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ABSTRACT 

Background. – Insecticides used against Aedes aegypti and other disease vectors can 
elicit a multitude of dose-dependent effects on behavioral and bionomic traits. Estimating 
the potential epidemiological impact of a product requires thorough understanding of 
these effects and their interplay at different dosages. Volatile spatial repellent (SR) 
products come with an additional layer of complexity due to the potential for movement 
of affected mosquitoes or volatile particles of the product beyond the treated house. Here, 
we propose a statistical inference framework for estimating these nuanced effects of 
volatile SRs. 
Methods. – We fitted a continuous-time Markov chain model in a Bayesian framework to 
mark-release-recapture (MRR) data from an experimental hut study conducted in Iquitos, 
Peru. We estimated the effects of two dosages of transfluthrin on Ae. aegypti behaviors 
associated with human-vector contact: repellency, exiting, and knockdown in the treated 
space and in “downstream” adjacent huts. We validated the framework using simulated 
data. 
Results. – The odds of a female Ae. aegypti being repelled from a treated hut (HT) 
increased at both dosages (low dosage: odds = 1.64, 95% highest density interval (HDI) = 
1.30-2.09; high dosage: odds = 1.35, HDI = 1.04-1.67). The relative risk of exiting from 
the treated hut was reduced (low: RR = 0.70, HDI = 0.62-1.09; high: RR = 0.70, HDI = 
0.40-1.06), with this effect carrying over to untreated spaces as far as two huts away from 
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the treated hut (H2) (low: RR = 0.79, HDI = 0.59-1.01; high: RR = 0.66, HDI = 0.50-
0.87). Knockdown rates were increased in both treated and downstream huts, particularly 
under high dosage (HT: RR = 8.37, HDI = 2.11-17.35; H1: RR = 1.39, HDI = 0.52-2.69; 
H2: RR = 2.22, HDI = 0.96-3.86).  
Conclusions. – Our statistical inference framework is effective at elucidating multiple 
effects of volatile chemicals used in SR products, as well as their downstream effects. 
This framework provides a powerful tool for early selection of candidate SR product 
formulations worth advancing to costlier epidemiological trials, which are ultimately 
necessary for proof of concept of public health value and subsequent formal endorsement 
by health authorities. 
 
Keywords. – Aedes aegypti, Bayesian parameter estimation, continuous-time Markov-
chain models, dengue, spatial repellent, transfluthrin, vector control, Zika 
 

BACKGROUND 

Insecticidal strategies against adult mosquitoes have been used extensively in the control 
of mosquito-borne diseases [1]. However, certain mosquito behaviors, such as outdoor 
and daytime biting, challenge the efficacy of traditional control tools like insecticide 
treated nets (ITNs) and indoor residual spraying (IRS) [2]. The evolution of physiological 
resistance to insecticides [3] and behavioral adaptation of mosquitoes [4, 5] also pose 
limitations to the effectiveness of such products. 

The effect of vector control products often goes beyond their acute lethal effects. For 
example, ITNs can elicit knockdown with potential for mosquito recovery and can divert 
mosquitoes away from a protected human to alternate hosts [6-8]. Volatile chemicals 
such as transfluthrin and metofluthrin can be delivered in high dosages and result in high 
lethality, but they can likewise be formulated at lower dosages where acute toxicity is 
attenuated and other mosquito behaviors are elicited instead, as was described previously 
for residual pyrethroids [9, 10]. Currently, the term “spatial repellency” is used to 
describe a range of behaviors that products with volatile chemicals – including spatial 
repellents (SR) – may invoke [11], including repellency or reduced entry, irritancy or 
increase in exiting, and reduced biting [12-14]. These modes of action can have a 
concerted impact on disease transmission on an individual and community level [15-18].  

Mark-release-recapture (MRR) experiments in natural settings, in which mosquitoes 
are marked with a unique color according to the location where they are released, offer 
unique opportunities to elucidate downstream dosage and behavioral effects of SRs by 
measuring lethality, repellency, and irritancy of a target vector species [10, 19-22]. 
However, studies such as these have not yet provided the granularity required to 
disentangle distinct behavioral and bionomic effects. The primary challenge associated 
with the design and interpretation of these studies is that each mosquito is only observed 
once: when knocked down or when trapped in entry or exit traps. This leaves movement 
trajectories in between release and recapture locations unobserved, making it challenging 
to quantify the relative contributions of multiple competing effects that could account for 
observed individual-level outcomes under a multitude of equally plausible scenarios. One 
recent study [23] showed that even short periods of transient exposure to volatile SRs can 
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have significant, and sometimes delayed, effects on vectors. Such unobserved effects may 
compromise traditional statistical analyses. 

Models used for the analysis of MRR data have a long history in ecology [24-28]. 
Originally developed to estimate survival probabilities and population sizes [29], they are 
now increasingly being used to inform spatial processes [30]. These models partition 
animal movement trajectories into states (e.g., breeding or foraging), with multi-state 
MRR models accounting for the probability of the animal occupying any of the possible 
states at a given time. Given sufficient information from sampling at multiple points in 
time and appropriate model constraints, these models can be extended for parameter 
estimation in the presence of unobserved states [31]. Bayesian methods are increasingly 
being applied to these types of problems given their treatment of all quantities as random 
variables [32-34]. These methods allow for formal treatment and quantification of 
parameter uncertainty, and they allow researchers to explicitly build on previous studies. 

