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Abstract 
 
Fluorescence imaging techniques such as single molecule localization microscopy, high-
content screening and light-sheet microscopy are producing ever-larger datasets, which 
poses increasing challenges in data handling and data sharing. Here, we introduce a real-
time compression library that allows for very fast (beyond 1 GB/s) compression and de-
compression of microscopy datasets during acquisition. In addition to an efficient lossless 
mode, our algorithm also includes a lossy option, which limits pixel deviations to the intrinsic 
noise level of the image and yields compression ratio of up to 100-fold. We present a 
detailed performance analysis of the different compression modes for various biological 
samples and imaging modalities. 
 
 

Main 
 
Advancements in fluorescence microscopy technologies such as in high-content screening 
[1]–[3], light-sheet microscopy [4]–[8], and single molecule localization microscopy [9]–[11] 
opened new perspectives in biology by increasing the speed of imaging, the number of 
specimens or the resolution of the observed structures. Even though these methods bring 
undeniable advantages, the data production speed and experiment sizes (Fig. 1a, 
Supplementary Table 1) are increasing in such a fast pace that in many cases data 
handling quickly becomes a bottleneck for new discoveries [12]–[14]. A straightforward 
solution to this problem is to perform image compression. Nonetheless, this typically implies 
incompatibilities with certain software packages, slow compression speed, and only 
moderate file size reduction for lossless methods. Although the compression ratio (original 
size / compressed size) can be substantially increased with lossy compression algorithms, 
their use is often discouraged [15] as the degree of information loss heavily depends on the 
image content and cannot be explicitly controlled. 
 
To address these challenges, we developed a new compression library called B3D, which is 
capable of extremely fast compression and decompression of large microscopy datasets. 
Our library is built on the CUDA architecture [16] for GPU-based compression, which not only 
enables high processing speed, but also relieves load on the central processing unit, 
allowing compression directly during image acquisition. The algorithm has two main 
components. First, a prediction is made for each pixel based on the neighboring pixel values, 
and second, the prediction errors are run-length and Huffman encoded to effectively reduce 
the data size (Supplementary Note and Supplementary Fig. 1). We compared our 
algorithm’s performance with TIFF (LZW), JPEG2000, and the speed-optimized KLB [17] by 
measuring compression speed, decompression speed and resulting file size (Fig. 1b). Only 
B³D is capable of handling the sustained high data rate of modern sCMOS cameras typically 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 21, 2017. ; https://doi.org/10.1101/164624doi: bioRxiv preprint 

https://doi.org/10.1101/164624
http://creativecommons.org/licenses/by/4.0/


 

 

used in light-sheet microscopy, while still maintaining compression ratios comparable to 
more complex, but much slower algorithms (Supplementary Table 2). 
 
Lossless compression is fundamentally limited by the algorithmic entropy of the data, and 
further reduction in size is only possible through loss of information. Most lossy compression 
algorithms (such as JPEG) compress images by preserving only those structures recognized 
by the human visual system [18], making compression artifacts imperceptible to the eye. 
Scientific images, however, represent sets of quantitative measurements and therefore their 
compression should instead preserve the numerical values of all pixel intensities within their 
uncertainties. Pixel values are subject to random noise that mainly consist of the photon shot 
noise and the camera read noise. Commonly used lossy compression algorithms often 
perform a quantization step in Fourier or wavelet space. Therefore, the deviation introduced 
by the compression at the single pixel level cannot be controlled. We developed a noise 
dependent lossy compression algorithm which processes each pixel individually and exploits 
the natural variability of pixel values. As a result, the user can specify the maximally tolerated 
pixel error in proportions of the inherent noise. Extending our lossless compression scheme, 
this is achieved by adding a variance stabilization step before the prediction, and quantizing 
the prediction residuals before the Huffman coding (Supplementary Note). Alternatively, the 
quantization and prediction steps can be swapped, which can be more suitable for methods 
that are sensitive to small scale pixel correlations, such as localization microscopy, albeit at 
the expense of compression ratio (Supplementary Fig. 2). We define the mode where the 
quantization step is equal to the noise (q=1σ) as within noise level (WNL) compression. 
Using this method, the compression ratio massively increases for all imaging modalities 
compared to the lossless mode (Fig. 1c) without any apparent loss in image quality 
(Supplementary Fig. 3). Furthermore, the average compression error is considerably 
smaller than the image noise itself (Supplementary Fig. 4). 
 
