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ABSTRACT 

 Plant nuclear multisubunit RNA polymerase IV plays a key role in the RNA-directed DNA 

methylation (RdDM) pathway for transcriptional silencing of transposons, viruses and specific genes by 

synthesizing precursors of 24 nt siRNAs that guide the process. The Pol IV largest subunit, NRPD1 is 

derived from the Pol II largest subunit but has a unique carboxy-terminal domain (CTD) of unknown 

function. We show that the NRPD1 CTD is critical for transcriptional silencing of target loci and for 

producing 24 nt siRNAs at high levels. However, the CTD is surprisingly dispensable for near wild-type 

levels of Pol IV-dependent genomic cytosine methylation. These results suggest that low levels of 24 nt 

siRNAs, produced at only 20-30% of wild-type levels, are sufficient for full RNA-directed DNA 

methylation, yet insufficient for silencing, suggesting additional roles for siRNAs beyond DNA 

methylation.  Moreover, at a subset of target loci, neither siRNA levels nor cytosine methylation are 

impaired upon deletion of the CTD, yet silencing is lost. Collectively, the non-linear relationships 

between siRNA levels, cytosine methylation and silencing suggest the existence of additional 

mechanisms of silencing dependent on Pol IV transcription and mediated by the CTD, such as promoter 

occlusion to inhibit the activities of other polymerases. 
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INTRODUCTION 

 

 Plants encode five functionally distinct nuclear multisubunit RNA polymerases: the ubiquitous 

Pols I, II, and III, present in all eukaryotes, and two plant-specific polymerases, Pol IV and Pol V that 

have specialized roles in RNA-mediated transcriptional silencing. Pols IV and V are best understood in 

the context of RNA-directed DNA methylation (RdDM), which is utilized by plants to silence 

transposons and other repeats in an RNA-guided manner (reviewed in: MATZKE AND MOSHER 2014; 

WENDTE AND PIKAARD 2017). In the canonical RdDM pathway, Pol IV partners with the RNA-

dependent RNA polymerase, RDR2, to produce short double-stranded RNAs (LAW et al. 2011; HAAG et 

al. 2012; BLEVINS et al. 2015; ZHAI et al. 2015). These double stranded RNAs serve as precursors for 24 

nt siRNAs, which are produced by the Dicer endonuclease, DCL3 (XIE et al. 2004; BLEVINS et al. 2015). 

The siRNAs are then bound by Argonaute family proteins, primarily AGO4 or AGO6, to form AGO-

siRNA silencing complexes (ZILBERMAN et al. 2003; ZHENG et al. 2007). In parallel, Pol V 

independently transcribes the genomic regions that will be silenced, producing longer non-coding RNAs 

that serve to recruit AGO-siRNA complexes via complementary base-pairing interactions between the 

siRNAs and the Pol V transcripts (WIERZBICKI et al. 2008; WIERZBICKI et al. 2009), or the corresponding 

DNA (LAHMY et al. 2016). This allows recruitment of additional proteins, including the de novo cytosine 

methyltransferase, DRM2, and other chromatin modifiers that mediate repressive histone modifications 

and changes in chromatin that bring about transcriptional silencing (BOHMDORFER et al. 2014; PIKAARD 

AND MITTELSTEN SCHEID 2014; ZHONG et al. 2014). 

 Pols IV and V have unique largest subunits, which arose by the process of evolution following 

ancient duplication of the Pol II largest subunit gene, NRPB1 (LUO AND HALL 2007; REAM et al. 2009; 

TUCKER et al. 2010; HAAG et al. 2014; WANG AND MA 2015). The Pol IV largest subunit, NRPD1, and 

the Pol V largest subunit, NRPE1, each retain the conserved domains A-H that are characteristic of all 

multisubunit RNA polymerase largest subunits, but each have unique carboxy-terminal domains (CTDs) 

suspected to contribute to their functional differences (PONTIER et al. 2005; HAAG AND PIKAARD 2011; 
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HUANG et al. 2015). Whereas the NRPB1 CTD is comprised of 39 repeats of the heptad consensus 

YSPTSPS, the NRPD1 (Pol IV) CTD is comprised of a Defective Chloroplasts and Leaves (DeCL) 

domain of ~100 amino acids, so named due to its similarity to a small family of chloroplast proteins 

implicated in pre-ribosomal RNA processing (KEDDIE et al. 1996; BELLAOUI et al. 2003). The NRPE1 

(Pol V) CTD is much longer (~700 amino acids) than either the Pol II or Pol IV CTDs and is comprised 

of multiple subdomains, including a linker region, a 17 amino acid-repeat region, a DeCL domain, and a 

glutamine-serine rich repeat region (PONTIER et al. 2005; HAAG AND PIKAARD 2011; HUANG et al. 2015; 

TRUJILLO et al. 2016). The presence of DeCL domains in both Pols IV and V, and the conservation of this 

domain in diverse plant lineages (HUANG et al. 2015) has suggested that the domain likely has one or 

more important functions. Indeed, the DeCL domain of NRPE1 has recently been shown to be required 

for production of Pol V transcripts in vivo and for RdDM at the vast majority of Pol V-dependent loci 

(WENDTE et al. 2017).  

 In this study, we tested the functional significance of the Pol IV CTD. To do so, we compared 

nrpd1-3 null mutant plants with mutants transformed with transgenes that encode either full-length 

NRPD1 or NRPD1 missing its C-terminal DeCL domain (NRPD1-ΔCTD). We show that the truncated 

NRPD1-ΔCTD protein restores Pol IV-dependent DNA methylation to near wild-type levels at most loci, 

like full-length NRPD1, demonstrating that the DeCL domain of Pol IV is not critical for RdDM, unlike 

the DeCL domain of Pol V. However, siRNA levels are severely impaired when the CTD is deleted. 