Here, we make a major advance in the technical capability to infer effects of SR 
products on adult female Ae. aegypti by developing a hierarchical Bayesian model and 
applying it to an MRR study conducted in Iquitos, Peru. We first demonstrate the 
accuracy of this approach using data simulated under the same design as in our field 
experiments. We then demonstrate the dose-dependency of knockdown, repellency, and 
exiting effects of the SR in both treated and untreated huts. We discuss the potential use 
of this framework to inform the projected impact and implementation of SRs and other 
vector control tools with volatile chemicals. 

METHODS 

Product 
Technical grade transfluthriun (Sigma), a volatile pyrethroid insectide, was applied to 
cotton strips at 1/16th and 1/8th dilutions of the field application rate (FAR) (0.04g/m2) 
using previously established protocols [35]. Control strips of matched cotton material 
were treated with acetone alone. Cotton material was applied to the interior walls of the 
huts using magnets and metal frames [35]. 

Experimental huts 
A unique experimental hut configuration was used in which five independent structures 
were positioned adjacent to one another in a single row creating adjoining walls. Eave 
gaps were open, allowing a continuum of indoor space available for mosquito and 
volatile chemical movement throughout all five huts regardless of where the mosquitoes 
were released or where the product was applied (Figure 1). This design mimicked 
housing configurations common to the study location in Iquitos, Peru and reflects 
housing common to other dengue-endemic areas (i.e., urban settings in resource-poor, 
tropical areas). The huts measured 4 m wide x 6 m long and had 2 m high sidewalls. Each 
hut had two windows (one each on the front and back walls) equipped with exit traps, and 
each hut had two doors (one of each on the front and back walls) equipped with an 
“upper” and “lower” trap. The two outermost huts had additional eave traps. Hut 
construction materials and structural design were based on previous MRR hut studies [19, 
20]. The study was performed at the Instituto Veterinario de Investigaciones in Iquitos, 
Peru (73.2 °W, 7.3 °S). 
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Figure 1: Experimental huts in row house configuration. Iquitos, Peru.  

 

Mosquitoes 
Female Ae. aegypti test populations (F1-F2 generations) of 5-7 days old were reared from 
field-collected larvae following previously established protocols [36]. Mosquitoes were 
not blood-fed but were provided with cotton soaked with sucrose solution until 24 hours 
before being released in the experimental huts. Prior to release, five cohorts of 25 female 
mosquitoes each were marked with a unique color of fluorescent powder that 
corresponded to a single, specific experimental hut in which a cohort was released. 

Study design 
The study was performed using previously described collection protocols [35, 37]. 
Transfluthrin-treated cotton was applied to the walls of the center hut (HT), while solvent-
only material (control) was applied to the remaining huts. This design was intended to 
reflect a scenario whereby an SR product is only used by one homeowner in a group of 
houses. In each of the huts (H2L, H1L, HT, H1R, H2R) there was a human present under an 
untreated bed net to generate host-seeking cues and to monitor indoor knockdown. On 
each experimental day, mosquito test cohorts were released inside each of the untreated 
huts at 0530 hours. Mosquitoes within exit-traps were captured by two-person outdoor 
collection teams (five teams total) every 30 minutes from 0600 until 1800 hours. 
Collector teams rotated among huts at each sampling period to control for observer bias. 
Knockdown was monitored every hour by indoor collectors. Indoor collectors were 
rotated among huts at the end of a single day’s experiment to limit host cue bias. At 1800 
hours, hand-held Prokopack aspirators [38] were used to recapture any remaining 
mosquitoes inside each hut that were not knocked down or had not exited and to calculate 
loss to follow-up. Color codes were used to record release origin and location of 
recapture in a single day. All recaptured mosquitoes (those from aspiration and in traps) 
were held with access to sugar source to monitor 24 hr mortality. Three trials were 
performed: 1) baseline (no chemical application), 2) transfluthrin at 1/8 FAR, and 3) 
transfluthrin at 1/16 FAR. A single trial consisted of five experimental days (i.e., five 
replicates). Movement during the baseline trial was measured prior to transfluthrin-
integrated trials to monitor residual impact of treatment across trials. 
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Model 
Continuous-time Markov chain – A continuous-time Markov chain model was developed 
for the analysis of these data [39]. At any given time, mosquitoes can occupy any one of 
five huts (transient states: H2L, H1L, HT, H1R, or H2R) or have experienced one of 15 events 
represented by the absorbing states: X2L, X1L, XT, X1R, or X2R for the exit traps in each hut, 
K2L, K1L, KT, K1R, or K2R for knockdown in each hut, and U2L, U1L, UT, U1R, or U2R for 
mosquitoes that were unaccounted for at the end of the experiment and were thus lost to 
follow-up at some unknown time. The infinitesimal generator matrix A contains the rates 
at which mosquitoes leave one state to move to the next, such that aij gives the rate at 
which a mosquito in state i moves to state j. These rates were assumed to be independent 
of time or previous trajectories; therefore, the time spent in state i before leaving follows 

an exponential distribution with mean  ai
−1  with

  
ai = aij

j=1, j≠i

20

∑ .  Note that the rates out of the 

absorbing states are zero and that, given symmetry in the system, the rates for hut 2L and 
2R are equivalent (likewise for 1L and 1R). Subscripts in A indicate the distance from the 
treatment hut. The 20x20 matrix A is defined as  

 
			
A= AH AX AK AU( ) ,   (1) 

with  

 

!! !

