future work to evaluate how model identifiability changes once the dependence is 366

20

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 20, 2017. ; https://doi.org/10.1101/164079doi: bioRxiv preprint 

https://doi.org/10.1101/164079


incorporated into the parameters would be a highly useful next step. 367
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S1 Text Background on structural identifiability using differential algebra and the 375

Fisher information matrix. 376

S2 Text Structural identifiability proof of Scenario 4 using differential algebra. 377

S3 Fig. Profile likelihoods with simulated human surveillance and mosquito data. 378

Profile likelihoods (black circles) assuming simulated human case surveillance data as well as 379

simulated data on: immature mosquito (larvae/pupae) counts (top panel), immature and adult 380

mosquito counts (center panel), and immature and adult mosquito counts with adult mosquito 381

infection status (bottom panel). Stars indicate the best-fit parameter value, and dashed lines indicate 382

the threshold for the 95% confidence intervals. 383

S4 Fig. Profile likelihood with real human surveillance data. Profile likelihoods (black 384

circles) with human case surveillance data from 2010 in Kaohsiung, Taiwan. Stars indicate the 385

best-fit parameter value, and dashed lines indicate the threshold for the 95% confidence intervals. 386

S5 Fig. Zoomed-in profile likelihoods. Zoomed-in views of the profile likelihoods in Figure 4 387

and Supporting Information S3 Fig, illustrating the minima surrounding the best fit values (best-fit 388

parameter values given as stars). 389

S6 Fig. Parameter relationships for human surveillance data profile likelihoods. Com- 390

pensatory relationships between parameters as each parameter is profiled, assuming human surveil- 391
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lance data. Some parameters show pronounced and consistent relationships with one another, 392

indicating the possibility of a practically identifiable combination, while other parameters appear to 393

have no relationship or noisy/inconsistent relationships depending on which parameter is profiled 394

(possibly indicating more complex combination structures between multiple parameters rather than 395

a single pair). 396

S7 Fig. Profile likelihood when fitting subsets of parameters. Profile likelihood (black 397

circles) when fixing 1) µm and βhm; 2)βhm, µa, and ξ; 3)βhm, κh µa, and ξ. Stars indicate the 398

best-fit parameter value, and dashed lines indicate the threshold for the 95% confidence intervals. 399
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