Taken together, these findings indicate that most Pol IV-dependent siRNAs are dispensable, at least with 

respect to cytosine methylation. At an interesting subset of loci, wild-type levels of DNA methylation and 

siRNAs are restored by NRPD1-ΔCTD, yet silencing is not re-established. This suggests the existence of 

additional mechanisms for Pol IV-dependent silencing beyond siRNA biogenesis or RdDM. 

 

 

 

 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 16, 2017. ; https://doi.org/10.1101/164285doi: bioRxiv preprint 

https://doi.org/10.1101/164285
http://creativecommons.org/licenses/by-nc/4.0/


5 
 

 

RESULTS  

 

The NRPD1 CTD is not required for Pol IV holenzyme assembly, nuclear localization, or RNA 

polymerase activity. 

 To test the functional significance of the Pol IV CTD, nrpd1-3 null mutants were transformed 

with transgenes encoding either full length NRPD1 or NRPD1 lacking its C-terminal DeCL domain 

(amino acids 1337-1453; referred to as NRPD1-ΔCTD) (Figure 1A). Each recombinant protein was 

engineered to include a carboxy-terminal Flag epitope tag that enabled immunoprecipitation using anti-

Flag agarose beads.  Immunoblot detection revealed that full length NRPD1 and NRPD1-ΔCTD are 

expressed and recovered at similar levels (Figure 1B; see also Figure 3C). Furthermore, each recombinant 

protein was found to co-immunoprecipitate with the Pol IV second-largest subunit, NRP(D/E)2 and with 

RDR2, indicating that neither holoenzyme subunit assembly nor RDR2 association require the CTD 

(Figure 1B).  

 Immunolocalization using anti-Flag antibodies revealed that NRPD1-ΔCTD and full length 

NRPD1 are both detectable in isolated cell nuclei as punctate signals (Figure 1C), consistent with 

previous observations made using antibodies that recognize native NRPD1 (PONTES et al. 2006).  

However, in plants expressing the ΔCTD form of the protein, we note that the percentage of nuclei 

showing this punctate pattern was somewhat reduced, whereas the percentage of nuclei displaying a weak 

and uniform staining patter throughout the nuclei was somewhat increased (Figure 1C).  

 To test whether the ΔCTD deletion affects Pol IV's catalytic activity, Pol IV complexes 

assembled using NRPD1 or NRPD1-ΔCTD were immunoprecipitated and tested for in vitro 

transcriptional activity using a DNA oligonucleotide template annealed to a 16 nucleotide RNA primer 

(HAAG et al. 2012). Resulting radiolabeled RNA extension products were then resolved by denaturing gel 

electrophoresis and visualized by autoradiography (Figure 1D). Immunoprecipitated Pol II was tested in 
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parallel with the Pol IV fractions, as a control. Pol II displays higher activity than Pol IV in vitro (Figure 

1D), consistent with previous results (HAAG et al. 2012). Pol IV assembled using the NRPD1-ΔCTD 

subunit displayed activity indistinguishable from Pol IV assembled using full length NRPD1, indicating 

that the CTD is not required for Pol IV's intrinsic RNA polymerase activity (Figure 1D). 

  

The NRPD1 CTD is more important for siRNA levels than for cytosine methylation 

For initial tests of the CTD's roles in RdDM and gene silencing, we turned to the AtSN1 

transposon family, a focus of numerous prior studies. We assays DNA methylation using Chop-PCR, a 

method in which genomic DNA is first incubated with a methylation-sensitive restriction endonuclease 

prior to attempting PCR amplification using primers that flank the endonuclease cleavage site. If the site 

is methylated, the DNA is not cut (chopped) and PCR amplification can occur, as is the case for DNA of 

wild-type Col-0 plants (Figure 1E). However, if methylation is lost, as in the nrpd1-3 mutant, the DNA is 

chopped and cannot be PCR-amplified (Figure 1E). In nrpd1 mutants expressing either full length 

NRPD1 or truncated NRPD1-ΔCTD, PCR products are again obtained, as in wild-type plants, indicating 

that Pol IV-dependent cytosine methylation has been restored by the transgenes and demonstrating that 

the CTD is dispensable for methylation (Figure 1E).  

Given the ability of both recombinant forms of NRPD1 to rescue cytosine methylation in the 

nrpd1-3 mutant background, we were surprised by RNA blot analyses that showed that full-length 

NRPD1 restores production of AtSN1 siRNAs in the nrpd1 mutant background, as expected, but NRPD1-

ΔCTD does not (Figure 1F).  

We next examined AtSN1 expression, using RT-PCR, to assess the degree of transposon 

silencing. AtSN1 is silenced in wild-type Col-0 plants but is derepressed in mutants defective for either 

the largest (nrpd1) or second-largest (nrp(d/e)2) catalytic subunits of Pol IV (Figure 1G), with the latter 

mutant also being defective for Pol V due to use of the same second subunit protein by Pols IV and V. 

We found that AtSN1 silencing is restored in nrpd1-3 mutants that express full length NRPD1, but not in 

mutants expressing NRPD1-ΔCTD (Figure 1G). Taken together, these results suggest an unexpected 
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disconnect, or non-linear relationship, among cytosine methylation, siRNA levels, and transcriptional 

silencing of AtSN1 transposons. 

 To assess, on a genomic scale, the involvement of the CTD in Pol IV-dependent cytosine 

methylation and siRNA biogenesis, we conducted bisulfite sequencing in parallel with small RNA deep 

sequencing. Two independent biological replicates were examined for each of the genotypes tested, which 

were wild-type Col-0, nrpd1-3, or nrpd1-3 expressing either full-length NRPD1 or NRPD1-ΔCTD (see 

Table S1 for complete sequencing statistics). Focusing on DNA methylation in the CHH context, which is 

a hallmark of RdDM, genomic regions that showed at least a 25% decrease in methylation relative to 

wild-type Col-0 were counted as differentially methylated regions (DMRs; see Methods). 1,916 such 

DMRs were identified upon comparison of Col-0 with nrpd1-3 (Figure 2A; Table S2). Of these, 96% 

(1,847) had their methylation restored (to within 25% of wild type levels) by full length NRPD1 and 89% 

(1,701) of the DMR's had their methylation restored by NRPD1-ΔCTD (Figure 2A; Table S2), consistent 

with our initial Chop-PCR tests focused on AtSN1. Quantifying methylated CHH motif frequency as a 

continuous variable, displayed as the percentage of methylated CHH motifs among total CHH motifs 

within all Pol IV-dependent DMR regions, demonstrated that CHH methylation levels in wild-type Col-0 

or nrpd1-3 mutants expressing full length NRPD1 are indistinguishable (Figure 2B; Table S3). In nrpd1-3 

plants expressing NRPD1-ΔCTD, overall CHH methylation was restored to ~70% of wild-type levels 

(Figure 2B; Table S3).  

