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Abstract We consider some genealogical properties of nested samples. The com-
plete sample is assumed to have been drawn from a natural population charac-
terised by high fecundity and sweepstakes reproduction (HFSR). The random gene
genealogies of the samples are modeled by random trees which allow for multiple
mergers of ancestral lineages looking back in time. In contrast, the classical King-
man coalescent only admits asynchronous pairwise mergers of ancestral lineages.
The pattern of genetic diversity observed in samples from HFSR populations dif-
fers strongly from expectations based on Kingman’s n-coalescent. Among the ge-
nealogical properties we consider are the probability that the complete sample
and the nested subsample share the most recent common ancestor; we also com-
pare lengths of ‘internal” branches of nested genealogies. The results indicate how
‘informative’ a subsample is about the properties of the larger complete sample
from which the subsample is drawn, and by implication how much information is
gained by increasing the sample size.

keywords: coalescent; high fecundity; nested samples; multiple mergers; time
to most recent common ancestor
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1 Introduction

The study of the evolutionary history of natural populations usually proceeds by
drawing inference from a random sample of DNA sequences. To this end the co-
alescent approach initiated by [55,57,56,82,51] - i.e. the probabilistic modeling
of the random ancestral relations of the sampled DNA sequences - has proved to
be very useful [84, cf.]. Inference based on the coalescent relies on the key as-
sumption, as in standard statistical inference, that the evolutionary history of the
(finite) sample approximates, or is informative about, the evolutionary history of
the population from which the sample is drawn. We would like to know how much
some basic genealogical sample-based statistics tell us about the population in a
multiple-merger coalescent framework. Does the ‘informativeness’ of the various
genealogical statistics depend on the underlying coalescent process? A more prac-
tical approach to this question is, instead of comparing a sample with the popula-
tion, to ask how much of the genetic information of a sample is already contained
in a subsample, i.e. what is gained by enlarging the sample? A related question
concerns the size of the sample; i.e. how large does our sample need to be for a
reliable inference? We approach these problems by studying some genealogical
properties of nested samples, by which we mean where a sample (a subsample)
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is drawn (uniformly at random without replacement) from a larger sample (the
complete sample). By way of an example, [73] consider nested samples whose an-
cestries are governed by the Kingman n-coalescent [55,57,56]. One of the results
of [73] concerns the probability that a subsample shares its most recent common
ancestor (MRCA) with the complete sample. If the subsample shares the MRCA
with the complete sample, it also, with high probability, shares the most ancient
genealogical information. Thus, the effects on the genetic structure of the com-
plete sample of this most ancient part of the genealogy are also present in the
subsample. In addition, the complete sample and the subsample have had exactly
the same timespan to collect mutations. [73] show that the probability that a sub-
sample of a fixed size m shares the MRCA with the complete sample of arbitrarily
large size n (n — o) converges to (m —1)/(m+ 1). Even a subsample of size 2
shares the MRCA with probability 1/3, while a sample of size 19 already shares
with probability 0.9. This shows that by this measure (the probability of sharing
the MRCA) even a rather small subsample drawn from a large complete sample
whose ancestry is governed by the Kingman coalescent captures properties of the
complete sample quite well. We will return to this example in Sec. 2.3.

Subsampling and the time to the MRCA (TMRCA) have biological applica-
tions. [49] uses subsampling to infer species trees. [6] compare methods for esti-
mating TMRCAs. Divergence times of populations can be inferred from estimates
of TMRCAs [88], especially if one has data from several populations [68]. [81]
derives the distribution of the number of descendents of the MRCA of a sub-
sample. [54] applies a Bayesian approach on data from unlinked loci to estimate
coalescent times. Estimates of TMRCA are used to infer the time at which popu-
lations became ‘established’ [42]. The age of genes coding for functional objects
such as proteins is also correlated with gene function, and therefore associations
with diseases [21]. However, we will only be concerned with neutrally evolving
non-coding and non-recombining segments of the genome.

A universal mechanism among all biological populations is reproduction and
inheritance. Reproduction refers to the generation of offspring, and inheritance
refers to the transmission of information necessary for viability and reproduction.
Mendel’s laws on independent segregation of chromosomes into gametes describe
the transmission of information from a parent to an offspring in a diploid popula-
tion. For our purposes, however, it suffices to think of haploid populations where
one can think of an individual as a single gene copy. By tracing gene copies as they
are passed on from one generation to the next one automatically stores two sets of
information. On the one hand one stores how frequencies of genetic types change
going forwards in time; on the other hand one keeps track of the ancestral, or ge-
nealogical, relations among the different copies. This duality has been successfully
exploited for example in modeling selection [34,35]. To model genetic variation
in natural populations one requires a mathematically tractable model of how ge-
netic information is passed from parents to offspring. In the Wright-Fisher model
offspring choose their parents independently and uniformly at random. Suppose
we are tracing the ancestry of n > 2 gene copies in a haploid Wright-Fisher popu-
lation of N gene copies in total. For any pair, the chance that they have a common
ancestor in the previous generation is 1/N. Informally, we trace the genealogy of
our gene copies on the order of &(N) generations until we see the first merger,
i.e. when at least 2 gene copies (or their ancestral lines) find a common ancestor.
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If n is small relative to N, when a merger occurs, with probability 1 — &(1/N) it
involves just two ancestral lineages. This means that if we measure time in units
of N generations, and assume N is very large, the random ancestral relations of
our sampled gene copies can be described by a continuous-time Markov chain in
which each pair of ancestral lines merges at rate 1 and no other mergers are possi-
ble. We have, in an informal way, arrived at the Kingman-coalescent [55,57,56].
One can derive the Kingman-coalescent not just from the Wright-Fisher model but
from any population model which satisfies certain assumptions on the offspring
distribution [60,70,63]. These assumptions mainly dictate that higher moments
of the offspring number distribution are small relative to (an appropriate power
of) the population size. The Kingman-coalescent, and its various extensions, are
used almost universally as the ‘null model’ for a gene genealogy in population
genetics. The Kingman-coalescent is a remarkably good model for populations
characterised by low fecundity, i.e. whose individuals have small numbers of off-
spring relative to the population size.

The classical Kingman-coalescent is derived from a population model in which
the population size is constant between generations. Extensions to stochastically
varying population size, in which the population size does not vary ‘too much’
between generations, have been made [53]; the result is a time-changed Kingman-
coalescent. Probably the most commonly applied model of deterministically chang-
ing population size is the model of exponential population growth (see eg. [25,41,
30]). In each generation the population size is multiplied by a factor (1 + /N),
where 8 > 0. Therefore, the population size in generation k going forward in time
is given by Ny = No(1+ B/N)* where Ny is taken as the “initial’ population size.
It follows that the population size | Nz| generations ago is Ne P!, [30] show that
exponential population growth can be distinguished from multiple-merger coales-
cents (in which at least three ancestral lineages can merge), derived from popu-
lation models of high fecundity and sweepstakes reproduction, using population
genetic data from a single locus, provided that sample size and number of muta-
tions (segregating sites) are not too small.

A diverse group of natural populations, including some marine organisms [45],
fungi [1,79,50], and viruses [83] are highly fecund. By way of example, individual
Atlantic codfish [59,67] and Pacific oysters [58] can lay millions of eggs. This
high fecundity counteracts the high mortality rate among the larvae (juveniles)
of these populations (Type III survivorship). The term ‘sweepstakes reproduction’
has been proposed to describe the reproduction mode of highly fecund populations
with Type III survivorship [44]. Population models which admit high fecundity
and sweepstakes reproduction (HFSR) through skewed or heavy-tailed offspring
number distributions have been developed [63,64,78,31,72,52]. In the haploid
model of [78], each individual independently contributes a random number X of
juveniles where (C,a > 0)

C

k — oo, (1)
and x, ~ y, means x,/y, — 1 as n — . The constant C > 0 is a normalising
constant, and the constant & determines the skewness of the distribution. The next
generation of individuals is then formed by sampling (uniformly without replace-
ment) from the pool of juveniles. In the case & < 2 the random ancestral relations


https://doi.org/10.1101/164418

bioRxiv preprint doi: https://doi.org/10.1101/164418; this version posted July 17, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

of gene copies can be described by specific forms of multiple-merger coalescent
processes [71].

Coalescent processes derived from population models of HFSR (see (1) for
an example) admit multiple mergers of ancestral lineages [24,69,70,75,64,71,
62]. Mathematically, we consider exchangeable n-coalescent processes, which

are Markovian processes (H,(")),Zo on the set of partitions of [n] := {1,2,...,n}
whose transitions are mergers of partition blocks (a ‘block’ is a subset of [n], see

Sec. Al) with rates specified in Sec. Al. The blocks of Ht(") show which individ-
uals in [n] share a common ancestor at time ¢ measured from the time of sampling.

Thus, the blocks of I"It("> can be interpreted as ancestral lineages. The specific
structure of the transition rates allows to treat a multiple-merger n-coalescent as
the restriction of an exchangeable Markovian process (IT;);>o on the set of parti-
tions of N, which is called a multiple-merger coalescent (MMC) process. MMC
processes are referred to as A-coalescents (A a finite measure on [0, 1]) [24,69,
70] if any number of ancestral lineages can merge at any given time, but only one
such merger occurs at a time. By way of an example, if 1 < a < 2 in (1) one ob-
tains a so-called Beta(2 — a, o)-coalescent [71] (Beta-coalescent, see Eq. (A37)).
Processes which admit at least two (multiple) mergers at a time are referred to as
X-coalescents (Z a finite measure on the infinite simplex A) [75,63,64]. See Sec.
Al for details. Specific examples of these MMC processes have been shown to
give a better fit to genetic data sampled from Atlantic cod [12,18,2,16,19] and
Japanese sardines [66] than the classical Kingman-coalescent. See e.g. [29] for an
overview of inference methods for MMC processes. [45] review the evidence for
sweepstakes reproduction among marine populations and conclude ‘that it plays a
major role in shaping marine biodiversity’.