AH =

−q2(1− r2)−q2r2 −k2 q2 0 0 0
(1− p1)(q1)(1− r1) −q1(1− r1)−q1r1 −k1 p1q1(1− r1) 0 0

0 (1− pT )qT(1− rT ) −qT(1− rT )−qTrT −kT pTqT(1− rT ) 0
0 0 (1− p1)q1(1− r1) −q1(1− r1)−q1r1 −k1 p1q1(1− r1)
0 0 0 q2(1− r2) −q2(1− r2)−q2r2 −k2
! ! ! ! !

0 0 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
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⎟
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⎟
⎟
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!! !

AX =

q2r2 0 0 0 0
0 q1r1 0 0 0
0 0 qTrT 0 0
0 0 0 q1r1 0
0 0 0 0 q2r2
! ! ! ! !

0 0 0 0 0
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!! !

AK =

k2 0 0 0 0
0 k1 0 0 0
0 0 kT 0 0
0 0 0 k1 0
0 0 0 0 k2
! ! ! ! !

0 0 0 0 0
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and, 
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!! !

AU =

u2 0 0 0 0
0 u1 0 0 0
0 0 uT 0 0
0 0 0 u1 0
0 0 0 0 u2
! ! ! ! !

0 0 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

.   

The rate qi signifies the movement rate out of a hut. The direction of this movement 
depends on ri (proportion of movement directed to outdoors) and, for H1, it further 
depends on repellency p1 (defined as the proportion of indoor movement directed away 
from HT). The knockdown rate ki is allowed to vary by hut, whereas the loss to follow-up 
rate u is assumed to be the same across huts. Hereafter, we refer to the exit rate qiri as xi 
(Figure 2).  
 

 

Figure 2: Illustration of experimental hut design and associated model parameters, with q 
= movement rate, p = proportion of between-hut movement directed away from the 
treated hut (repellency), r = proportion of movement directed outdoors, q r = x = exit rate, 
k = knockdown rate, and u = loss to follow-up rate. The red hut is the treated hut HT 
where the SR treatment is applied. The subscripts indicate whether the parameter applies 
to HT (subscript T ) or to a hut one or two removed from HT. 

 

The dynamics of the probabilities Pij(t) of occupying any of the 20 states are governed 
by a system of differential equations with rates A and are known as the backward 
Kolmogorov differential equations [39] 

 
!!!
dP
dt

= AP(t) .  (2) 

From this, we can derive the rates of change in the probability of occupying a given state 
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!!

dH2L
dt

= (−q2(1− r2)− r2q2 −k2)H2L + p1q1(1− r1)H1L

dH1L
dt

= (−q1(1− r1)− r1q1 −k1)H1L +q2(1− r2)H2L +qT(1− rT )(1− pT )HT

dHT

dt
= (−qT(1− rT )− rTqT −kT )HT +q1(1− r1)(1− p1)H1L +q1(1− r1)(1− p1)H1R

dH1R
dt

= (−q1(1− r1)− r1q1 −k1)H1R +q2(1− r2)H2R +qT(1− rT )pTHT

dH2R
dt

= (−q2(1− r2)− r2q2 −k2)H2R +q1(1− r1)p1H1R

dXi
dt

i=2L ,...2R

= riqiHi

dKi

dt
i=2L ,...2R

= kiHi

dUi

dt
i=2L ,...2R

=uiHi .

  (3) 

By initializing this system in one hut (e.g., H2L=1 and all other states are zero at t=0), 
solving for this system of differential equations gives the probability that a mosquito 
released in a given hut occupies a specific state at time t.  

The absorbing states (i.e., Xi, Ki, and Ui) represent competing endpoints in the sense 
that an individual who enters one of these states is no longer capable of entering any of 
the other states at some future time. The Markov chain accounts for competing endpoints 
vis-à-vis the property that the states are discrete and mutually exclusive. In addition, a 
mosquito released in 2L can only be knocked down in 2R conditional on having moved 
there prior to the knockdown event. The absence of non-zero rates to any of the absorbing 
states from other huts ensures this conditionality. 

Likelihoods  
To estimate A, we fitted eqn. (3) to the data using a likelihood-based approach. The data 
collected during the experiments consisted of a set of interval- and right-censored time-
to-event data. Outcome measures of interest included exiting (i.e., leaving a space), 
knockdown, diversion (defined as the movement to a hut other than the release hut), and 
loss to follow-up (ltfu), where exiting, knockdown, and loss to follow-up are competing 
events. The cumulative, conditional probabilities for all events observed in the 
experiment can be directly obtained from the solutions of eqn. (3), as detailed in eqns. (4)
, (5), and (6).  

Interval-censored events. – Data pertaining to knockdown and exit events are interval-
censored between time points t1 and t2, with exit events recorded at 30-minute intervals 
and knockdown events at hourly intervals. Given model parameter set θ, the probability 
that a mosquito released in Hrel is observed to be knocked down in hut H at time t2 is  
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!!

Pr(t1 <T < t2 ,Y = kdH |Hrel ,θ )=
FkdH (t2 |Hrel ,θ )−FkdH (t1 |Hrel ,θ )
FdivH (t2 |Hrel ,θ )S(t2 |Hrel ,θ )

= KH(t2 |Hrel ,θ )−KH(t1 |Hrel ,θ ),
  (4) 

where F(t) denotes the probability that a specific event (here knockdown and movement 
to H) occurred in hut H by time t and S(t) denotes the survival function (i.e., the 
probability that no knockdown, exit, or loss to follow-up has occurred by time t). Exit and 
knockdown events contain indirect information on the diversion event, namely that the 
mosquito has moved from its release location to the hut where the event took place before 
the event occurred. This condition, as illustrated by Fdiv in the denominator of eqn. (4), is 
implicitly accounted for within eqn. (3); hence, the absence of conditioning in the second 
part of eqn. (4). 