Re-examination of CHH methylation using more relaxed criteria, in which a decrease in CHH 

methylation of only 10% qualifies as a DMR, 5,439 DMRs were identified in nrpd1-3 mutants compared 

to wild type (Figure 2C; Table S2). Full-length NRPD1 rescued methylation at ~90% of these DMRs, but 

542 regions remained at least 10% hypo-methylated (Figure 2C; Table S2). The NRPD1-ΔCTD transgene 

also rescued methylation at the majority of loci (~60%), but 2,264 regions remained at least 10 % hypo-

methylated (Figure 2A; Table S2). The results of the stringency tests suggest that at those loci where the 

CTD influences CHH methylation levels, methylation losses are partial and quantitative rather than 

absolute, unlike the effects of a null mutant.  

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 16, 2017. ; https://doi.org/10.1101/164285doi: bioRxiv preprint 

https://doi.org/10.1101/164285
http://creativecommons.org/licenses/by-nc/4.0/


8 
 

Analysis of the RNA-seq data identified 7,295 genomic loci where 24 nt siRNA clusters occur 

and where siRNA read counts decrease at least 4-fold in nrpd1-3 mutants relative to wild-type Col-0 

(Figure 2D, Table S4).  Expression of full-length NRPD1 restored the siRNA levels at ~91% of these 

clusters, but 643 clusters continued to have siRNA levels reduced at least 4-fold relative to wild-type 

(Figure 2D; Table S4). In contrast, upon expression of NRPD1-ΔCTD, siRNA levels for 60% of the loci 

(4,411/7,295) remained at least 4-fold lower than in wild type (Figure 2D; Table S4). Quantification of 

siRNA read counts, summed for all 24 nt siRNA clusters, revealed that in nrpd1-3 mutants, small RNA 

levels drop to ~1% of wild-type (log2 ratios of -6.6 and -5.7, relative to wild-type, for the two replicates; 

Figure 2E; Table S4). Expression of full-length NRPD1 substantially restored siRNA levels at these loci, 

to ~70% of wild-type (log2 ratios of -0.7 to -0.6 for the two replicates). However, expression of NRPD1-

ΔCTD also restored siRNA levels to only to ~20% of wild-type (log2 values of -2.3 and -2.2 for the two 

replicates; see Figure 2E; Table S4).  

 

The majority of Pol IV-dependent RNAs are dispensable for RNA directed DNA methylation 

To more closely examine the relationship between siRNA and methylation levels, we identified 

the 500 loci at which the % CHH methylation is most similar in wild-type plants and in nrpd1-3 mutants 

expressing NRPD1-ΔCTD. At these loci, methylation is severely depleted in nrpd1-3 mutants yet is 

completely rescued by either full-length NRPD1 or NRPD1-ΔCTD (Figure 3A). However, siRNA levels 

at these 500 loci are not fully restored by NRPD1-ΔCTD; instead, their levels remain ~3-fold lower than 

in wild-type (Figure 3A; Table S5). Taken together, the methylation and siRNA data suggest that two-

thirds of the siRNAs produced in wild-type cells may be dispensable, without impacting the maximal 

level of methylation achievable by RdDM at the corresponding loci.  

We next examined the 500 loci where methylation is least rescued, relative to wild-type, by 

NRPD1-ΔCTD. At these loci, siRNAs levels in the NRPD1-ΔCTD plants are ~6-fold lower than WT 

(Figure 3B, Table S6). Collectively, our observations suggest that a 3-fold reduction in siRNA levels can 
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be tolerated without detectable loss of methylation, but a 6-fold reduction in siRNAs correlates with 

reduced levels of cytosine methylation, suggesting the possibility of a threshold level somewhere in 

between. 

We considered the possibility that the CTD may enable Pol IV function via an alternative RdDM 

pathway. As a test of this hypothesis, we crossed nrpd1 plants expressing full-length NRPD1 or NRPD1-

ΔCTD with an nrpe1-11 mutant defective for Pol V. As expected, the expression level of the NRPD1-

ΔCTD protein was unaffected by the nrpe1 mutation (Figure 3C). Assessment of DNA methylation using 

Chop-PCR assays revealed that methylation was lost at AtSN1 and soloLTR loci in both nrpd1-3 and 

nrpe1-11 mutants and was restored in nrpd1 mutants that express full length or ΔCTD versions of NRPD1 

(Figure 3D).  However, methylation is not restored if nrpe1 is also mutant, indicating that NRPD1 

transgene-dependent restoration of methylation is still Pol V-dependent, consistent with methylation via 

the known RdDM pathway. 