MMC models arise in contexts other than high fecundity. [17] show that re-
peated strong bottlenecks in a Wright-Fisher population lead to time-changed
Kingman-coalescents which look like Z-coalescents. [27,28] show that the ge-
nealogy of a locus subjected to repeated beneficial mutations is well approximated
by a EZ-coalescent. [74] provides rigorous justification of the claims of [65,22]
that the genealogy of a population subject to repeated beneficial mutations can be
described by the Beta-coalescent with & = 1 (also referred to as the Bolthausen-
Sznitman coalescent [20]). These examples show that MMC processes are relevant
for biology.

Overviews of mathematical population genetics can be found in a number of
books (see e.g. [26,36]), monographs, or papers. We refer the interested reader
to e.g. [10,25,5,33,9,13] for a more detailed background on coalescent theory.
Our aim is to study how well some genealogical properties of a subsample cap-
ture those of the sample from which the subsample was drawn. We compare
these properties between the classical Kingman-coalescent, exponential popula-
tion growth, and A- and Z-coalescents using theoretical derivations and simula-
tions. A precise description of MMC processes is given in Appendix (Sec. Al).
For ease of reference we include a table (Table 1) of notation and terminology.


https://doi.org/10.1101/164418

bioRxiv preprint doi: https://doi.org/10.1101/164418; this version posted July 17, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

181

Table 1 Notation and terminology.

symbol explanation

HEFSR high fecundity and sweepstakes reproduction

MMC multiple-merger coalescent

MRCA most recent common ancestor

TMRCA time to MRCA

leaves special kind of vertices in a random graph (genealogy);

correspond to sampled DNA sequences
n-coalescent  a coalescent process started from n leaves

N the set of the natural numbers N := {1,2,...}
[n] []:={1,2,...,n},neN
[n]a [nla:={a,a+1,...,n} forn,ac {0}UN,a<n
1y 1(4) = 1if A holds, and zero otherwise
XAy min{x,y}
TI\(,;)C A the random TMRCA of the population current at some stated time
TI\%C the random TMRCA of a sample of size n € [2,0)
TM';SS A the random TMRCA of a subsample of size m
taken from a complete sample of size n > m
TI\(,[AI;I)C A the random TMRCA of a finite sample M C N
I coalescent process; IT = IT, := {I1(z),r > 0}
e IT restricted to [n]
) A-coalescent
e Z-coalescent
P (A) probability of event A under IT
IT) (In) . _ p(m) (plmn) _ m(m) . e .
P Pnm =P Tyrca = Tvrea ); the probability that
subsample and complete sample share the MRCA
A the infinite simplex A := {(x1,x2,...)|x; € [0,1], Yiepxi < 1}
(min) o plmn) ()
Pr the ratio Ty;pa /Tyreas See Sec. 3.1
p,(m;") the ratio of ‘internal’ edge lengths between subsample

and complete sample; see Sec. 3.1

2 Sharing the MRCA

We consider a E- or A-n-coalescent with a starting partition 7 = {{1},...,{n}},
i.e. initially all the blocks &; € & are singleton blocks. We refer to the elements of
the starting partition as ‘leaves’. A common ancestor of a set A C N of leaves is
any block containing A. A set A of leaves has a common ancestor if and only if
the coalescent passes through a partition with a block containing A. This allows us
to identify the common ancestor with blocks of the partition-valued states of the
coalescent. The MRCA of a set A of leaves is the smallest block which contains
A (whenever that block appears). Given that we start from a finite set [n] of leaves
(n < =) we will eventually (i.e. in finite time almost surely) observe the partition

{[n]} containing only the block [n]. Let Tl\(,ﬁgc  denote the TMRCA of the set [n]
of leaves, i.e. we define

Tca = inf {1 = 0: 1" = ()} }. @)
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The Tl\sﬁic A is therefore the first time H,(") arrives at partition {[n|} € &2,. Write

TI\(/I?C A for the TMRCA of the whole population. By a finite sample we mean a
finite set A of leaves.

A subsample is a subset of a given sample (a given set of leaves). We let m
denote the size of the subsample. For convenience and w.l.o.g. we assume leaves
1 to m are the leaves of the subsample, and we assume block 7; in any partition
always contains element 1. A common ancestor of the subsample is any block
containing [m]; the MRCA of the subsample is the smallest block containing [m]
(whenever it appears). We define the time to the MRCA of a subsample of size m
of a sample of size n > m as

Tl\(/IrﬁgL = inf{t >0:[mCme []t(">} : 3)

ie. Tl\(,lnlgég is the time of first occurrence of the subset [m] in block 7 in a partition
of IT™ . The sample and the subsample share the MRCA if the smallest block
containing [m] ever observed in IT") is [n]; this happens almost surely if Th(/["lgg)A =
(n)
Tyirca- ) . .
Our main mathematical results concern the probability

II m;n n
PSH'") =Pl (Tl\(/IRC)A = 1\(/11§CA> ; 4)

which is the probability that the sample (of size n) and the nested subsample (of
size m < n) share their MRCA under the coalescent process IT. From now on it

should be understood that we always look at nested samples. We are able to obtain
representations of p,%,) both for finite n and m and also for the limit lim,,_,c. p,%,) R
m fixed, for some MMC processes. We will let p,(f,,), denote pﬂq) in (4) when IT is

a X-coalescent, and pﬁ,/},z denote pS,f,T,B when IT is a A-coalescent.

2.1 Finite n

Our main focus is to compare genealogical properties of nested samples between
different coalescent processes in order to learn what is gained by enlarging the
sample size. In this context, a natural question to address is which n-coalescent
IT maximises p,(fzn) for a given finite sample size n and subsample size m? Triv-
ially this is the ‘star-shaped’ coalescent with A-measure A (dx) = ;(x)dx so that

A({1}) =1, all n blocks merge after an exponential waiting time, and p,g'?},,) =1
We now compare pg,lf,,llngman) (meaning pﬁff,,) when IT is the Kingman-coalescent)

to all p%ﬁ with A ({1}) = 0. We can show the following (see Sec. 4.1 for a proof).

Proposition 1 For any given sample size n and subsample size m < n there is a
A" with A'({1}) = 0 which fulfils piy) > plfs™”.

One can think of A’ as given by A = y for some fixed y € (0, 1) and very close
to 1. Prop. 1 holds for any finite sample size n and subsample size m. Regarding
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the limit p{™" = limy,_se pﬁ,lz,,) with m fixed we conjecture that p{<ime™a = plA)

for every A-coalescent with A ({1}) = 0. Should our conjecture be true, the limits
compare in the opposite way to the comparison of the non-limit probabilities given
in Prop. 1.

The result in Prop. 1 holds for a very special A-coalescent. One can numeri-

cally evaluate pﬁ,A,,z with a recursion (see Sec. 4.7.1 for a proof), and thus compare

pﬁlA,,z for different A-coalescents. Let A (n) (see Eq. (A36)) denote the total rate of
mergers given n blocks, and A (n) (see Eq. (A35)) denote the rate at which any
k of n blocks merge. Write 3(n,n —k+ 1) := Ax(n)/A(n) for the probability of a
single merger of k blocks (a k-merger) given n blocks (2 < k < n). Then

n kAm (n—ny (m
pSt/,xnz = Zﬁ(n7n_k+1) Z wpfﬁ)ﬂ—l.m" (5)
k=2 (=0 (k) '

where (7)) := Oifn—m <k—Candm' = (m—L+1)1(p1)+mlp<y). In the
case m = 2 recursion (5) simplifies to

n-2 n—k)(n+k—1
P =Y Blnn kg PO
, = n(n—1) ’

5 (6)
+ﬁ(n,2); +B(n,1).

Recursion (5) further simplifies in the case of the Kingman coalescent, since then
B(n,n—1) =1 for n > 2. [73] obtain, with IT the Kingman-coalescent,

n)_m71n+l
pn’m_m—&—ln—l'

(N

Since the representation (7) only depends on which mergers are possible, the result
(7) holds for a time-changed Kingman-coalescent as derived for example in [53]
from a population model of ‘modest’ changes in population size.

As remarked in the introduction, the Beta-coalescent (see Eq. (A37)) with co-
alescent parameter @ € [1,2), is an example of a A-coalescent (see Eq. (A33)) and
can be derived from population model (1). Figure 7 shows graphs of pSzIzn) when

IT is the Beta-coalescent (see Eq. (A37)) with coalescent parameter a € [1,2)

as a function of ; the results indicate that p,\oe@d) < p Kineman) fo ) Jarge

enough and any m. This shows that one needs a larger subsample under the Beta-
coalescent than under the Kingman-coalescent for a given sample size to have the
same value of pELHm) . By implication, one gains more information by enlarging the
sample under the Beta-coalescent than under the Kingman-coalescent.

We conclude this subsection with two closed-form representations of p%f To
prepare for the first one we recall the concept of ‘coming down from infinity’. This
property is defined as follows. If a Z-n-coalescent (H,u))tzo comes down from
infinity then, with probability 1, the number of blocks is finite for any ¢ > 0, which
is equivalent to lim, e Tl\gﬁgc A < oo as. If H,(:), for t > 0, has infinitely many
blocks with probability 1, we say that the coalescent ‘stays infinite’. Conditions
for = to fall into one of these two classes are available, see e.g. [77,76,48]. If
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E({x € A|XX  x; =1 for k€ N}) > 0, the E-coalescent does not stay infinite [76,
p-39], but does not necessarily come down from infinity. In fact, there is a.s. a
finite (random) time T > 0 so that the number of blocks is finite for all t > T (see

[75, p. 39]). This means that for such a coalescent, lim,,_,c TI\(,I’;%C 18 finite almost

surely. For processes that stay infinite (IT), lim, e pﬁ,’},? = 0 since the MRCA of
the set N of leaves in the starting partition {{1},{2,},...} is never reached.