Loss to follow-up. – Of mosquitoes that are not retrieved at the end of the experiment, 
we know that they must have been lost to follow-up at some point between the start and 
the end of the experiment with probability 

 
!!
Pr(tstart <T < tend ,Y =u|Hrel ,θ )=

Fu(tend |Hrel ,θ )
S(tend |Hrel ,θ )

= Ui(t |Hrel ,θ )
i=2L

2R

∑ .   (5) 

Right-censored data. – Mosquitoes retrieved by the end of the experiment are treated 
as right censored. Namely, the time before knockdown, exit, or ltfu would have occurred 
is longer than the duration of the study, but by how much is uncertain. In addition, we 
know that the mosquito moved from the release hut to the hut where it was retrieved with 
probability 
 !!Pr(T > tend |Hrel ,θ )= S(tend |Hrel ,θ )FdivH (tend |Hrel ,θ )=HH(tend |Hrel ,θ ).          (6) 

Likelihood function. – The overall likelihood of the parameters given the data is equal 
to the product of the probabilities of each individual observation conditional on the 
parameters. These observations include the number of mosquitoes exited or knocked 
down during specific time intervals during an experiment for different release huts, event 
huts, and experimental day, as well as numbers recaptured or lost to follow-up at the end 
of the experiment, resulting in 

 

!!

L= Pmultinom(kexitt=i ,H= j ,rel=k ,day=l ,kkdt=i ,H= j ,rel=k ,day=l ,khutt=750,H= j ,rel=k ,day=l ,kut=750,rel=k ,day=l |
pexitt=i ,H= j ,rel=k ,pkdt=i ,H= j ,rel=k ,phutt=750,H= j ,rel=k ,put=750,rel=k ),

  (7) 

with i time points, j event-huts (H2L,H2L,HT,H1L,H2R,), k release-huts, and l experiment 
days (1 to 5). Each kexit, for instance, denotes the number of mosquitoes exiting from hut 
H observed at time t, by release hut and experiment day. The corresponding probabilities 
p are derived as detailed in eqns. (4), (5), and (6) and are assumed to be independent of 
the experiment day. 

Model fitting 
We used a Bayesian Markov chain Monte Carlo (MCMC) approach for parameter 
estimation. Using Bayes’ theorem, we define the posterior probability density of the 
model’s parameters (θ) given the data as 
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!!
π = P(θ |data)= P(data|θ )P(θ )

P(data|θ )P(θ )dθ∫
,   (8) 

where P(θ) is the prior probability of the parameters. We utilized beta-distributed priors 
with median 0.5 for p1 and median 0.25 for ri (i.e., a mosquito is three times as likely to 
move to an adjacent hut than to move outside), a gamma-distributed prior with mean 0.02  
on the movement rates qi (i.e., average time before moving to another hut of 50 minutes), 
and uniform priors for the remaining parameters (see Table 1 for distribution parameters). 
Average times before exiting from each hut (1/qi) were constrained between 5 minutes 
and 20 hours, and the average time until knockdown (1/ki) between 12 hours and 10 days 
[10, 19]. We explored the parameter space of θ more broadly using the Metropolis-
Hastings algorithm.   

We started from an initial parameter set θ1, which was randomly sampled from 
uniform distributions with bounds: q: 360-1-30-1, p1: 0.5-1, ri: 0-0.5, k: 1400-1-720-1, and 
u: 2000-1-1000-1. A new parameter was proposed such that λ2 = λ1+Λ, where Λ is a 
random value from a truncated normal proposal distribution g with mean λ1 and standard 
deviation formulated relative to λ1 and selected so as to ideally have an acceptance rate 
between 10% and 50% [40]. Which parameter was updated at a given iteration was 
determined by taking a random draw from a multinomial distribution with 11 categories 
(i.e., the number of model parameters to be estimated) and equal probabilities for each 
parameter. The probability for λ2 to be accepted depends on the likelihood of both θ1 and 
θ2 according to the Metropolis-Hastings rule as  

 
!!
A(θ1 ,θ2)=min 1,π2

π1

g(λ1 |λ2)
g(λ2 |λ1)

⎛

⎝⎜
⎞

⎠⎟
,   (9) 

where θ2 differs from θ1 only with respect to λ and g denotes truncated normal proposal 
distributions (between zero and one for each p and r, and from zero to infinity otherwise): 

 

!!

g(λ2 |λ1)=
P(Λ = λ2)

P(Λ≤1)−P(Λ≤0)for!p1 and!ri

g(λ2 |λ1)=
P(Λ = λ2)
1−P(Λ≤0) !for!all!other!parameters,

  (10) 

where Λ is normally distributed with mean λ1 and standard deviations corresponding to 
each parameter’s proposal distribution. 

In the event that the acceptance probability was larger than a randomly generated 
uniform value between zero and one, θ2

 was accepted into the chain. Otherwise, θ1
 was 

retained. Multiple iterations of this routine were performed (n = 90,000). This process 
was repeated five times starting from different initial parameter sets to assess 
convergence using the Gelman-Rubin (GR) statistic [41]. The resulting chains of 
accepted parameters (φ), after discarding a burn-in period (10,000), were combined to 
represent our sample from the posterior distribution (π). 