To see how this noise-dependent compression affects common imaging pipelines, we tested 
the effect of different levels of compression on 3D nucleus and membrane segmentation in 
light-sheet microscopy, and on single-molecule localization accuracy in superresolution 
microscopy. First, we imaged a Drosophila melanogaster embryo expressing an H2Av-
mCherry nuclear marker in a MuVi-SPIM setup [6] and segmented the nuclei (Fig. 2a and 
Online Methods). Then we performed noise dependent compression at various quality 
levels and calculated the segmentation overlap compared to the uncompressed stack 
(Online Methods). At WNL compression (q=1σ) the segmentation overlap is almost perfect 
(Fig. 2b) with an overlap score of 0.996. Even when increasing the quantization step to 4σ 
(Fig. 2c) the overlap score stays at 0.98 and only drops below 0.97 when the compression 
ratio is already above 120 (quantization step of 5σ, Fig. 2d). We got similar results for a 
membrane segmentation pipeline that is used with Phallusia mammillata embryos (Online 
Methods and Supplementary Fig. 5).  
 
Next, we evaluated our compression algorithm in the context of single molecule localization, 
and measured how the localization precision is affected by an increasing compression ratio. 
We compressed a single-molecule localization microscopy (SMLM) dataset of immuno-
detected microtubules (Fig. 2e) with increasing compression levels. For WNL compression 
(q=1σ) no deterioration of the image was visible (Fig. 2f), and even for the case of q=4σ the 
compression induced errors were much smaller than the resolvable features (Fig. 2g). To 
quantify the impact of compression on the localization error, we used a simulated dataset 
(Online Methods) and compared the localization output of different compression levels to 
the ground truth (Fig. 2h). Lossless compression resulted in a compression ratio of 2.7, 
whereas WNL compression reached a compression ratio of 5.0, while increasing the 
localization error by only 4%. This also coincides with the theoretical increase of image noise 
(Supplementary Note). Furthermore, the increase in localization error was not dependent 
on the signal to background noise ratio (Supplementary Fig. 6). 
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Our algorithm is implemented in C++, and allows for easy integration through an API with 
various programming languages. The library was tested on Linux (Ubuntu 16.04) and 
Windows (10). Additionally, we implemented a filter plugin for HDF5 which enables a 
seamless integration in all software packages that are supporting the native HDF5 library, 
such as Matlab, Python, Imaris, or Ilastik. Because of its versatility, HDF5 has emerged as 
the de facto standard in the open source light sheet microscopy field, and is also the basis 
for the widely used BigDataViewer [19] in Fiji [20]. When loading a B3D compressed image in 
an HDF5 enabled application, the library automatically calls our filter plugin, decompresses 
the image on the GPU, and copies it back into CPU memory. Due to B3D’s efficient 
compression and its high decompression speed, loading data is often accelerated: For a 
state-of-the-art hard drive with 200 MB/s bandwidth, loading a 2 GB uncompressed 3D stack 
of images takes about 10 seconds. With an average compression ratio of 20 fold in the WNL 
mode, the loading time is reduced to 0.5 seconds followed by 2 seconds of decompression, 
which yields a factor of four speed-up. It is also worth to note, that the achieved WNL 
compression reduces the camera data rate to below 40 MB/s, well below the 1 Gb/s Ethernet 
standard. This enables to use current network infrastructure to move data to long term 
storage and even makes the use of cloud services possible. Altogether, B3D, our efficient 
GPU-based image compression library allows for exceptionally fast compression speed and 
greatly increases compression ratio with its WNL scheme, offering a versatile tool that can be 
easily tailored to any high-speed microscopy environment.  
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Figure 1. Comparing image compression methods for high-speed microscopy.  
(a) Comparison of single-plane illumination microscopy (SPIM, red rectangle), high-content screening 
(light blue), single molecule localization microscopy (SMLM, orange) and confocal microscopy (blue) 
by typical experiment size and data production rate (see also Supplementary Table 1).  
(b) Performance comparison of our B³D compression algorithm (red circle) vs. KLB (orange), 
uncompressed TIFF (light yellow), LZW compressed TIFF (light blue) and JPEG2000 (blue) regarding 
write speed (horizontal axis), read speed (vertical axis) and file size (circle size).  
(c) Lossless and WNL compression ratios for SPIM, SMLM and screening microscopy datasets. 
(Supplementary Table 3). 
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Figure 2. Effect of noise dependent lossy compression on image analysis outcome.  
(a–h) Influence of noise dependent lossy compression on 3D nucleus segmentation. A Drosophila m. 
embryo expressing H2Av-mCherry nuclear marker was imaged in MuVi-SPIM [7], and 3D nucleus 
segmentation was performed (Online Methods) (a). The raw data was subsequently compressed at 
increasingly higher compression levels, and segmented based on the training of the uncompressed 
data. To visualize segmentation mismatch, the results of the uncompressed (green) and compressed 
(magenta) datasets are overlaid in a single image (b, c; overlap in white). Representative compression 
levels were chosen at two different multiples of the photon shot noise, at q=1σ (b) and q=4σ (c). For 
all compression levels the segmentation overlap score (Online Methods) was calculated and is plotted 
in (g) along with the achieved compression ratios. 
(e–h) Influence of noise dependent lossy compression on single-molecule localization. Microtubules, 
immunolabeled with Alexa Fluor 647 were imaged by SMLM (h). The raw data was compressed at 
increasingly higher compression levels, and localized using the same settings as the uncompressed 
data. To visualize localization mismatch, the results of the uncompressed (green) and compressed 
(magenta) datasets are overlaid in a single image (f, g; overlap in white). Two representative 
compression levels were chosen at q=1σ (f) and q=4σ (g). To assess the effects of compression on 
localization precision, a simulated dataset with known emitter positions was compressed at various 
levels. For all compression levels the relative localization error (normalized to the Cramér–Rao lower 
bound) was calculated and is plotted in (h) along with the achieved compression factors. 
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Online Methods 
 