We have a representation of p,(f,,z (see Sec. 4.2 for a proof).

Proposition 2 For any finite measure = on A, we have

(=) n By~
pim=1-E|Y [] >0 ®)
ieNi=0 "~
where BE ]) B[z] ,... are the sizes of the blocks of H , ordered by size from
MRCA

n)

biggest to smallest where the sequence B[l])7BE2] ;... Is extended to an infinite se-

quence by taking B( =0fori> #H (n ) . If the E-coalescent comes down from

MRCA
infinity, we have
E[Y™]
1 P Ex™ 1! =1- 0 9
pn m - |J§\| [{ ] ] EY] > )]
for fixed m and n — oo, where Py := lim,HooBE? /n is the (almost surely existing)

asymptotic frequency of the ith biggest block of H @) _» X is the asymptotic fre-

MRCA
quency of a size-biased pick from the blocks of H , while Y is the asymptotic
RCA
frequency of a block picked uniformly at random from H
MRCA

In the case of the Bolthausen-Sznitman (BS-coal) n-coalescent [20], which is
a A-n-coalescent with A (dx) = dx (see Eq. (A34)), i.e. the density associated with
(I1)

the uniform distribution on [0, 1], we can give a characterisation of pj, in terms
of independent Bernoulli r.v.’s (see Sec. 4.3 for a proof).

Proposition 3 Let By,...,B,_| be independent Bernoulli random variables with
P(B;=1) = 1/i. Let II denote the Bolthausen-Sznitman n-coalescent. For 2 <
m<n,

(m _ g |:Bl+-~-+Bm1:|. (10)

o Bi+...+B,_1

Moreover, lognp,(gn) -y 11 i~! for n — oo and m fixed.
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2.2 Two variants of pf,I,Yn)

The probability p}) (see Eq. (5)) is an indication of how likely it is that the
‘oldest’ genealogical branches, or the edges connected directly to the MRCA, are
(partially) shared between subsample and sample. We remark that the sample and
the subsample may share the MRCA without sharing any of the internal edges if
the associated coalescent admits multiple mergers (see Fig. 1C for an example).
Such events are highly unlikely though for n large enough if the A-coalescent
comes down from infinity, see Corollary 1. If the sample and the subsample share
the MRCA then the subsample is more likely to include the oldest allele of the
complete sample. To derive the actual probability of the event that the subsample
carries the oldest allele of the complete sample one needs to include mutation.
Consider a A-n-coalescent with neutral mutation. Mutations are modelled by a
homogeneous Poisson point process on the branches of the A-n-coalescent with
(scaled) mutation rate 6 > 0. We assume the infinitely-many-alleles model. This
means that the allelic type of each individual is seen by tracing its ancestral line
back to the first mutation on it. The ancestral line shares the type of the MRCA
if there is no mutation on the line before the MRCA is reached. We are interested
in the event that the oldest allele from the sample is also found in the subsample.
This can be expressed by using the concept of ‘frozen’ and ‘active’ ancestral lines
in a n-coalescent with mutation [23]. At a given time ¢, an ancestral lineage is
called frozen if there has been a mutation on it, otherwise it is called active. The
age of a sampled allele (i, say) is the waiting time 7; until its’ ancestral lineage is
frozen. For consistency we prolong the n-coalescent after reaching the MRCA (at
time Tl\(/ﬁgc A) by a single ancestral line. The first mutation on the prolonged line
is seen after an additional Exp(60/2) time which freezes the line. Thus, the oldest
allele of a sample is given by the ancestral lineage which is frozen last (active
the longest), and this age is max{7, : i € [n]} for the sample and max{7, : i € [m]}
for the subsample. Let A(") (t) denote the count of active ancestral lineages in the
sample at time 7. We write

P\ . p(i1.e) (A<"> (max{7; :i € [m]}) = 0) . (11)

for the probability that the subsample includes the oldest allele of the sample.
(A.8) _ (ITI).9)

We consider p,.m = Pam for n,m € Ng, 8 > 0. The case n =m =1 (or
n>m=1) means we trace back a smgle lineage until it is hit by a mutation
(either in the sample and/or subsample). The boundary conditions are pSLf\,,’e) =1
and P,(:})’e) =0 for n > 0. The recursion for pﬁ?,,;‘” is

(ao)_ _ Om a9 6(n—m) (1)
P = oA )+9np” 11 27 () & Ot
(12)
22 (n G e
—_— k+1 ——p /s
- 24 (n )+9n Zﬁ mn—k+ )Za 0 Ppkt1,m

where m’ = (m — £+ 1)1(451) +m( <y (see Sec. 4.7.3 for a proof),


https://doi.org/10.1101/164418

bioRxiv preprint doi: https://doi.org/10.1101/164418; this version posted July 17, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

The probability pﬁ,f\,;,e) is a function of the scaled mutation rate 6. Here, and

in most models in population genetics which include mutation, 6 := wy /cy where
Uy is the rate of mutation per locus per generation, and cy is the pairwise coalescence
probability, or the probability that 2 distinct individuals sampled at the same time
from a population of size N have the same parent. Since (usually) cy — 0 as
N — oo to ensure convergence to a continuous-time limit [70,63], and since 0 is
usually assumed to be of order &'(1), we let uy depend on N. The key point here
is that 6 depends on cy. By way of an example, cy = 1/N for the haploid Wright-
Fisher model, while cy = 0(N'~%) for the Beta(2 — o, o)-coalescent, 1 < & < 2
[71]. This means that the scaled mutation rates () are not directly comparable
between different coalescent processes; this again means that expressions ( p,(lf\,,’,m,
defined in (11), for example) which depend on the mutation rate cannot be di-
rectly compared between different coalescent processes that may have different
timescales. We further remark that we must define 6 to be proportional to cy
since the branch lengths on which the mutation process runs are in units of 1/cy;
thus if we don’t rescale the mutation rate py with 1/cy we would never see any
mutations. It is therefore the mutation rate ty, which must be determined from
molecular (or DNA sequence) data, which sets the timescale; the cy comes from
the model.

The probability pﬁ,nm) is also the probability that the MRCA of the subsample
(of size m) subtends all the n leaves ([n] is the smallest block containing [m]). A
related more general question is to ask about the distribution of the size (number
of elements) of the smallest block which contains [m]. This is the same as asking
about the distribution of the number of leaves subtended by the MRCA of the
subsample. For Kingman’s n-coalescent, the distribution is computed in [81, Thm.
1]. The probability of the event that the MRCA of the subsample subtends only the
leaves of the subsample is especially interesting, see also e.g. [87, p. 184, Eq. 2],
where this probability is also described recursively. This recursion can be easily
extended to A-coalescents. Define Tl\Sﬁ{)C A to be the first time that A is completely
contained within a block of II;. Write

aitn =PI (TG > 1y vie fmt1,..on}) (13)
for the probability that the MRCA of the subsample subtends only the leaves of
the subsample. Let B(n,n — k+ 1) be the probability of a k-merger (2 < k < n)

given n active lines. The recursion for q,(ZA,,z is (see Sec. 4.7.2 for a proof)

(n—m)Am
A B(n,n—k+1) m\ (A n—m\ (A
Gim= Yy — ((k)qilf)kJrl,mkarl +(" )qif)kJrl,m) (14)

k=2 (k)

with boundary conditions qﬁ,/},,) = qf,Al> =1 for n € N. One may use q,(f‘nz to calculate

a p-value in a test for observing block [m] under a A-coalescent. As one might
expect (see Sec. 4.3 for a proof), for m fixed and for any A-coalescent,
lim g = 0. (15)

n—oo

In the case of the Bolthausen-Sznitman (BS-coal) n-coalescent we obtain an

exact representation of ¢'by < (see Sec. 4.4 for a proof).
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Proposition 4 Let By,...,B,_1,B),...,B,_,, be independent Bernoulli variables

with P (B; = 1) = P (B} = 1) =i~ . For the Bolthausen-Sznitman n-coalescent we
have, for 2 <m <n,

—1 -1
B coul) _ <n— 1) £ <Zie[m—1] Bi+Yicn—m) Bi) _ (16)
’ m—1 Zie[mfl] B;

2.3 The limit limy, e p{%)
In this subsection we discuss the limit lim,,_.. pﬂl) with m fixed. For a fixedm € N,
write

pit) = lim PUD) (i =18 ) a7)

for the probability, under coalescent I, that a subsample of size m shares the

MRCA with an arbitrarily large sample. The limit lim, e Tyja: is a valid limit
for any coalescent (even if it diverges) and therefore (17) is well defined. For any
X-coalescent <p£,j,),> is monotonically decreasing as n increases. The limit
n>m

pﬁ,f) is derived under the assumption that the same Z-coalescent is obtained for
arbitrarily large sample size. This assumption may not hold when one wants to re-
late to finite real populations. The quantity pﬁf) should therefore only be regarded
as a limit. See further discussion on this point in Sec. 5.

For the Kingman-coalescent we have the following result, first obtained in [73]

by solving a recursion,

(Kingman) _ m—1

" m+1
To see (18) without solving a recursion, we consider the process forwards in time
from the MRCA. Label the two ancestral lines generated by the first split (of the
MRCA) as a; and a,. The fraction of the population that is a descendant of a; is
distributed as a uniform random variable on the unit interval, see e.g. the remark
after Thm. 1.2 in [8]. Therefore, with U a uniform r.v. on [0, 1], and any finite
meN,

(18)

A 1 1
(Kingman) _ 1 _ prym) _ g 17U'":172/ My =""" 19
; el vy =12 L= "0 o)
For the Bolthausen-Sznitman coalescent (BS-coal) lim,_e p,(f 35-coa) _ ) for m

fixed. We remark in this context that the Bolthausen-Sznitman coalescent does
not come down from infinity.