We next tested whether the reduced siRNA levels in nrpd1 ΔCTD could be attributed to impaired 

processing of Pol IV and RDR2-dependent siRNA precursors (P4R2 RNAs) into siRNAs. P4R2 RNAs 

are mostly ~30-50 nt, double stranded RNAs (BLEVINS et al. 2015; ZHAI et al. 2015). Full length P4R2 

RNAs are efficiently processed by Dicers into siRNAs, and are thus present at low levels in wild type 

plants (BLEVINS et al. 2015). However, when siRNA processing is impaired, as in Dicer mutants, the 

longer P4R2 RNAs accumulate (BLEVINS et al. 2015; LI et al. 2015; ZHAI et al. 2015). We examined the 

size distribution of sRNAs in our libraries, as well as sRNAs sequenced from dcl2 / dcl3 / dcl4 triple 

mutants (BLEVINS et al. 2015). In wild-type plants, the siRNA size distribution shows a strong peak at 24 

nt and low levels of higher molecular weight size classes (Figure 3E; Table S7). Pol IV-dependent 

siRNAs are virtually eliminated in nrpd1-3 mutants, but are restored upon expression of full-length 

NRPD1 or NRPD1-ΔCTD (Figure 3E; Table S7). This is in contrast to dcl2 / dcl3 / dcl4 triple mutants in 

which 24 nt siRNAs are lost and P4R2 RNAs longer than 24 nt accumulate, with a peak at ~30 nt (Figure 

3E; Table S7) (BLEVINS et al. 2015). Collectively, the restoration of 24 nt siRNAs, without evidence for 
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an increase in precursors, indicates that dicing is not disrupted in plants expressing NRPD1-ΔCTD. This, 

in turn, suggests that the low levels of siRNAs in NRPD1-ΔCTD plants results from reduced precursor 

RNA synthesis. Consistent with this hypothesis, examination of putative P4R2 RNAs in the size range of 

26-60 nt, which can be detected at low levels at some loci in wild-type plants, revealed that their levels 

are reduced in plants expressing NRPD1-ΔCTD to an extent that is proportional to the reduction in siRNA 

abundance (Figure 3F; Table S8).  

 

Pol IV is required for transcriptional silencing independent of DNA methylation 

 In nrpd1 mutants, ~50 transposable element families or protein coding genes are derepressed, 

including AtSN1 transposons (BLEVINS et al. 2014). We investigated the expression status of 15 of these 

loci to assess NRPD1 CTD involvement in their transcriptional silencing. In wild-type plants, transcripts 

derived from these 15 loci are either not detectable or present at low levels (Figure 4; Figure 5). By 

contrast, all 15 are expressed at high levels in nrpd1-3 mutants, as detected by RT-PCR, indicating the 

loss of silencing  (Figure 4; Figure 5). Expressing full-length NRPD1 in the nrpd1-3 mutant background 

restores silencing to wild type levels for all loci tested (Figure 4; Figure 5). Interestingly, expression of 

NRPD1-ΔCTD failed to restore silencing at 7 of the 15 loci tested (AtSN1, SDC, AT3TE63155, 

AT5TE47755, AT3TE47840, ERT14, and soloLTR; Figure 4A-G), yet did restore silencing at 8 of the loci 

(ERT7, ERT9, AT3G30844, AT1TE75910, AT2TE07550, AT2TE82000, AT3TE37570, and AT4TE27915; 

Figure 5A-H). We considered the possibility that loci where NRPD1-ΔCTD was unable to restore 

silencing might correspond to loci where wild-type levels of DNA methylation are also not re-established. 

However, this is not the case; methylation levels were surprisingly equivalent, or nearly equivalent (less 

than a 10% decrease) to wild-type (Figure 4). Collectively, these suggests indicate that the CTD is needed 

for silencing in a manner that is independent of DNA methylation. 

We next asked whether there is a discernable relationship between silencing and siRNA levels at 

the 15 loci chosen for investigation. Most loci that failed to be silenced in NRPD1-ΔCTD plants showed a 
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decrease in siRNA levels compared to wild type, but there were exceptions (Figure 4). For instance, at 

AT3TE63155, siRNA levels were nearly fully restored to wild-type levels (Figure 4C, 4D). Furthermore, 

similar, or even more severe, losses of siRNAs occur at loci where silencing is nonetheless restored by 

NRPD1-ΔCTD (Figure 5; see especially AT1TE75910, Figure 5D).  

We considered the possibility that single-nucleotide, position-specific changes in small RNA or 

DNA methylation frequency might go unnoticed in sliding-window analyses that only count RNAs or 

methylcytosines within a given interval. However, displaying sRNAs and methylcytosine data using 

JBrowse (SKINNER et al. 2009) revealed no evidence that this is the case (see Figure S1 for JBrowse 

images corresponding to the loci examined in Figure 4 and see Figure S2 for loci examined in Figure 5).  

 

DISCUSSION 

 Our investigations into the functional significance of the Pol IV largest subunit's CTD 

unexpectedly revealed that siRNA levels, DNA methylation levels, and transcriptional repression are not 

correlated with one another in a simple, proportional manner. The CTD is most needed for production of 

high levels of siRNAs, such that deletion of the CTD results in overall siRNA levels that are only ~20-

30% of wild-type. Remarkably, this substantial reduction in siRNA abundance has a relatively modest 

effect on RNA-directed cytosine methylation. This suggests that siRNAs are produced in excess of the 

number needed to achieve the maximal methylation level achievable by RdDM at target loci. This 

revelation may have bearing on recent studies that showed that residual methylation can occur in dicer 

mutants defective for the production of siRNAs (STROUD et al. 2013; YANG et al. 2016; YE et al. 2016). 

These observations have been interpreted in multiple ways, with one hypothesis being that Pol IV and 

RDR2-dependent siRNA precursors (P4R2 RNAs) may be able to guide methylation without the need for 

dicing into siRNAs (YANG et al. 2016). Another study found that in dicer mutants, AGO4 is nonetheless 

loaded with small RNAs that are the same size as diced siRNAs, leading to the hypothesis that these small 
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RNAs are generated by exonuclease trimming of P4R2 RNA precursors (YE et al. 2016). We propose a 

third, relatively simple explanation, which is that short P4R2 transcripts, falling within the bell-shaped 

normal size distribution of transcript sizes, whose peak is at 30 nt, just happen to be the right size to be 

incorporated into AGO4 without any need for dicing. Our finding in this study that siRNAs produced at 

low levels may direct disproportionately high levels of RdDM suggests that low levels of small RNAs 

have higher potency than previously suspected. 