Simulation experiments 
To validate the accuracy of the model-fitting algorithm, we simulated data with a known 
data-generating process corresponding to our likelihood formulation and with known 
model parameters. Probabilities for released mosquitoes to occupy a specific state over 
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time were derived using eqn. (3). As follows from eqns. (4), these probabilities are 
defined for interval- and right-censored events. Random draws from a multinomial 
distribution with the simulated probabilities and a given number of released mosquitoes 
were taken to simulate numbers of mosquitoes occupying each state at the time points at 
which sampling was simulated to occur. In general, these simulation experiments were 
designed to mimic features of the empirical experiments. 

Ten distinct simulated parameter sets were used to validate the accuracy of our 
statistical inference framework. These parameter sets were sampled from across the 
composite parameter space θ using the Sobol algorithm [42, 43], where the same bounds 
to this sampling space were applied as for the prior distributions (Table 1). Data were 
simulated for different numbers of released mosquitoes (25: field scenario; 1,000: large 
sample size scenario) for five replicates per parameter set and fitted to eqn. (3) as 
described before (n = 60,000, of which 10,000 was burn-in). 

RESULTS 

Validating the inference methodology 
We first validated the inference framework against data simulated with the system of 
ordinary differential equations described in eqn. (3), with an observation process that 
mimicked the field experiment and with parameters reflecting the range of values in the 
prior distributions. 

Large sample size scenario.– In the large sample size scenario (five replicates with 
1,000 released mosquitoes each), we accurately estimated the values of all parameters 
used in the simulations. All true parameter values fell within the 95% highest density 
interval (HDI) of the estimated posterior distributions (Figure 3). Most posterior medians 
approximated the true parameter well (Pearson r > 0.98), but somewhat less so for 
knockdown in the treated hut (Pearson r = 0.74). Posterior distributions were relatively 
wider for rate parameters associated with the treated hut (xT and kT). Standard deviations 
of these parameters were a fraction (i.e., 11% and 12%) of their respective medians, 
whereas the s.d.:median ratio was below 3.5% for all other parameters. This reduced 
precision may be a consequence of the fact that rate parameters associated with huts other 
than the treated hut were informed by twice as much data as were the rate parameters 
associated with the treated hut, which derives from our assumption of shared parameters 
for huts a given distance from the treated hut (Figure 2). Gelman-Rubin statistics were 
below 1.1 for most simulation sets (average 1.04). When simulation sets resulted in 
parameters with GR statistics above 1.1, these were related to mosquito movement (qi, ri, 
and p1) and were most commonly associated with the untreated huts (Table S1). This 
indicates that those parameters may be among the most difficult to estimate. 
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Figure 3: Estimated parameters from simulation experiments for five replicates of 1,000 
released mosquitoes (large sample size scenarios) with the true value used in the 
simulation (blue diamonds) and the estimated median (black circles). The dashed gray 
line depicts p1 = 0.5, i.e., no repellency effect. Each estimate was based on five chains 
with distinct starting conditions. 60,000 MCMC iterations were performed inclusive of a 
burn-in period of 10,000. 

 
Field scenario.–We also tested the performance of the inference framework on data 

simulated under conditions that closely resembled the conditions under which the 
experimental data were collected (Figure 4). All true parameter values fell within the 
95% HDI, but the posterior medians were less consistent with the simulated values (r > 
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0.8 for all but xT: 0.68; k2:0.03; kT: -0.29) than under the large sample size scenario 
(Figure 4). No systematic underestimation or overestimation was observed based on these 
simulations, suggesting that the additional discrepancy between simulated and inferred 
parameter values in the field scenario relative to the large sample size scenario was due to 
stochasticity associated with the smaller sample size in the field scenario (i.e., n = 25 vs n 
= 1,000). Gelman-Rubin statistics were, across all parameters and simulation sets, close 
to 1 (average GR 1.01) (Table S1).   
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Figure 4: Estimated parameters from simulation experiments for five replicates of 25 
released mosquitoes (field scenarios) with the true value (blue diamonds) and the 
estimated median (black circles). The dashed gray line depicts p1 = 0.5, i.e., no repellency 
effect. Each estimate is based on five chains with distinct starting conditions. 60,000 
MCMC iterations were performed inclusive of a burn-in period of 10,000. 
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Product effects on mosquito behavior 
We first fitted the Markov chain model to the experimental hut data with all 

parameters allowed to vary. Strong correlations between ri, qi, and pi indicated that these 
parameters were not identifiable given that a wide range of combinations of values of 
these parameters explained the data equally well (Figure S1). To resolve this 
identifiability issue, we fitted the exit rate xi as a single composite parameter (qiri). The 
rate of movement between huts is directly related to the exit rate; namely, it is a 
proportion (1-ri) of the overall movement rate out of a specific hut (qi). In doing so, we 
fixed the values of ri at the medians of the posterior marginal density of the ri 
corresponding to each hut that was obtained from the full parameter fit on the baseline 
data set (Figure S1). This reduced the amount of cross-correlation from Pearson’s r as 
high as 0.84 in the original to as low as 0.72 upon fixing ri. Most importantly, it markedly 
improved convergence from GR statistics as high as 1.38 (q2, low dosage) to as low as 
1.00 for all parameters after fixing ri, indicating that other parameters became identifiable 
once this adjustment was made (Figure S7-Figure S9). Choosing either the 2.5th or 97.5th 
percentile of ri instead did not affect this conclusion (Figure S5 and Figure S6). 
Acceptance rates for each chain tended to remain relatively constant following a burn-in 
period and varied across chains and parameters within the range of 21-54%. 