Result (18) is also an indication that the statistic Tl\(,fgc A 18 a good statistic
for capturing a property of the population with a small sample, at least under the
Kingman coalescent. We remark that the Kingman coalescent comes down from
infinity. Result (18) (and (19)) is the ‘spark’ for the current work.

(Beta-coal)

Our main mathematical result, Thm. 1, is a representation of p;;, , l.e.

(A)
pSnH ) when ITA) is the Beta(2 — o, @)-coalescent [78] (Beta-coalescent; see Eq.
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(A38)). The Beta-coalescent is well-studied, there are connections to superpro-
cesses, continuous-state branching processes (CSBP) and continuous stable ran-

dom trees as described e.g. in [14] and [7]. For a € (1,2), the Beta-coalescent

comes down from infinity. The representation of p'°*“**) given in Thm. 1 can

be directly derived from [8, Thm. 1.2], which is a result based on the connection
between the Beta-coalescent and a CSBP (see Sec. 4.5 for a proof).

(Beta-coal) __

Theorem 1 Define p, = pSnH) (see Eq. (17)) when Il is the Beta-coalescent
for o € (1,2). Let K denote the random number of blocks involved in the merger
upon which the MRCA of [n] is reached; K has generating function E [MK ] =
o iy (1= x'=9)"1((1 = uwx)*~" = 1)dx for u € [0,1] [47, Thm. 3.5]. Let (Y;)ien
be a sequence of i.i.d. r.v. with Slack’s distribution on [0,), i.e. Y| has Laplace
transform E [e‘”l] =1— (1421~ [80]. We have the representation

"

(Y1 + ...+ Y )a+mT PIK=F).

pg’?em-coul) —1— Z kE [(Yl +...+ Yk)l—a] -1 E
keN
(20)

A comparison of p£,1m between coalescent processes that come down from infinity

is complicated by at least two things. First, it is not clear what such a comparison
would mean in terms of inference for real populations. Second, the representation
(20) is highly non-trivial to evaluate. However, the result in Thm. 1 is of mathe-
matical interest in its own right.

We close this subsection with a consideration of the limit lim,,_c p%? when
II is a E-coalescent (A32). We give a criterion for when pﬁ,f) > 0. This question
is closely related to the question of coming down from infinity for a Z-coalescent.

We have the following result (see Sec. 4.6 for a proof).

Proposition 5 Consider any E-coalescent. For any fixed m € N, m > 2, p£n5> ex-

ists. If the coalescent comes down from infinity or E({x € A| Zf: 1xi=1forkc
N}) >0, p,(,f) > 0. If it stays infinite, p,(;> =0.

3 Relative times and lengths

So far we have considered how well the MRCAs match between a sample and a
nested subsample when both are finite; we have also discussed some limit results
when the sample size tends to infinity. We would also like to have some under-
standing of how the distributions of the various genealogical statistics compare
between different coalescent processes. In this section we use simulations to esti-
mate the distribution of two genealogical statistics and compare them between the
Kingman-coalescent, exponential population growth, and the Beta-coalescent.

3.1 Simulation method

To generate realisations of our statistics we simulate genealogies by drawing wait-
ing times between mergers, and merger sizes, governed by the transition rates of
the corresponding n-coalescent.
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Denote by T; the random waiting time for the first merger of the j-coalescent.
The coalescent process under exponential population growth is a time-changed
Kingman-coalescent (see e.g. [25,30]). [41] give a way of sampling 7; under ex-
ponential growth. Let B > 0 denote the growth rate under exponential growth.
Write S; =T, +---+ 7T for 2 < j <n, with S,y =0 as. If {U;:2<j<n}
denotes a collection of i.i.d. uniform (0, 1] random variables, then [41]

1

Sj=Tj-+ 801 = glog (exp(BSj1) — i log(U))), 2<j<n. QD)
Eq. (21) tells us that if 8 is very large, the time intervals 7; near the MRCA
become quite small. The time intervals near the leaves are much less affected. We
choose the grid of values for § as

B € {0.1,0.5,1,10,50,100, 500, 1000, 5000, 10000}

Recall in this context the growth model Ny = No(1+ B /N ) for the population size
in generation k > 0 going forward in time, and where Nj is the population size at
the start of the growth. Our choice of grid values for 8 should reflect the range
of growth from weak (8 = 0.1) to very strong (8 = 10*) and most estimates of 3
obtained for natural populations should fall within this range.

Under the Beta-coalescent 7; is an exponential with rate A(j) = A2(j) +--- +
A;j(j) where A;(j) is given in Eq. (A38).

Let n and m denote the current number of sample and subsample lines; since
the subsample is nested within the sample a subsample line is necessarily also a
sample line. Let M € {2,...,n} be the size of the first merger of the correspond-
ing n-coalescent. Under a A-n-coalescent M = k with probability P (M = k) =
A(n)/A(n) (see Eq. (A35) and (A36)) for 2 < k < n; under a (time-changed)
Kingman-n-coalescent M = 2 a.s. We partition the sample and subsample lines as
follows. Let mey; resp. fiex denote the current number of ‘external’ lines of the
subsample, resp. number of ‘external’ lines not belonging to the subsample. Let
Mine TESP. Min denote the current number of ‘internal’ lines of the subsample, resp.
current number of ‘internal’ lines not belonging to the subsample. External lines
are subtended by exactly 1 leaf, while internal lines are subtended by at least 2
leaves.

The distinction between the lines will now be further explained. Given that we
start with n sample lines of which m belong to the subsample then initially mey =
m, Mexy = n—m, and mjy = Mipe = 0. Now suppose we have drawn k lines to merge,
of which x| < mex were drawn from the external lines of the subsample, xp < Ftex
from the external lines not belonging to the subsample, x3 < m;y from the internal
lines of the subsample, and x4 < 77, from the internal lines not belonging to the
subsample. The following transitions of the lines then occur:

Mext — Mext — X1,

Hiext — Mext — X2,

(22)
Mint — Mint — X3 + l(x1+x321)a
Ming — Mine — X4 + 1(x2+X4:k)'

The transitions reflect our assumption that if at least 1 subsample line is involved

in a given merger, the continuing ancestral line is considered to belong to the
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subsample; mutations that arise on the continuing line will then be carried by
the subsample, and visible in the subsample unless all the subsample lines were
involved in the merger (x; = mex and x3 = mjy and x; +x3 > 1). Therefore, if
a single external subsample line, and no other subsample line, is involved in a
merger (x; = 1, x3 = 0) we regard the continuing line as an ‘internal’ line of the
subsample. An external line of the subsample therefore remains so only until it is
involved in a merger. By way of example, the continuing line of the first merger
in Fig. 1D counts as an internal line of the subsample.

Given the merger size k € [2, Mext + fiext + Min + Mine), due to the exchange-
ability of the n-coalescent, we draw k lines from a multivariate hypergeometric

by
(o) (") (o) (")

(mexl+”~’lext+mim+mint ’
k

PX=x)=

Xp+-+xg =k, (23)

where the x; denote the number of lines drawn from each of the four groups

(ms;n) (msn) d
MRCA MRCA an

is the sum of the lengths of

(n) -

mt

The statistics we consider are the relatlve times py

the relative lengths p(m" = Ll:: ) /L where L.( "

nt

the internal edges associated with the subsample and L./ is the sum of the lengths

of internal edges of the complete sample. The ratio p, ™) indicates how much of
the ‘ancestral variation’, or mutations present in at least 2 copies in the sample, are

(m;n)

captured by the subsample. The ratio p; " indicates how likely we are to capture
with the subsample the ancestral variation in the complete sample.

A realisation of pI 1s obtained as follows. Given j = miext + Mine + Mext +

i current sample lines, let ¢; denote a realisation of T, the random time during
(msn)
nt

which there are j lines of the complete sample. We update the total lengths £,
(n)

of internal subsample lines, and £, /

of internal lines of the complete sample, as

Zl(nt ) - gl(l’lt ) + 1(mext+mim>l)mintt.i’

(n) n) > @4
Emt - fmt + 1(j>1) (mint "‘mint) Zj.
The updating rule for K(m ) in Eq. (24) reflects the fact that mutations on the
common ancestor line of the subsample, for example the continuing line after the

merger of all 3 subsample lines in Fig. 1D, are not visible in the subsample. The

updating rule for El( " in Eq. (24) similarly reflects the fact that mutations on the

continuing line of the MRCA of the complete sample are not visible in the sample;

but once the MRCA of the complete sample is reached we stop the process.

A realisation of pl(m;") is then recorded as r}m;") H:'Z ") / Kmt By way of ex-

ample, the edges marked with a black dot in Fig. 1B are internal edges of the
complete sample while the edges marked with a circle in Fig. 1A are internal
edges associated with the subsample as well as the complete sample, and we have
pl(m;n) =(I5+Ti+13)/(T5s + 2T, + T3) for the genealogy in Fig. 1A. There are
no internal edges associated with the subsample in Fig. 1B and 1C; therefore

pl(m;") = 0 for the genealogies in Fig. 1B and 1C. The sample and the subsam-
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ple share all the internal edges in the genealogy shown in Fig. 1D and therefore

" =1,

Realisations of Tl\(/["é;g)A (¢ and Tl\(/[lgc A (1) are recorded as

1) = inf{t > 02 M+ mine = 1}, 03)
t(n) = inf{t > 01 Mext + Ming + Mext + Mine = 1}7

by adding up the realised waiting times ¢; of T;. We record a realisation of p;m;")

as r;m;n) = t(m;") /I(").