 At many loci at which the absence of the Pol IV CTD causes low levels of siRNA production, yet 

full methylation, silencing still does not occur, suggesting that high levels of siRNAs, rather than high 

levels of cytosine methylation, are needed for silencing. This, in turn, suggests that siRNAs may have 

functions separate from, or in addition to, the guidance of DNA methylation, such as the guidance of 

chromatin modifying enzymes responsible for establishing repressive histone modifications, as occurs in 

those eukaryotes that do not methylate their genomes (HOLOCH AND MOAZED 2015; MARTIENSSEN AND 

MOAZED 2015).  However, we also identified loci at which essentially wild-type levels of siRNAs and 

wild-type levels of cytosine methylation are both detected, and yet silencing does not occur in the absence 

of the CTD, suggesting that the CTD mediates additional mechanisms of Pol IV-dependent silencing. One 

possibility is that the very process of Pol IV transcription is inhibitory to transcription of genes or 

transposons, possibly by preventing the stable association of transcription factors needed for recruitment 

of RNA polymerases II or III. This latter hypothesis was put forward previously based on studies in maize 

that showed that LTR retrotransposons that are subjected to RdDM and whose silencing depends on Pol 

IV are not similarly dependent on other proteins of the RNA-directed DNA methylation pathway, such as 

the Snf2-like protein, RMR1, or the maize ortholog of RDR2, MOP1 (HALE et al. 2009). In rmr1 or mop1 

mutants, siRNAs and cytosine methylation levels are reduced, similar to Pol IV mutants. However, 

transcriptional derepression of the transposons is only detected in the Pol IV mutants and not in the rmr1 

or mop1 mutants,  supporting the hypothesis that Pol IV mediates silencing independent of the RdDM 

process (HALE et al. 2009). Nuclear run-on studies in both maize and Arabidopsis subsequently revealed 
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that in Pol IV mutants, an increase in Pol II occupancy is detected in the region just downstream of the 

polyadenylation sites of protein-coding genes, suggesting that Pol II termination and polymerase release 

is somehow induced by Pol IV activity (ERHARD et al. 2015; MCKINLAY et al. 2017). Moreover, no 

correlation with siRNAs or DNA methylation was found in these 3' genic regions, suggesting that it may 

be the act of Pol IV transcription that helps clear Pol II from these regions (MCKINLAY et al. 2017). 

 How might the CTD expand the functional repertoire of Pol IV? Our in vitro transcription 

experiments show that Pol IV assembled using NRPD1-ΔCTD has RNA polymerase activity that is 

indistinguishable from Pol IV assembled using full-length NRPD1, at least under conditions in which 

transcription takes place using only an oligonucleotide DNA template and an RNA primer.  Moreover, 

Pol IV interacts with RDR2 regardless of whether full-length NRPD1 or NRPD1-ΔCTD is used to 

assemble the holoenzyme, such that there is no reason to suspect that an ability to synthesize double-

stranded P4R2 RNAs, which are the precursors of siRNAs, should be impaired. We speculate that 

although the CTD is not needed for the fundamental catalytic activity of the Pol IV-RDR2 complex, the 

reduced siRNA levels in vivo in the absence of the CTD likely indicates an impairment in Pol IV activity 

in the context of chromatin. We hypothesize that the CTD may be an important for interactions with 

chromatin remodelers or other proteins that facilitate Pol IV recruitment, elongation, termination on RNA 

processing. Lending credence to this hypothesis, the DeCL domain within the CTD of the Pol V largest 

subunit, NRPE1 is similarly required for production of Pol V transcripts in vivo but not in vitro (WENDTE 

et al. 2017).  

  

 

Materials and Methods 

 

Plant material 
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 Arabidopsis thaliana mutant lines nrpd1-3 and nrpe1-11 have been described previously 

(ONODERA et al. 2005; PONTIER et al. 2005), as have full length NRPD1-Flag (nrpd1-3) and NRPB2-

Flag (nrpb2) transgenes and nrpb2 (PONTES et al. 2006; ONODERA et al. 2008). All plants were grown on 

soil in long day conditions (16 hours light, 8 hours dark). 

 

Generation of the nrpd1 ΔCTD transgenic line 

 The C-terminal domain deletion of NRPD1 was generated by modification of a pENTR-NRPD1 

full-length genomic clone that includes the native gene promoter (PONTES et al. 2006). Using this clone 

as the DNA template, PCR primers were used to generate a truncated version of the gene lacking the CTD 

(Table S9).  Pfu Ultra DNA polymerase (Stratagene) was used to amplify the sequences.  The PCR 

products were gel purified and cloned into pENTR-TOPO S/D (Invitrogen) before being recombined into 

pEarleyGate302 to incorporate a C-terminal FLAG epitope (EARLEY et al. 2006). The resulting plasmid 

was transformed into Agrobacterium tumefaciens and used to transform nrpd1-3 plants using the floral 

dip method (BECHTOLD AND PELLETIER 1998; CLOUGH AND BENT 1998). 

 

 

Protein immunoprecipitation and immunoblot analysis 

 Proteins were extracted from 4 grams of ~2.5 week old above-ground plant tissues that were 

ground to a fine powder in liquid nitrogen. The resulting powder was suspended in 14 ml lysis buffer (50 

mM Tris HCl pH 7.6, 150 mM NaCl, 5mM MgCl2, 10% glycerol, 0.5 mM DTT, 0.1% IGEPAL, 1% Plant 

protease inhibitors (Sigma)), filtered through two layers of miracloth and subjected to centrifugation at 

16,000 X g for 15 minutes at 4ºC. The resulting supernatant was incubated with anti-Flag Agarose 

(Sigma) for 2 hours at 4ºC on a rotating mixer. The agarose resin was then washed twice with lysis buffer 
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and boiled in SDS PAGE buffer. SDS-PAGE was conducted using Tris-glycine gels and proteins were 

then transferred to nitrocellulose membranes for immunoblotting. Antibodies were diluted in TBST + 5% 

(w/v) nonfat dried milk as follows: 1:500 anti-NRP(D/E)2, 1:250 anti-RDR2, 1:500 anti-NRP(B/D/E)11, 

and 1:2,000 anti-Flag-HRP (Sigma).  Anti-rabbit-HRP (Santa Cruz Biotechnology) diluted 1:5,000 was 

used as secondary antibody to bind the primary antibodies. Native antibodies to NRP(D/E)2, RDR2, and 

NRP(B/D/E)11 were previously described (ONODERA et al. 2005; HAAG et al. 2009; WENDTE et al. 