Exit and movement rates.–Under baseline conditions (no chemical), exit rates (xi) from 
huts at different distances i from the treatment hut were relatively similar (medians for xT: 
2.2x10-3, x1: 1.6x10-3, x2: 1.8x10-3) (Figure 5A-C). In subsequent treatment experiments, 
exit rates out of the treated hut were reduced relative to the baseline in response to both 
the low (RR = 0.70, HDI = 0.62-1.09) and the high transfluthrin dosage (RR = 0.70, HDI 
= 0.40-1.06), with no perceptible difference in the respective effects of the two dosages 
(Figure 5C). This effect carried over to the adjacent huts (H1) with exit rates lower than 
observed in the baseline experiment (low: RR = 0.79, HDI = 0.59-1.01; high: RR = 0.66, 
HDI = 0.50-0.87) (Figure 5B). In the huts furthest from the SR application (H2), the low 
dosage had no effect on exit rates relative to when no SR was applied (RR = 0.94, HDI = 
0.72-1.18). To the contrary, the high dosage reduced exit rates (RR: 0.71, HDI:0.54-0.92) 
in all huts adjacent to the source of transfluthrin, including the furthest adjoining 
structures (Figure 5A). Given that the proportion of movement that was directed outdoors 
(ri) was held constant in this exercise, these results on exit rates (qiri) are directly 
proportional to movement rates (qi).  
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Figure 5: Posterior distributions of model parameters fitted to experimental data for the 
baseline (gray), low (orange) and high (pink) transfluthrin dosage for the treated hut 
(subscript T) and huts one or two removed from the treated hut (subscript 1 and 2, 
respectively). A-C) Rates at which mosquitoes exit the huts. D) Proportion of movement 
from H1

 (hut directly adjacent to the treatment hut) away from the SR, where the dashed 
line indicates p1=0.5, i.e., no repellency effect. E-G) Knockdown rates. H) Loss to 
follow-up rates. The algorithm was run for 90,000 iterations inclusive of a burn-in period 
of 10,000. 

Repellency.–In the baseline experiment, mosquitoes moved away from or towards the 
treated center hut (HT) with roughly equal probability (p1 = 0.54, HDI = 0.48-0.59), 
although with a possible slight preference for movement away from HT (odds of moving 
away = 1.16, HDI = 0.92-1.41) (Figure 5D). In the experiment using low-dosage SR 
treatment, significant repellency from the treated center hut was observed (odds = 1.64, 
HDI = 1.30-2.09), with a median probability of moving away from this hut of 0.62 (HDI 
= 0.57-0.68) (Figure 5D). In the high-dosage treatment, repellency was still clear (odds = 
1.35, HDI = 1.04-1.67), but the effect was somewhat smaller (p1 = 0.57, HDI = 0.52-0.63) 
(Figure 5D). 

Knockdown.–Knockdown was a very rare event during baseline experiments (2/125 
mosquitoes across all five replicates). As a consequence, estimates of knockdown rates in 
the baseline resembled the lower boundary of the prior distribution (medians for HT =  
5.8x10-5

, H1 = 4.4x10-5, H2 = 4.0x10-5) (Figure 5E-5G). There was no effect of the low SR 
dosage on knockdown rates relative to the baseline, both in the treated hut HT (RR = 1.39, 
HDI = 0.26-3.84) (Figure 5G) and in the H1 huts directly adjacent (RR = 1.00, HDI = 
0.45-1.76) (Figure 5F). In the H2 huts furthest away from the treatment, a somewhat 
increased knockdown rate was observed in response to the low dosage relative to the 
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baseline (RR = 1.37, HDI = 0.64-2.46) (Figure 5E). Knockdown rates in the high-dosage 
scenario were elevated in all huts, in particular in the HT treatment huts (RR = 8.37, HDI 
= 2.11-17.35) (Figure 5G) but also in the H1 and H2 huts (H1: RR = 1.39, HDI = 0.52-
2.69; H2: RR = 2.22, HDI = 0.96-3.86) (Figure 5E and 5F). 

Loss to follow-up.–Rates of loss to follow-up were similar across the baseline and two 
SR treatment experiments, although there was a signal for a small increase in these rates 
with increasing dosage (low: 5%, high: 8%) (Figure 5H). In comparing posterior samples 
across dosages, a signal for a positive dose-response relationship (i.e., u(high) > u(low) > 
u(baseline)) was confirmed in 61% of samples from the posterior. 

Time spent in a hut.–The total amount of time a mosquito spent in each hut results 
from the composite of treatment effects. By running simulations of the system of ordinary 
differential equations (eqn. (3)) with the estimated posterior parameter values, we derived 
a posterior estimate of the proportion of the time a mosquito spent in each hut relative to 
the total time a mosquito was in the hut system (i.e., before exit, kd, or ltfu). This 
proportion was found to be similar but slightly reduced for the treated hut HT relative to 
the baseline scenario in either treatment scenario (Figure 6E) and without any effect in 
the downstream huts H1 and H2 (Figure 6A and 6C). However, when considering the total 
duration of the experimental day, the proportion of time spent in the adjacent, 
downstream huts H1 and H2 was higher during experiments using both low and high SR 
dosage than during baseline (Figure 6B and 6D). This was a result of reduced exit rates 
and thus an overall increase in time spent in the hut system as a whole (Figure 5A and 
5B).  
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Figure 6: Distributions of time mosquitoes spent in each hut relative to baseline (gray), 
low (orange), and high (pink) transfluthrin dosage for huts two (A and B) or one (C and 
D) removed from the treated hut (E and F). The left column signifies the proportion of 
time spent in each hut before having experienced an event (A, C, and E), where kd is 
knockdown and ltfu is loss to follow-up. The right column signifies the proportion of the 
total experiment time spent in each hut relative to the baseline (B, D, F). 