3.2 Simulation results

Figures 2 and 3 show estimates, in the form of boxplots (see a description in the

captions), of the distributions of p;m;n) (left column) and pl(m;") (right column);
under the Beta-coalescent as a function of « (Figure 2) and under exponential
growth as a function of 8 (Figure 3). In some of the boxplots of p;m;") in fact all
of them under exponential growth (Fig. 3) the interquartile range (the difference
between the 75th and 25th percentile) is zero. The estimates shown in Fig. 3 of

the distribution of p;m;") indicate that p;m;") becomes more concentrated at 1 as 3

increases. Recall in this context that pﬁ,‘ji,‘lp' growth) _ (m—1)(n+1)/(m+1)(n—
1)) since exp. growth results in a time-changed Kingman-coalescent.

In Figure 2 we see a gradual shift in the distribution of p;m;") as subsample

size increases; from being skewed to the right (ie. towards higher values) to being
skewed to the left (ie. towards smaller values). This is in sharp contrast to the
distribution under exponential growth (Figure 3) where the distribution of p;m;")
is always skewed to the left. This indicates that under a MMC process a subsample
is much less informative about the larger complete sample than under exponential
growth. In contrast, under exponential growth, even a small subsample can be very
informative about the larger complete sample, especially in a strongly growing

1) | 5 (mn)

(large B) population. Estimates of the means E [pT }, shown in Figure 4

(circles) for the Beta-coalescent, and in Figure 5 (circles) for exponential growth,
further strengthen our conclusion.

The distribution of pl(m;"), the relative lengths of internal edges, also behaves
differently between the Beta-coalescent and exponential growth (Figures 2 and 3,
middle columns). The distribution of p,(m;n) becomes more concentrated around
smaller values as growth becomes stronger (8 increases) while it stays highly
variable as ¢ tends to 1, although the median decreases as skewness increases (o
tends to 1). This indicates that we capture less and less of the ‘ancestral variation’
(mutations observed in at least 2 copies in the sample) in the larger sample as
growth or skewness increase. By implication our sample captures less of the an-

cestral variation in a strongly growing population, or in a population with highly
skewed reproduction. Estimates of EIT) {pl(m;n)} (Figures 4 and 5, ‘+’) also indi-
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cate that one would need a large sample to capture at least half of the ancestral
variation if growth or skewness is high.
To conclude, p;m;n) and p,(m;") seem to converge to opposite values under ex-

ponential growth; p;m;") to 1 and pl(m;”) to small values, as f3 increases. Thus,

even if we are sharing the MRCA with higher probability as 8 increases (recall
that the samples are nested), we are capturing less and less of the ancestral vari-
ation. Essentially the opposite trend is seen for both p;m;") and p,<m;n> under the
Beta-coalescent; the distributions of both statistics stay highly variable as o — 1.
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Fig. 1 Examples of genealogies. Thick edges denote lineages ancestral to the subsample of size
m = 3; sample size n = 7. The marked edges in A denote internal ancestral lineages to both
the subsample and the whole sample; the marked edges in B denote lineages internal only to
the whole sample. In C the sample and subsample share the MRCA without sharing any of the
internal edges. The genealogies are shown from the time of sampling (present) until the MRCA
of the whole sample is reached (past). In C the sample and the subsample share the MRCA
without sharing any internal edges. In D the sample and the subsample share the MRCA and all
the internal edges.

A subsample B subsample

present \ present f '
®
®
[ J
D

past past

C subsample D subsample
present present

L

past past
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Fig. 2 Estimates, shown in the form of boxplots, of the distributions of p;m;") and of p,(m;") as

functions of the coalescent parameter & of the Beta(2 — ¢, o)-coalescent for values of sample
size n = 10* and subsample size m as shown. The coalescent process at & = 2 is the Kingman-
coalescent. Each box shows the interquartile range (/QR; the difference between the 75th and
25th percentile), and the whiskers extend to £1.5 x IQR; values outside 1.5 x IQR are shown
as circles. The thick line within each box shows the median. For explanation of symbols see
Subsection 3.1. Shown are results from 10° replicates.

m= 10] <mn) m= lO',p,('m")
o JTil 0 EEDDDDQA Ti
coalescent parameter o coalescent parameter o
m= 102, p;m" m= 102, p,(m;")

111 13 15 17 19 2 111 13 15 17 19 2

coalescent parameter ¢¢ coalescent parameter ¢¢

m=10%, p(Tm i) m=10°, pI(m:n)

111 13 15 17 19 2 111 13 15 17 19 2

coalescent parameter ¢¢ coalescent parameter ¢¢
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Fig. 3 Estimates, shown in the form of boxplots, of the distributions of p;m;") and of p,(m;") as

functions of the exponential growth parameter 8 for values of sample size n = 10* and subsam-
ple size m as shown. Each box shows the interquartile range (/QR; the difference between the
75th and 25th percentile), and the whiskers extend to +1.5 x IQR; values outside +1.5 x IQR
are shown as circles. The thick line within each box shows the median. The coalescent process
at § = 0 is the Kingman-coalescent. For explanation of symbols see Subsection 3.1. The grid
of values of f is {0.1, 0.5, 1.0, 10.0, 50.0, 100.0, 500.0, 1000.0, 5000.0, 10000.0}. Shown are
results from 10 replicates.

(m3n)

m= 10, p

6
o

(m3n)

m=10, p;

4

2

001 110 100 1000 10000

growth parameter f3

(m3n)

m=10% p;

ST

001 110 100 1000 10000

growth parameter f3

(m3n)

L

E :
ice
i-
:

001 110 100 1000 10000

growth parameter f3

00

001 110 100 1000 10000

growth parameter f3

(m3n)

001 110 100 1000 10000

growth parameter f3

(min)

m=103, oy

001 110 100 1000 10000

growth parameter f3


https://doi.org/10.1101/164418

bioRxiv preprint doi: https://doi.org/10.1101/164418; this version posted July 17, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

21

Fig. 4 Estimates of E [p;m;")] (0),and of E [p,(mm] (+4) as functions of the coalescent parameter

o for values of sample size n = 10* and subsample size m = 10" (solid lines); m = 10? (dashed
lines); m = 103 (dotted lines). The coalescent process at & = 2 is the Kingman-coalescent. For

explanation of symbols see Subsection 3.1. Shown are results from 10° replicates.
1.0 08

e Lt
O‘G’Z ek / +
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Fig. 5 Estimates of E [p;m;")} (o) and of E [p}mw] (+4) as functions of the exponential growth

parameter 3 for values of sample size n = 10* and subsample size m = 10! (solid lines); m =
10? (dashed lines); m = 103 (dotted lines). The coalescent process at § = 0 is the Kingman-
coalescent. For explanation of symbols see Subsection 3.1. The grid of values of f is {0.1, 0.5,
1.0, 10.0, 50.0, 100.0, 500.0, 1000.0, 5000.0, 10000.0}. Shown are results from 10° replicates.
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4 Proofs
4.1 Proof of Prop. 1

Proof Let A = &, for p € (0,1) which fulfills A({0}) = 0. The probability that
the associated A-n-coalescent is star-shaped, i.e. all blocks merge at the first (and
then only) collision, is
pn—2 pn
n

p 2= =py—np(i=py )~ T, QP —py

For any star-shaped path of a n-coalescent, we have Tl\(/ﬁgc N TI\(/["IQC A forany m <

n. Thus, we can choose A’ s.t. A’ = §, with

1
= (P (Rl = i)

4.2 Proof of Prop. 2

Proof Assume II is a Z-coalescent. The event {Tl\(,l”ll{('gA = TI\SIIQC A} is the comple-

ment of the event

n)
MRCA ~

A = {[m] C B, Bis a block of 1) } . (26)

Due to the exchangeability of the Z-coalescent, H;'('i) is an exchangeable par-
MRCA

tition of [n]. Given the (ordered) block sizes (BE?) N the probability that all
e

individuals are in the same block i is given by drawing without replacement, i.e.

m—1 B(@ 4

a2l
P([m} C blocki|B! ) - g g

Summing this up over all blocks and taking the expectation yields P (A,,,) =

1- pS,:,,Z, thus establishing Eq. (8) (by definition there is more than one block at

time Tl\(/ﬁgc A~ SO pgf,), >0.)

To show the convergence in Eq. (9) we first establish that all objects are well
defined. Assume now that the Z-coalescent comes down from infinity, so at any
time ¢ > 0, there are only finitely many blocks in the partition I'l; almost surely.
For n — o, Kingman’s correspondence [55, Thm. 2] ensures that the asymptotic
frequencies of the blocks in the partition I, of N exist almost surely and are limits
of the block frequencies in the n-coalescent as written in the proposition. Pick an
arbitrarily small # > 0. Then, consider only paths where Il; has more than one
block. Since the number of blocks of I, is finite a.s. we can find ng € N so that
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1'I,<n°) has at least one individual in any block of IT; (thus has the same number
of blocks). By construction, from time ¢ onwards, the Z-ng-coalescent merges the
blocks in exactly the same (Markovian) manner as the X-coalescent. So if I1; has

more than one block, Tl\sﬁ%c A= Tl\(/lR)C A for n > ng and the asymptotic frequencies

at Tl\(/m)C A— €xist (since their corresponding blocks are a specific merger of the

blocks of II; whose block frequencies exist). Now Tl\(/lzlgc A S Tl\(,ﬁ?c A almost surely

and Tl\(ﬁgc A is Exp(Z(A))-distributed. Therefore, for almost every path, we can

choose t < Tl\(/lzlgc A S0 that I, has more than one block.