2017). 

 

Nuclear immunolocalization 

 Immunolocalization studies were conducted as described previously (Pontes et al., 2006), using 

nuclei of 4-week old plants fixed in 4% formaldehyde and incubated with antibodies recognizing the C-

terminal Flag epitopes fused to the NRPD1 recombinant proteins. 

 

In vitro transcription assays 

 In vitro transcription was conducted as described in (HAAG et al. 2012) as modified in (WENDTE 

et al. 2017) using Pol IV extracted using lysis buffer ((50 mM Tris HCl pH 7.6, 150 mM NaSO4, 5mM 

NaSO4, 10% glycerol, 0.5 mM DTT, 1% Plant protease inhibitors (Sigma)) and affinity captured on anti-

Flag agarose (Sigma). Pol IV associated resin was washed once with CB100 buffer (100 mM potassium 

acetate, 25 mM HEPES, pH 7.9, 20% glycerol, 0.1 mM EDTA, 0.5 mM DTT, 1 mM PMSF), then 

resuspended in a mix of 50 µL CB100 buffer and 50 µL 2x transcription reaction buffer (120 mM 

ammonium sulfate, 40 mM HEPES, pH 7.6, 20 mM magnesium sulfate, 20 µM zinc sulfate, 20% 

glycerol, 0.16 U/µL RNaseOUT, 20 mM DTT , 2 mM ATP, 2 mM UTP, 2 mM GTP, 0.08 mM CTP, 0.2 

mCi/mL alpha 32P-CTP and 4 pmols of template). Transcription reactions were conducted at room 

temperature for 60 minutes on a rotating mixer, and stopped by addition of 50 mM EDTA and heating at 
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75˚C for five minutes. Transcription products were enriched using PERFORMA spin columns (EdgeBio) 

and precipitated using 1/10 volume of 3M sodium acetate, pH 5.2, 20 µg glycogen and 2 volumes 

isopropanol at -20˚C overnight. Radioactive RNA transcripts were resolved on 15% denaturing 

polyacrylamide gels, transferred to Whatman 3MM filter paper, dried under vacuum and visualized by 

phosphorimaging. Template sequences are found in Table S9. 

 

Whole genome bisulfite sequencing and analysis 

 Bisulfite sequencing and analysis was conducted as described in (WENDTE et al. 2017). DNA 

(100 ng) extracted from ~2.5 week old above ground plant tissues was prepared using the Illumina 

TruSeq DNA methylation library prep kit according to the manufacturer’s instructions. Libraries were 

sequenced using an Illumina NextSeq instrument. Base calling, adapter trimming, and read size selection 

(>/= 35bp) were performed using bcl2fastq v2.16.0.10. To counter methylation end bias, the first 7 and 

last 2 bases of each read were removed and a minimum q score of 25 was applied as a filter using 

Cutadapt version 1.9.1 (MARTIN 2011). 

Mapping of sequenced reads to the Arabidopsis thaliana TAIR10 genome, removal of PCR 

duplicates, and extraction of methylation information for cytosines with a minimum coverage of 5 reads 

was completed using Bismark version 0.16.1 with default settings (KRUEGER AND ANDREWS 2011). The 

bisulfite conversion rate was calculated based on the number of methylated cytosines divided by total 

number of mapped cytosines (converted and un-converted) of the chloroplast genome, which is 

unmethylated. 

Differently methylated regions (DMRs) for CHH methylation relative to Col-0 were defined 

using the R package methylKit version 0.9.5 (AKALIN et al. 2012). The genome was analyzed in 300 base 

pair sliding windows with a step size of 200 base pairs. Windows were counted if 10 informative 

cytosines with at least 5 reads each were observed. Significant hypo-DMRs, where methylation is redued 
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relative to WT, were assessed at two cutoff values: ≥ 10% decrease or ≥ 25% decrease in methylation. 

DMRs were calculated using a logistic regression and significance was assumed for q-values less than or 

equal to 0.01, with p-values corrected for multiple testing using the SLIM method (AKALIN et al. 2012). 

Overlapping DMRs were merged into a single region prior to determining the number of DMRs in each 

line.  

To quantify percent methylation within regions of interest, the methylKit regionCounts function 

was utilized with the genomic coordinates of interest input as a bed file (AKALIN et al. 2012). In box 

plots, outliers 1.5 times the interquartile range beyond the upper or lower quartile were omitted.  

To rank Pol IV-dependent DMRs based on % methylation change in nrpd1 ΔCTD relative to Col-

0 (as shown in Figure 3), only regions that also had a minimum coverage of 25 reads in each Col-0 sRNA 

sequencing replicate were considered. 

To calculate % methylation values for the locus-specific analyses of Figures 4 and 5, % 

methylation was summed for all Pol IV-dependent DMRs found to overlap the locus of interest, including 

300 base pairs of 5’ and 3’ flanking sequence. 

Accession numbers for previously published bisulfite sequencing data are provided in Table S1. 

 

sRNA analysis 

sRNA blots were conducted on RNA extracted from 350 mg inflorescence tissue as described 

previously (WENDTE AND PIKAARD 2017). 