DISCUSSION 

Alternative Ae. aegypti vector control strategies are currently being evaluated to address 
challenges related to dengue transmission expansion [2]. Spatial repellent (SR) products, 
which release volatile chemicals into treated spaces to interrupt host-vector contact, are 
among these [14]. One challenge for evaluating the efficacy of SRs, and other products 
that may include non-lethal outcomes, is characterizing the multifaceted effects of a 
given product on mosquito behavior under field conditions, which is critical for guiding 
product formulation and implementation under operational conditions. 

To quantify concurrent and downstream Ae. aegypti behavioral effects of a 
transfluthrin-based experimental spatial repellent (SR) product, we used a continuous-
time Markov chain model informed by experimental data under a Bayesian inference 
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framework. Examination of posterior estimates of model parameters showed that test 
mosquitoes were deterred from entering the experimental hut where the product was 
located and that this effect was stronger for the lower dosage SR. Posterior estimates of 
model parameters also indicated lower movement rates out of the treatment hut (either to 
a neighboring hut or out of the hut system) under both treatments, presumably due to 
confusion effects at both dosages. Under the higher SR dosage, the reduced movement 
effect was noticeable in adjacent untreated huts as far as two huts away from the SR 
application. Similarly strong downstream effects were observed on knockdown rates, 
which were markedly increased in all huts in the presence of the higher SR dosage, yet 
little effect on knockdown was observed at the lower dosage. 

We validated our inference method by demonstrating its ability to accurately estimate 
the model’s parameters given simulated data. This assessment was conditional, however, 
on the assumption that the model is a realistic representation of reality. Some of the 
known limiting assumptions of our analysis include (1) effects that depend on distance 
from the treated hut rather than on each hut individually, (2) equal loss to follow-up 
across huts, and (3) time-invariant parameters. Of these, the first may be most 
problematic when considering that air flow within the hut system could result in 
asymmetric effects of transfluthrin dispersion to huts of the same distance from the 
treated hut but on different sides of it [44]. In principle, it would be possible to account 
for such factors in future studies by measuring air flow and incorporating its effect on the 
data through an appropriate modification of the model. For example, repellency (p1) 
could be allowed to vary across huts and treated as a function of readings from a wind 
gauge. Posterior estimates of the parameters governing the relationship between wind and 
p1 would then allow for inferences about the repellency of the product under varying 
airflow conditions and beyond those observed in the current experiment. Planning for 
required sample sizes and sampling schemes for such experiments would benefit from 
our model and results by using our posterior distributions to inform prior distributions in 
those future studies [45].  

Repellency and increased knockdown reduced the overall time that mosquitoes spent 
in a transient, non-terminal state in the experimental hut with the SR application, whereas 
decreased movement rates have the potential to offset this effect. The result of the 
product’s impact on the time mosquitoes spent in the treated hut indicates potential for 
such a product to limit human-vector contact (and thereby reduce the probability of 
pathogen transmission) in the treated hut. However, it is uncertain to what extent host-
seeking and blood-feeding behaviors of these mosquitoes exposed to the SR may have 
been affected in the current study. Other studies using similar volatile products have 
shown these effects to also be associated with reduced rates of human landing [13]. The 
inclusion of blood-feeding metrics in experiments with volatile pyrethroid products using 
anophelines under field conditions [46] and against the topical repellent DEET using Ae. 
aegypti in the laboratory [47] have been valuable in establishing expectations of such 
synergistic chemical effects. 

The effect of SR products on untreated neighboring premises has been a consistent and 
critical question to the public health value of these products [14, 48]. Three aspects of our 
results suggest that the risk of diversion of mosquitoes from a treated area to adjacent 
untreated areas may be limited for the formulation used in our experiments. First, SR 
exposure reduced movement rates between huts. Second, the time spent in untreated huts 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 17, 2017. ; https://doi.org/10.1101/164293doi: bioRxiv preprint 

https://doi.org/10.1101/164293
http://creativecommons.org/licenses/by-nc/4.0/


 19 

relative to the treated hut was unaffected by the presence of the SR relative to the 
baseline, once reduced exit rates were accounted for. Third, there was a marked increase 
in knockdown in untreated huts at the high SR dosage. At the same time, there was also a 
marked reduction in exit rates out of untreated huts, which resulted in prolonged time 
spent in adjacent huts. Evaluating the overall potential for diversion based on these 
effects will require pairing experimental results such as ours with new theory that is 
capable of translating this range of behavioral effects into estimates of their 
epidemiological consequences [15, 49, 50].  

Under our experimental design, we cannot distinguish between downstream effects 
caused by volatile particles dispersed into untreated huts or by a residual, post-exposure 
effect of transfluthrin on mosquitoes that are exposed in the treated hut but exit or are 
knocked down elsewhere. The reduced repellency effect observed at high relative to low 
dosage may not result from reduced sensitivity of mosquitoes to this effect per se, but 
may instead be a result of saturation of all experimental huts with the volatile chemical. 
Indeed, correlations between air sampling measurements and mosquito behavior 
responses have been explored in previous studies using spatial repellents but with limited 
success due to limits of chemical detection and quantification [51-53]. Combining air 
chemistry inferences of specific active ingredients (i.e., vapor pressure, particle weight) 
with environmental data (i.e., air current, flow rate) into our new inference framework is 
therefore warranted and could enable quantification of the extent to which downstream 
effects result from movement of the volatile chemical or movement of exposed 
mosquitoes with lingering post-exposure effects. The latter possibility has been indicated 
in other studies to have potential for innovative applications of SRs [54].  