We have established that all objects are well defined; now we show the actual
convergence in (9). For x € A let

m—1

Fam(x zn’”"

ieN (=

and fy,(x) :== Yenx". We have f,, ,, — f,, uniformly on A and that f,, is continu-
ous on A in the #!-norm with 0 < fm < 1. We can rewrite, using Eq. (8),

pin =1-E [fnvm (63&1))"6”)} '

For any € > 0 we find ng so that for n > ng

E (o (5Bi)ien)] —E [fn () ]
<‘E[fnm(( [1])16N)} [fm ((%Bz])teN)} ‘
+|E[fm ((nB[z )lEN)] [fm((P[t )IEN)] | < 2e.

We have used uniform convergence of f;, ,, to control the first difference and the

convergence (in law) of (n ’lBEl])) ieN to (Pj))ien to control the second.

The representation of the limit in Eq. (9) in terms of X and Y follows di-
rectly from the properties of exchangeable partitions (c.f. for example [9,10]).
The first equality is [9, Eq. (1.4)], while the second equality uses the correspon-
dence between the distribution of a size-biased and a uniform pick of a block, see
[9, Eq. (1.2)]. By definition H has more than one block almost surely so

MRCA
the limit in Eq. (9) is > 0.
(]

Remark 1 Reordering the block frequencies, e.g. in order of least elements of
blocks, does not change Eq. (9).

4.3 Proof of Prop. 3

Proof We use the construction of [39] in which the Bolthausen-Sznitman coales-
cent is obtained by cutting a random recursive tree T, with n nodes at independent
Exp(1) times, see Sec. A2. Consider the last merger in the Bolthausen-Sznitman
n-coalescent. In terms of cutting edges of T, it is reached when the last edge
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connected to the root of T, is cut. Let E, be the number of such edges in T,.

For Tl\(/ﬁl{gZ\ = Tl\(/[lgc > we need that not all i € [m] are in a single block of the n-
coalescent before the last merger (see proof of Prop. 2).

By construction, for any node with label in [m], on the path to the node labelled 1
(root) in T, the last node passed before reaching the root must also have a label
from [m]. Thus, any node connected to the root of T, that is labelled from [n],,1
cannot root a subtree that includes any nodes labelled from [m].

Now, we consider the last edge of T, cut in the construction of the Bolthausen-
Sznitman n-coalescent, which causes the MRCA of the n-coalescent to be reached.
It has to be connected to the root. Consider the two subtrees on both sides of
the edge cut last. One subtree contains the root, thus includes at least the label
1 from [m]. If the other subtree is rooted in a node labelled from [m], we have
Tl\(/fgg)A = Tl\(/[lgC A since both subtrees contain labels of [m], thus not all i € [m]
are in a single block of the n-coalescent before the last merger. If the subtree not
containing the root has a root labelled from [n],,,11, as argued above, it contains
no labels from [m]. Additionally, since we are at the last cut, all other edges con-
nected to the root of T,, have already been cut and all labels in the subtrees rooted
by them joined with label 1. Thus, all labels in [m] are labelling the root before

the last cut, which corresponds to [m] being a subset of a block of the n-coalescent

before the last merger, hence Ty # T\ s

This shows Tl\(/lrggk _ ﬁc A if and only if the last edge cut is an edge connecting
a node labelled from [m] with the root. Let E,, be the number of edges of T, con-
nected to the root labelled from [m] and E, be the total number of edges connected
to the root. Then,

Em
P (Tl\(/IRCZX = Tl\(/[lgCA) =E [EJ ) 27)

because given T,, E,,/E, is the probability that the edge cut last is connected to
a node with a label from [m]; edges are cut at i.i.d. times, so the edge cut last is
uniformly distributed among all edges connected to the root.

As we see from the sequential construction of T,, E,, is the number of edges con-
nected to 1 when the first m nodes are set, the resulting tree is a random recursive
tree T,, with n leaves. The numbers E, and E,, can be described in terms of a Chi-
nese restaurant process (CRP), see [39, p. 724]: The number of edges connected to
node 1 is distributed as the number of tables in a CRP with n (resp. m) customers.
This distribution is E; 4 Bi+...+B; (i € {m,n}), where By,...,B; are indepen-
dent Bernoulli variables with P(B; = 1) = j !, see e.g [3, p. 10]. The sequential
construction of the random recursive trees (and the connected CRPs) ensures that
the By,...,B,, are identical for E,, and E,. This establishes the equality of Eq.’s
(27) and (10).

From the proof of [38, Lemma 3], we have — 11in L! for n — . The se-
quence (E,,/E,),c is bounded a.s. Thus, bounded convergence ensures

lim E {log( )‘H =E {1 k’gg)ﬂ"} =E[En] =

n—oo n—oo "

log( )
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4.4 Proof of Prop. 4

Proof As in Subsection 3 we use the construction of the Bolthausen-Sznitman n-
coalescent described in [39]. We wish to establish the probability that the MRCA
of a subsample of size m from a sample of size n subtends only the subsample in
the n-coalescent. We will also use the Bernoulli variables B, i € [n] of T, as in
Prop. 3, where B; = 1 if the node labelled i is directly connected to the root (node
labelled 1). If we look at the cutting procedure which constructs the Bolthausen-

Sznitman n-coalescent from T,, we observe that no path of T, can contribute

positive probability to g\t that attaches any node labelled from [n],.1 to

a node labelled from [m],. If we do attach a node labelled i € [n],,+1 to a node
labelled from [m],, when constructing the Bolthausen-Sznitman n-coalescent we
will cut an edge on the path from the node labelled i to the root labelled 1 before
the MRCA of [m] is reached, thus i would be subtended by the MRCA of [m]. The
probability that a node labelled i € [n],,+1 is not connected to a node labelled from

[m]2in T, is
n—m i n—1 -1
lzlm—i—l—l m—1)

Even when there is no edge connecting a node labelled from [n],,,+; directly with

a node labelled from [m]>, not all such paths of T, will contribute to g\ <.

To contribute, we need that the cutting procedure does not lead to any i € [n ]m+1
being subtended by the MRCA of [m]. For the mentioned paths, this happens if and
only if we cut all edges connecting nodes labelled from [m], to 1 before cutting
any edge connecting 1 to nodes labelled from [n],,1;. We have Yic[m—1)Bi edges
adjacent to node 1, see the proof of Prop. 3. With the constraint that no edge
connects a node labelled from [n], directly with a node labelled from [m]s,
the sequential construction yields that, after relabelling, the nodes labelled with
{1}U[n]ms1 form a T,—n41 and thus there are Y[, B; edges adjacent to the

root of T,, connecting to the nodes labelled with {1} U [n],1, where B} 4 B; for
independent B. All edges adjacent to the node labelled 1 need to be cut before
the MRCA of [n] is reached and they are cut at independent Exp(1) times. This
means that the probability of cutting all edges connecting 1 to nodes labelled from
[m] first is just drawing Y, Bi times without replacement from Y,y Bi +
Yicjn—m] B! edges, where all Yic[m—1) Bi edges connecting nodes labelled from to
[m]» have to be drawn. This probability equals

(Zie[ml] Bi+ Yicin—m) BE) B
Yicim-1)Bi

Integrating over all contributing paths of T, with the cutting constraint described
above finishes the proof. a

4.5 Proof of Thm. 1

Proof We track the asymptotic frequencies (P[ ]( ))t>0 of the ith biggest block for

allz > 0 and i € N. Consider a non-negative and measurable [0, o0)-valued function
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g on the k-dimensional simplex
A ={(x1,...,x%) tx1 > x> ... > x>0, in: 1}
iclk]
that is invariant under permutations (xi,...,X¢) = (Xg(1)s- - - X (x))- [8, Thm. 1.2]

shows that

E [¢ (P (T1))ien) [N (Ti) = ]

Y
Vit r)e <) ,

where T is the waiting time until a state with < k blocks is hit by the Beta-
coalescent and N(¢) is the number of blocks of IT;, thus we condition on the coa-
lescent to hit a state with exactly k blocks.

We can apply this formula to compute E [Ziem Pl.'"] from Eq. (9), where K is the
number of blocks at the last collision of the Beta-coalescent. For this, condition on
K =k. With {K =k} = {N(T;) = k}n{all blocks of ITy, merge at the next merger},
the strong Markov property shows that the block frequencies at 7 are independent
of them merging at the next collision. However, these frequencies are, conditioned
on K, just (P) ic[k]- For x € Ay we set g, (x) = Z;‘: 1 X" (which fulfills all necessary
conditions to apply [8, Thm. 1.2]) and compute

e

i€[K]

:E[(Y1+...+Yk)1‘“]_lE

—ZE[ZP’”U( k| P(K=k)
keN 161{]
= Y E[((P(TX))ien) IN(Ti) = KIP (K = k)
keN
PP R L " B
:kg\lE[(Yl+...+Yk)l ] El;(Y1+...+Yk)“+m-1 P(K=k).

The distribution of K for the Beta-coalescent is known from [47, Thm. 3.5]. Using
that

Ylm
((Yl +.. +Yk)‘”’"*1 ) iclk]

(Beta- coal)

are identically distributed and p, [Z,e P’"} completes the proof.

O

4.6 Proof of Prop. 5

Proof Consider any Z-coalescent (and its restrictions to [n], n € N). Since, for
nested samples, Tl\ﬁgx <Ty (n) MR almost surely for any n > m, we have

(msm+i) o (m+i) (mym+i4+1) o (m+i+1)
{TMRCA - TMRCA} 2 {TMRCA - TMRCA }
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(&) m;n)

for any i € N. Thus, p, ' = lim, e p,(f,,i =P (Tl\(/[RCA = Tl\sﬁ%CA Vn> m) ex-
ists.