Whole genome small RNA sequencing was conducted using 1 µg total RNA isolated from 2.5 

week old above-ground plant tissues isolated using Trizol. Libraries were prepared using the Illumina 

TruSeq small RNA library prep kit according to the manufacturer’s instructions, except that the size 

selection step was adjusted to select for RNAs of 15-60 nt.  
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Raw reads were adapter and quality (q > 20) trimmed and size selected (16-60 nucleotides) using 

Cutadapt version 1.9.1 (MARTIN 2011). Reads were first filtered to remove structural RNAs (tRNAs, 

rRNAs, snRNAs, and snoRNAs) then mapped to the Arabidopsis TAIR10 genome using ShortStack 

version 3.4 default settings (JOHNSON et al. 2016). 24 nt siRNA clusters were defined with a minimum 

coverage of 25 reads, comprised of at least 80% 24 nt siRNAs. Clusters with 75 base pairs were merged 

into a single region. Only clusters that were identified in both Col-0 WT replicates were analyzed. 

Small RNA read counts for regions of interest were extracted from BAM files using the 

ShortStack --locifile file function (JOHNSON et al. 2016). Counts were normalized as reads per million 

(RPM) based of total mapped reads. To calculate the log2 fold change relative to Col-0, 0.5 reads were 

first added to the read count for each region of interest to account for 0 values. After read count 

normalization, the average RPM of wild-type Col-0 was calculated and log2 fold changes were calculated 

for each sample as: log2 (Sample RPM / Avg. wild-type Col-0 RPM). In box plots, outliers 1.5 times the 

interquartile range beyond the upper or lower quartile were omitted. Accession numbers for previously 

published sRNA data are listed in Table S1. 

To analyze Pol IV dependent precursor RNAs, reads size 26-60 nt were summed for each 24 nt 

siRNA cluster in each Col-0 replicate and only those regions with a minimum coverage of 10 reads for 

precursor RNA size classes were analyzed for each genotype. 

To calculate log2 fold change values for the locus-specific analyses in Figures 4 and 5, read 

counts were summed for all 24nt siRNA clusters found to overlap the locus of interest with 300 base pairs 

of 5’ and 3’ flanking sequences included. 

 

Chop PCR 

 Genomic DNA was digested with HaeIII alone (Figure 1) or double-digested with AluI and 

HaeIII (Figure 3) (NEB) at 37 ºC for 3 hours, followed by PCR using GoTaq Green (Promega) with 
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primers that flank enzyme cut sites listed in Table S9. For no-digest controls, DNA was subjected to the 

same protocol but with no restriction enzymes added. 

 

RT-PCR 

 RNA extraction of 2.5 week above-ground tissues was conducted using Trizol. Reverse 

transcription was conducted using SuperScript III (Invitrogen), 1-5 µg RNA, and random primers (Sigma) 

or dN6 primers (NEB). PCR amplification conducted using GoTaq Green (Promega) with primers listed 

in Table S9. 

 

Data and reagent availability 

Plant strains are available upon request. Deep sequencing data generated in this study have been deposited 

in NCBI's Gene Expression Omnibus (EDGAR et al. 2002) and are accessible through GEO Series 

accession number GSE95825. Whole genome sRNA and bisulfite sequencing statistics and data 

accessions numbers are provided in Table S1. Genomic coordinates of differentially methylated regions is 

provided in Table S2. Numerical values for percent CHH methylation at Pol IV-dependent loci is 

provided in Table S3. Genomic coordinates for siRNA clusters are provided in Table S4. Genomic 

coordinates and small RNA values for 500 loci whose methylation is most or least affected by deletion of 

the CTD are provided in Tables S5 and S6. Oligonucleotides used in the study are provided in Table S9. 
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Figure Legends 

 

Figure 1. Expression and functional analysis of full length NRPD1 and nrpd1 ΔCTD transgenes. 

A. Schematic of the full length NRPD1 protein and NRPD1 missing the C-terminal DeCL domain. 

Domains A-H are conserved in all multi-subunit RNA polymerase largest-subunit genes. NRPD1 has a 

unique carboxy-terminal domain (CTD) characterized by a Defective Chloroplasts and Leaves (DeCL) 

domain similar to proteins involved in chloroplast function. Full length NRPD1 and NRPD1 with the 

DeCL domain deleted (deletion encompassing amino acids 1337-1453, referred to as NRPD1 ΔCTD) 

were transformed into nrpd1-3 mutant plants. Both constructs incorporated a C-terminal Flag epitope.  

B. Western blot of anti-Flag immunoprecipitated full length NRPD1 or NRPD1 ΔCTD proteins. The top 

panel was probed using anti-Flag antibodies. The middle and bottom panels were probed using antibodies 

that recognize the Pol IV second-largest subunit, NRP(D/E)2, or the Pol IV interacting protein RNA 

DEPENDENT RNA POLYMERASE 2 (RDR2), respectively. Non-transgenic Col-0 was also subjected 

to immunoprecipitation as a negative control. 

C. Formaldehyde-fixed nuclei were incubated with anti-Flag antibodies to detect recombinant NRPD1 

proteins. Nuclei of non-transgenic Col-0 serve as a negative control. The number of nuclei examined, and 

the frequency of localization patterns resembling the representative images shown, are provided to the 

right of the images. 

D. In vitro transcription assay comparing transcription activities of full length or ΔCTD NRPD1 proteins. 

Pol IV bound to anti-Flag resin was incubated with a DNA oligonucleotide hybridized to a RNA primer 

indicated in the diagram. Transcription products resulting from primer extension are labeled by virtue of 

incorporation of 32P-CTP and visualized by denaturing polyacrylamide gel electrophoresis and 

phosphorimaging.  Immobilized flag-tagged Pol II (NRPB2-Flag) and non-transgenic Col-0 serve as 

positive and negative controls, respectively. Input enzyme levels were calibrated by immunoblotting 

using anti-NRP(B/D/E)11 to detect the 11th subunit common to Pols II, IV and V.  
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E. Chop-PCR analysis of cytosine methylation at HaeIII restriction endonuclease cut sites that undergo 

RdDM at the AtSN1 locus in wild type (Col-0) plants. (+) indicates PCR conduced on genomic DNA that 

was digested by both enzymes and (-) indicates PCR conducted on control DNA that was subject to the 

same protocol but with no restriction enzyme added. Failure to detect a PCR product in the (+) digest 

fraction is indicative of a loss of methylation, making the DNA subject to enzymatic digestion. 