CONCLUSIONS 

The need for development and efficient testing of new vector control products and 
innovative formulations of existing tools is evident [2, 55]. The framework we introduce 
here provides a flexible tool to estimate a product’s effects on mosquito vector movement 
in a quantitative and probabilistic fashion, without the need for expensive, 
technologically advanced mosquito tracking devices. In addition, context-specific 
diversion (movement to an untreated space) and downstream (adjacent spaces) effects 
can be estimated at early stages of product development under scenarios similar to 
operational settings for which the product is intended to be used. The value of our 
inferential framework is best highlighted when considering the need for a cheap, cost-
effective, efficient, and accurate methodology for the characterization and down-selection 
of novel vector control products (or combinations thereof). This not only supports early 
optimization but also the establishment of target product profiles to identify those 
products under development that are worth advancing to costlier epidemiological trials. 
More specifically to SRs, our results strengthen expectations of proof of concept of 
spatial repellents regarding public health value required for WHO recommendations [56]. 

LIST OF ABBREVIATIONS 

FAR: field application rate, GR: Gelman-Rubin, HDI: highest density interval, IRS: 
indoor residual spraying, ITN: insecticide treated net, ltfu: loss to follow-up, MCMC: 
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Markov chain Monte Carlo, MRR: mark-release-recapture, RR: relative risk, SR: spatial 
repellent  
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TABLES 

Table 1: Parameter definitions and prior probability distributions for each. 
Parameter Description Distribution Parameters Ref Note 

qi Movement 
rate 

gamma shape = 1.5 
mean = 0.02  
rate = shape/ 
mean 

[10] Assuming 
symmetry 

p1 Proportion of 
movement 
away from 
SR 

beta mean = 0.5 
shape1 = 4 
shape2 = shape1 / 
(mean – shape1) 

-  

r Exit rate beta mean = 0.25 
shape1 = 1.25 
shape2 = shape1 / 
(mean – shape1) 

[10] Assuming 
symmetry 

k Knockdown 
rate 

uniform min = 1 hours-1 
max = 16 days-1 

[10, 
19] 

Assuming 
symmetry 

u Loss to 
follow-up 
rate 

uniform min = 30 min-1  
max = 100 days-1 

- Assumed 
the same 
between 
huts 
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SUPPORTING TABLE AND FIGURE LEGENDS 
 
Table S1: Average Gelman-Rubin statistics across simulated data sets (median and the 
upper bound of the 95% confidence interval). 
Figure S1: Correlations between parameter posteriors of model fit on baseline scenario 
with all parameters estimated. Marginal posteriors are depicted on the diagonals. The 
numbers on the right of the diagonal depict the correlation coefficients for each side by 
side comparison. 
Figure S2: Correlations between parameter posteriors of model fit on baseline scenario 
with ri fixed. Marginal posteriors are depicted on the diagonals. The numbers on the right 
of the diagonal depict the correlation coefficients for each side by side comparison.  
Figure S3: Correlations between parameter posteriors of model fit on low dosage scenario 
with ri fixed. Marginal posteriors are depicted on the diagonals. The numbers on the right 
of the diagonal depict the correlation coefficients for each side by side comparison. 
Figure S4: Correlations between parameter posteriors of model fit on high dosage 
scenario with ri fixed. Marginal posteriors are depicted on the diagonals. The numbers on 
the right of the diagonal depict the correlation coefficients for each side by side 
comparison.  
Figure S5: Posterior distributions of model parameters fitted to experimental data while 
fixing the values of ri at the 2.5th percentile of the posterior from the full parameter fit to 
the baseline data. Posteriors are shown for the baseline (gray), low dosage (orange) and 
high dosage (pink) for the SR-hut (subscript 0) and huts 2 or 1 removed (subscript 2 and 
1 respectively). A-C) rates at which mosquitoes exit the huts D) proportion of movement 
from H1 (hut directly adjacent to the treatment hut) away from the SR-product. E-G) 
knockdown rates, and H) loss to follow-up rates. The algorithm was run for 25,000 
iterations with a burn-in period of 10,000.  
Figure S6: Posterior distributions of model parameters fitted to experimental data while 
fixing the values of ri at the 97.5th percentile of the posterior from the full parameter fit 
to the baseline data. Posteriors are shown for the baseline (gray), low dosage (orange) and 
high dosage (pink) for the SR-hut (subscript 0) and huts 2 or 1 removed (subscript 2 and 
1 respectively). A-C) rates at which mosquitoes exit the huts D) proportion of movement 
from H1 (hut directly adjacent to the treatment hut) away from the SR-product. E-G) 
knockdown rates, and H) loss to follow-up rates. The algorithm was run for 25,000 
iterations with a burn-in period of 10,000.  
Figure S7: Gelman-Rubin convergence diagnostics by iteration for the baseline scenario.  
Figure S8: Gelman-Rubin convergence diagnostics by iteration for the low dosage 
scenario. 
Figure S9: Gelman-Rubin convergence diagnostics by iteration for the high dosage 
scenario. 
Figure S10: Trace plots for the baseline scenario. 
Figure S11: Traceplots for the low dosage scenario. 
Figure S12: Traceplots for the high dosage scenario. 
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