Suppose first that the Z-coalescent comes down from infinity. Then, Eq. (9) shows

pSnE) > 0.
(n)

If the Z-coalescent stays infinite, 7, is almost surely finite, while Tyrca = al-

most surely. Thus, pﬁ,f) =0.

Consider a Z-coalescent that neither comes down from infinity nor stays infinite.
Then, Z({x € A|YX_,x; = 1 for k € N}) > 0. As stated in the introduction, in this
case there is an almost surely finite waiting time 7" with #I1y < oo almost surely.
Let n7 be the finite number of blocks at time 7. Again, exchangeability ensures,
as in proving Eq. (8), that there is a positive probability that not all i € [m] are in
the same block of Il7 (so in particular, with positive probability, Tl\(,["gc A > T). The
strong Markov property of the Z-coalescent ensures that, given ny, Il evolves
like a E-nr-coalescent, which can have at most ny mergers. In summary, with
positive probability, more than one of the ny blocks at time 7 includes individuals
from the subset [m] and the ny blocks are merged following a E-nr-coalescent.
Then, Eq. (8) shows that with positive probability, conditioned on the event that
k > 1 blocks of ITy contain individuals from m, also more than one block of the
E-coalescent at its last collision contains individuals of [m]. O

Prop. 5 shows that P(¥) (T,\Sﬁfg)A = I\(/lnlgc A) — 0 for fixed m and n — oo if

the Z-coalescent stays infinite. The Bolthausen-Sznitman coalescent stays infinite
[77, Example 15]; however, convergence to 0 is only of order &' (1/log(n)).

4.7 Proof of recursions (5), (14), and (12)

The strong Markov property of a A-coalescent together with a natural coupling
which we will introduce below allows us to describe many functionals of multiple-
merger n-coalescents recursively by conditioning on their first jump, e.g. see [40]
or [61]. We use this to prove recursions (5) and (12).

4.7.1 Proof of Eq. (5)

Consider the probability p,(iA,,z (see Eq. (5)) that a sample of size n shares the
MRCA with a subsample of size m € [n — 1],. The boundary conditions p, ,, = 1
and p, 1 = 0 for n > 1 follow directly from the definition. We record how many
individuals are merged at the first jump of the n-coalescent. Suppose a k-merger
occurs which happens with probability §(n,n —k+ 1). Conditional on a k-merger,
¢ < m of individuals that merge are taken from the subsample and n — ¢ are not with
probability () (') /(7). since the individuals that merge are picked uniformly at
%)

random without replacement. For p,,,; > 0, we need that not all m individuals are
merged unless all n individuals are merged, thus ¢ < m or k = n. Writing C(k,{)
for the event that exactly ¢ lineages from the subsample are merged (with?¢ < m or


https://doi.org/10.1101/164418

bioRxiv preprint doi: https://doi.org/10.1101/164418; this version posted July 17, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

29

k = n), the strong Markov property shows that
(A) ; A ! in—k+1 —k+1
PUT™) (Tifken = Tuirea 1€00) ) = PU™) (R = TR A1)

with m’ = (m—£+41)1(1)+ml( <), since among the ancestral lines (blocks) af-
ter the first collision, m’ subtend the subsample. Summing over all possible values
(recall the boundary conditions) yields recursion (5). O

4.7.2 Proof of Eq. (14)

We again condition on the event that k blocks are merged at the first jump. Only k-
mergers where either all merged individuals are picked from the subsample [m] or

none is sampled from [m] contribute positive probability to q,SA,,z After the jump,
we thus have n — k4 1 ancestral lineages present, from which either m — k + 1
or m are connected to the subsample. The strong Markov property and sampling
without replacement for the k-merger then yields Eq. (14).

4.7.3 Proof of Eq. (12)

Recall the natural coupling: if we restrict an n-coalescent with mutation rate 8 to
any (-sized subset L C [n], the restriction is an /-coalescent with mutation with the
same rate 6. To prove recursion (12) we partition over three possible outcomes of
the first event: it is a mutation on a lineage subtending the subsample (E1), it is a
mutation on a lineage not subtending the subsample (E3), or it is a merger (E3).
Naturally, before any mutation occurs, all edges are active.

We recall a few elementary facts. The time to the first mutation on any lineage
is Exp(6/2)-distributed (mutations on different/disjoint lineages are independent)
and independent of the waiting time for the first merger. The minimum of indepen-
dent exponential r.v.’s Xi, ..., X; with parameters ¢, ..., o is again exponentially
distributed with parameter };_; o;. Finally, P (X; < X3) = o /(o + 0).

The waiting times X; for events E; for 1 <i < 3 are all exponential; the one for
E| with rate Om/2, for E; with rate 6(n —m)/2, and for E3 with rate A(n). The
probability of event E; is P (E|) = 0m/(2A(n) + 6n) and, conditional on E|,

{A(”)(max{f,- Li€ m]}) = o}

is determined by the n— 1 active lineages after the event. The memoryless property
of the exponential and natural coupling imply that after the first event, conditional
on that event being E|, the remaining n — 1 lineages, of which (m — 1) subtend the
subsample, follow an (n — 1)-coalescent with mutation rate 6. Thus,

P (A (max{zi i € [m]}) =011 ) = ")) .
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737 Analogously, the probability of event E, is P (Ey) = 0(n—m)/(2A(n) + On).
728 Given E;, we need to follow the coalescent of n — 1 lineages, of which m are from
730 the subsample, which gives

(I, 0)
nm—1

P (A<"> (max{7; : i€ [m]}) = O|E2) =p
720 We have P(E3) = 1—P(E,) — P(E;) =2A(n)/(2A(n) + On). To compute
p (A<"> (max{z;:i € [m]}) =0 |E3) :

71 proceed exactly as in the proof of recursion (5) by partitioning over the number
7a2  of mutant lineages involved in the merger, but with changed boundary conditions

(4) (4)
7a3  since p,([lI ) > 0, while pl(rll ) =0 for i > 1. Summing over E1, E;, E3 yields

s Eq. (12). O

7as 4.8 Proof of Eq. (15)

76 Recall our assumption that block 7; always contains element 1. To see (15), we
zaz  Will show that, for n large enough,

PUTY) (Tieh 2 inf{t = 0: m O[alusr £0, meM})=1.  @8)

zas  In words, the smallest block containing [m] appearing in the n-coalescent will
a0 always contain at least m + 1 elements; block [m] will almost never be observed.

. (A)
750 Hence, lim;,_,.. qﬁ,lz,, ) _ 0.
751 Consider first A with [ x~'A(dx) = o0, which makes the A-coalescent dust-

72 free (no singleton blocks almost surely for ¢ > 0) - see the proof of [69, Lemma
73 25]. Fort >0, [69, Prop. 30] shows that the partition block 7; € Ht("’ A) containing

s individual I at time in the A-n-coalescent {II"*"*) ¢ > 0} fulfills lim,_.. #7; /n >
zss 0 almost surely. Thus, individual 1 has already merged before any time ¢ > 0 if
76 n > N, where N is a random variable on N almost surely. However, within the
75z subsample of fixed size m, we wait an exponential time with rate A(m) for any
zss merger of individuals in [m]. Thus, for n large enough individual 1 has almost
70 surely already merged with individuals of [n],,+ before merging with another in-
760 dividual in the subsample. Consider now A with f[o.l] x~ 1A (dx) < o0, which shows
71 that the coalescent has dust, i.e. there is a positive probability that there is a posi-
762  tive fraction of singleton blocks at any time ¢, see [69, Prop. 26]. In this case [37,
7es  Corollary 2.3] shows that at its first merger, for n — oo, individual 1 merges with
7ea  a positive fraction of all individuals N almost surely, which has to include indi-
7es  viduals in [n],,1. Since this is the earliest merger where the MRCA of [m] can be
7es Teached, the proof is complete. ]

767 Analogously we have the following:
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Corollary 1 Consider any E-coalescent which comes down from infinity and its
restrictions to [n], n € N. Fix subsample size m € N. Let f,ff) be the first time that
any i € [m] is involved in a merger in the Z-n-coalescent for n > m. We have
: Fn) _ p) ) _
lim P (74" =Ty ) = 0.
Proof 1f the E-coalescent comes down from infinity, it fulfills | 0,1] x 1A (dx) = oo,
since it has to be dust-free. As above, we see that individual 1 has already merged
before Tl\(/["lgc 4 for n — oo, which establishes the corollary. O

5 Conclusion and open questions

By studying properties of nested samples we have aimed at understanding how
much information about the evolutionary history of a population can be extracted
from a sample, i.e. how the genealogical information increases if we enlarge
the sample. In particular, we have focussed on multiple-merger coalescent pro-
cesses derived from population models of high fecundity and sweepstakes repro-
duction. In comparison with the Kingman-coalescent the general conclusion, at
least for the statistics we consider, is that a subsample represents less well the
‘population’ or the complete sample from which the subsample was drawn when
the underlying coalescent mechanism admits multiple mergers. The subsample
reaches its MRCA sooner and shares less of the ancestral genetic variants (in-
ternal branches) with the complete sample under a MMC process than under the
Kingman-coalescent. A similar conclusion can be broadly reached in comparison
with exponential population growth. This seems to imply that one would need
a larger sample for inference under a multiple-merger coalescent than under a
(time-changed) Kingman-coalescent. Large sample size has been shown to im-
pact inference under the Wright-Fisher model [11], in particular if the sample size
exceeds the effective size [85]. The main effect is that when sample size is large
enough, one starts to notice multiple and/or simultaneous mergers in the trees. The
implication is that if one sampled a whole finite population with Wright-Fisher re-
production, the genealogy of the whole population is not well approximated by
the Kingman-coalescent. One would also expect an impact of large sample size
on inference under MMC. The effective size in HFSR populations can be much
smaller than in a Wright-Fisher population with the same census size [78,46, 86].
The implication is that for almost any finite population, the genealogy of the whole
population is not the genealogy one derives under the assumption of a small sam-
ple size compared to population size. This therefore leaves the question of what
one is making an inference about when one applies a coalescent-based inference
method.