F. sRNA blot for Pol IV-dependent siRNAs derived from the AtSN1 locus. RNA loading was controlled 

using ethidium bromide staining (bottom panel). 

G. RT-PCR to detect AtSN1 transcripts, which are silenced in wild-type (Col-0). GAPA is a Pol II 

transcribed gene and serves as a loading control. 

 

Figure 2. NRPD1 CTD involvement in cytosine methylation and sRNA expression. 

A. Venn diagrams comparing the number of hypo-methylated regions (regions with at least a 25% 

decrease in cytosine methylation relative to Col-0; see Methods) identified by whole genome bisulfite 

sequencing of two biologic replicates for each genotype tested. The top Venn diagram shows the number 

of DMRs identified in nrpd1-3 mutants compared to the number of DMRs identified plants expressing the 

full length NRPD1 transgene. The bottom Venn diagram compares nrpd1-3 to plants expressing NRPD1 

ΔCTD. Genomic coordinates of hypo-methylated regions are provided in Table S2.  

B. Box plots summarizing the % methylation of all cytosines in the CHH context within differentially 

methylated regions (DMRs) (hypo-methylated at least 25% in nrpd1-3 relative to Col-0; see Methods). 

See Table S3 for % methylation values for each DMR. 

C. Venn diagrams comparing the number of hypo-methylated regions defined using a ≥ 10% decrease in 

cytosine methylation as the cut-off (compare to A). See Table S2 for genomic coordinates of hypo-

methylated regions. 

D. Venn diagrams comparing the number of 24 nt siRNA clusters undergoing at least 4 fold decrease in 

expression, relative to the average expression in Col-0. The top diagram shows the number of these 

regions identified in nrpd1-3 mutants compared to plants expressing the full length NRPD1 transgene and 
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the bottom panel compares nrpd1-3 to plants expressing NRPD1 ΔCTD. See Table S4 for genomic 

coordinates of siRNA clusters. 

E. Box plots summarizing the log2 fold change in siRNA expression relative to the average expression in 

Col-0 WT across all 24 nt siRNA clusters for each replicate of each genotype tested. See Table S4 for 

fold change values at all regions. 

 

 

Figure 3. Evidence that most Pol IV-dependent siRNAs are not required for RdDM. 

Loci that undergo Pol IV-dependent DNA methylation were ranked based on the degree to which NRPD1 

ΔCTD and WT Col-0 differ. The top 500 loci, where methylation levels were fully restored to the highest 

extent were analyzed in A and the 500 loci where methylation was least restored are shown in B. In A and 

B, the left panel shows box plots summarizing % methylation and the right panel shows summaries of 

log2 fold change in siRNA expression at the 500 loci for the two replicates for each genotype. See Table 

S5 and S6 for sRNA fold change values for individual loci included in the anaylses. 

C. Immunoblot affinity captured NRPD1 proteins in different genetic backgrounds. Equal input levels 

were calibrated with Ponseau S staining of nitrocellulose membranes. 

D. Chop-PCR analysis of cytosine methylation at AluI or HaeIII restriction endonuclease cut sites that 

undergo RdDM in wild type (Col-0) plants. (+) indicates PCR conduced on genomic DNA that was 

digested by both enzymes and (-) indicates PCR conducted on control DNA that was subject to the same 

protocol but with no restriction enzyme added. Failure to detect a PCR product in the (+) digest fraction is 

indicative of a loss of methylation, making the DNA subject to enzymatic digestion. 

E. Heatmap depicting the distribution of sRNA size classes within 24 nt siRNA clusters. Values depicted 

are the log2 of reads per million mapped for each size class. See Table S7 for RPM values of each size 

class. 

F. Box plot showing the log2 fold change in levels of RNAs sized 26-60 nt in regions corresponding to 24 

nt siRNA clusters in wild type plants. Regions in which a minimum coverage of 10 reads for combined 
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precursor size classes in each Col-0 replicate were included in the analysis. See Table S8 for regions and 

fold change values. 

 

Figure 4. DNA methylation and sRNA expression profiles of genes that require the Pol IV CTD for 

transcriptional silencing. RNA expression at loci that require Pol IV for transcriptional silencing were 

analyzed by RT-PCR, in parallel with analysis of their CHH methylation and siRNA levels. A. AtSN1 

(AT3TE63860); B. SDC (AT2G17690); C. AT3TE63155; D. AT5TE47755; E. AT3TE47840; F. ERT14 

(AT2G01422); G. soloLTR (AT5TE35950); H. TUB8. For each locus, the top panel shows RT-PCR to 

detect derepression visualized on agarose gels, the middle panel shows % CHH methylation, and the 

bottom panel shows the log2 fold change in siRNA expression relative to the average expression of both 

Col-0 WT replicates. TUB8 (tubulin) is a Pol II transcribed gene that is not subject to RdDM and serves 

as an RNA input control for RT-PCRs. There was not adequate bisulfite sequencing coverage in the 

NRPD1 FL replicate #1 to assess % methylation for this line at the soloLTR locus (indicated by *). Note 

also that the scale for the % methylation histogram of soloLTR is different than the other loci to account 

for higher levels of methylation at this site.  

 

Figure 5. DNA methylation and sRNA expression profiles of genes that require Pol IV, but not the Pol 

IV CTD for transcriptional silencing. A. ERT7 (AT3G28899); B. ERT9 (AT5G24240); C. AT3G30844; D. 

AT1TE75910; E. AT2TE07550; F. AT2TE82000; G. AT3TE37570; H. AT4TE27915. For each locus, the 

top panel shows results of RT-PCR to detect derepression visualized on agarose gels, the middle panel 

shows % methylation, and the bottom panel shows the log2 fold change in siRNA expression relative to 

the average expression of both Col-0 WT replicates. The input control for the RT-PCR reactions is shown 

in Figure 4H. 
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