Our sample size considerations raise another point. Our main result on a rep-

resentation for p'Pe® % regts on the assumption that the Beta-coalescent holds

for an infinitely large population. The limit behavior of pg,“,,z as n — oo described
in Prop. 5 also depends on the ability of Z-coalescents to be applicable to an
infinitely large sample size. The Beta-coalescent was initially derived as an ap-
proximation of the random tree describing the ancestral relations of a finite num-

ber of gene copies; the same holds for the Kingman-coalescent, and in general
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soz for any coalescent process derived from a population model. Large sample size
sos  should impact the coalescent process derived for a HFSR model just as it does for
soo the Wright-Fisher model. Yet the Beta-coalescent, and any coalescent that satis-
s10 fies certain assumptions (see [77]) comes down from infinity. There is a curious
s11  disconnect between the concept of coming down from infinity and the impact of

s12 large sample size which has not been bridged. At least, p,(nE) gives a lower bound

(£)

s13 0N Py, for any n until the coalescent approximation breaks down. This interpre-
s12 tation makes sense for real populations.

815 All our results are applicable to a single non-recombining locus. A natural
s16 question to ask is if and how our results might change if we considered multi-
sz ple unlinked loci. How would the statistics we consider, averaged over many un-
s1s  linked loci, behave under MMC in comparison with a (time-changed) Kingman-
s10  coalescent? DNA sequencing technology has advanced to the degree that sequenc-
s20 ing whole genomes is now almost routine (see eg. [43,4]). One could ask how
e2z1 large a sample from a HFSR population does one need to be confident to have

s22 sampled a significant fraction of the genome-wide ancestral variation? In this

e23 context, let Tl\%@ 4 denote the TMRCA of the complete sample of size n at a non-

s2« Tecombining locus ¢ € [L], and Tl\(ﬂégﬁ) the TMRCA of a nested subsample of size

s2s m at same locus. Then we would like to compare the probability

PUD | ) {mired = Tiikda }
LelL]

s2s between different coalescent processes. And in fact, the independence of the ge-
s2z nealogies at unlinked loci under the Kingman-coalescent, and Eq. (7), gives

. i, —D(n+1)\*
e (1 {1 =15} | = (s
feL]{ } (m+1)(n—1)

s2s  Under a MMC process the genealogies at unlinked loci are not independent (see
s20 €.8. [32, ]5])

830 We compared results from single-locus MMC models with a time-changed
s:1  Kingman-coalescent derived from a single-locus model of exponential population
s32 growth. Naturally one would like to compare results between genomic (multi-
s3z  locus) models of HFSR with population growth to genomic models of HFSR with-
s3a out growth, and to genomic models of growth without HFSR. Some mathematical
s3s  handle on the distributions of the quantities we simulated would (obviously) also
s3s be nice. However, these will have to remain important open tasks.
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1035 Al Coalescent processes

1036 10 keep our presentation self-contained a precise definition of the coalescent pro-
1037 cesses we will need will now be given. We follow the description of [19]. A coa-
1038 lescent process IT is a continuous-time Markov chain on the partitions of N. Let
103 TT? denote the restriction to [], and write 2, for the space of partitions of [n].
10s0 A partition T = {m|,..., Tz} € P, has #7 blocks which are disjoint subsets of
1041 [n]. We assume the blocks 7; are ordered by their smallest element; therefore we
1a2 always have 1 € mj. In general a merging event can involve r distinct groups of
10e3  blocks merging simultaneously. We write k = (ky, ..., k,) where k; > 2 denotes the
10se number of blocks merging in group i. Here r € [|#7/2]], k1 + - - - + k, € [#7]2 and

e i1(a),..., i,i:) will denote the indices of the blocks in the ath group. By 1’ <yzx 7

146 we denote a transition from 7 to 7’ = A UB where

! (A29)

a7 In (A29), set A (possibly empty) contains the blocks not involved in a merger,
10as and B lists the blocks involved in each of the r mergers. By 7’ <y x T we denote
1040 the transition in a A-coalescent where k € [#7], merge in a single merger and
1050 7T is given as in (A29) with r = 1; ie. only one group of blocks merges in each
101 transition. By ' <4z @ we denote a transition in the Kingman-coalescent where
152 ¥ =1 and 2 blocks merge in each transition.

1083 Now that we have specified the possible transitions, we can state the rates of
10sa the transitions. Let A denote the infinite simplex A = {(xj,x2,...) : x; > xp >
5 ... >0,Y;x; < 1}; let x denote an element of A. Define the functions f(x;#m, k)
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wse  and g(x;#7,k) on Ag := A\ {(0,0,...)} where ([T)_; x;,,,, := 1), by
s—{
1 s\ & L [4
f(X;#TC,k):iQZ Z , xill...xir’HxiH_m ]—ij ,
LjX (2004 iy i -
y n n—t (A30)
=¥ X (()xx, (1-Xx)
(=0iy#. i
g(x:n) = 5

XX

157 Where x;, := 1. Write Zq for a finite measure on Ag, and define [75], for some
1058 2 0,

A”%k:: A f(x,n,k)Eodx-l-al(,:Lkl:z),
0

A ::/ g(x,n)Eodx+a<n>.
Jag 2

1089 A F-coalescent [75] is a continuous-time Z2,-valued Markov chain with tran-
1060 sitions g 7 given by, where A, and 4, are given in (A31),

(A31)

2’"7],( if 7 <#nk T, #T =n,
Grpw =% —Ay if 7' =mandn=#n, (A32)
0 otherwise.

w61 A A-coalescent [24,69,70] is a specific case of a Z-coalescent where we restrict

1062 to the subset Ag := Ag N {(x,x2,...) : x1 € (0,1], x14; =0V i € N} [75] and the
1063 transition rate of 7’ =#z.k T becomes, where #7 =n,2 < k <n,

Mo = /A (1= x)" K25+ al ). (A33)
0

s The Kingman-coalescent is obviously obtained in the case Z¢(49) =0and a = 1.
1065 When we refer to a A-coalescent we will refer to the measure A = Zg +ady
1es  With Eq restricted to Ag. For A a finite measure on [0, 1] one can also represent the
1067 coalescent rate A, ; of a A-coalescent as

1
Dk = / 21 —x)"*A(dx), 2<k<n. (A34)
Jo
1es The total rate of k-mergers in a A-coalescent is given by
1
M(n) = (Z) / K(1—x)"" x2dA(x), 2<k<nm; (A35)
0

1060 and the total rate of mergers given n > 2 active blocks is

A(n) =A2(n)+ -+ Ay(n). (A36)
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1070 An important example of a A-coalescent is the Beta(2 — @, a)-coalescent [78]
1072 where the A measure is associated with the beta density, where B(-,-) is the beta

1072 function,
xlfocu 7x>oc71

A(dx) = d 1< 2. A37
(dx) B2—a,a) Holsas (A37)
1073 The total rate of a k-merger (A35) is then given by, for 2 <k <n,
n\ Blk—o,n—k+ )
Ai(n) = ! 1< 2. A38
() <k) B2—-oa,0) T T *= (A38)

17a  When o = 1 the Beta(2 — o, o)-coalescent corresponds to the Bolthausen-Sznitman
1075 coalescent [20,39].

1076 A2 Goldschmidt and Martin’s construction of the Bolthausen-Sznitman
1077 n-coalescent

1w7s  From [39], we recall the construction of the Bolthausen-Sznitman n-coalescent by
1070 cutting the edges of a random recursive tree. Let T, be a random recursive tree
1080 With n nodes. We can construct T, sequentially as follows

we1 (i) Start with node 1 (the root) and no edges,

182 (i) If i < n nodes are present, add node i + 1 and one edge connecting it to a node
1083 in [i] picked uniformly,

10sa (iii) stop if n nodes are present.

w08 The object T, is a labelled tree, each node has a single label.
10ss We consider a realisation of T,, and transform this tree over time into labelled trees
10s7  with fewer nodes with nodes amassing multiple labels.

1ss (i) Each edge of T, is linked to an exponential clock. Clocks are i.i.d. Exp(1)-

1089 distributed.

1000 (i1) We wait for the first clock to ring. At this time, we cut/remove the edge whose
1001 clock rang first. The tree is thus split in two trees from which one includes
1002 label 1. We denote the tree with label 1 by T, the other tree by T, Let ¢
1003 be the node of T(!) that was connected by the removed edge

100a (iii) All labels of T are added to the set of labels of ;. Remove T including
1005 its clocks.

106 (iv) Repeat from (ii), using T labelled as in (iii) with the (remaining) clocks from
1007 (). Stop when T in step (iii) consists of only a single node and no edges.
1008 (v) For any time ¢, label sets at the nodes of T (T, before the first clock has rang)
1009 give a partition Ht(n) of [n]. (I'I,<n)),20 is a Bolthausen-Sznitman n-coalescent
1100 (set H,(") = [n] if ¢ is bigger than the time at which we stopped the cutting
1101 procedure).

102 Figure A2 shows an illustration of steps (i)-(iii) for a realisation of Ts.
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00 O,

Fig. 6 Example for the first cutting and relabelling step (ii), (iii) for the construction from [39].
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Fig.7 Graphs of p,(f,L (see Eq. (5)) as a function of a for (n,m) = (10%,10") (circles); (10%,10")

(—); (103,102) (4). The corresponding results for the Kingman-coalescent, p,,(}ﬁ,mgm"m) (A) and
(Kingman) .

Pm (B) are shown as lines.
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