Compression benchmarking 
For all presented benchmarks, TIFF and JPEG2000 performance was measured through 
MATLAB's imwrite and imread functions, while KLB and B³D performance was measured in 
C++. All benchmarks were run on a computer featuring 32 processing cores (2×Intel Xeon 
E5-2620), 128 GB RAM and an NVIDIA GeForce GTX 970 graphics processing unit. Read 
and write measurements were performed in RAM to minimize I/O overhead, and are an 
average of 5 runs. 
 

Light-sheet imaging 
Drosophila melanogaster embryos were imaged in our MuVi-SPIM setup [6] using the 
electronic confocal slit detection (eCSD) [21]. Embryos were collected on an agar juice plate, 
and dechorionated in 50% bleach solution for 1 min. The embryos were then mounted in a 
shortened glass capillary (Brand 100 μl) filled with 0.8% GelRite (Sigma-Aldrich), and pushed 
out of the capillary to be supported only by the gel. 
 
3D nucleus segmentation 
3D nucleus segmentation of Drosophila m. embryos was performed using Ilastik [22]. The 
original dataset was compressed at different quantization levels, then upscaled in z to obtain 
isotropic resolution. To identify the nuclei, we used the pixel classification workflow, and 
trained it on the uncompressed dataset. This training was then used to segment the 
compressed datasets as well. Segmentation overlap was calculated in Matlab 
(Supplementary Code) using the Sørensen–Dice index [23], [24]: 

2|𝐴 ∩ 𝐵|/(|𝐴| + |𝐵|) 
where the sets 𝐴 and 𝐵 represent the pixels included in two different segmentations. 
 
3D membrane segmentation 
Raw MuVi-SPIM recordings of Phallusia mammillata embryos expressing PH-citrine 
membrane marker were kindly provided by Ulla-Maj Fiuza (EMBL, Heidelberg). Each 
recording consisted of 4 views at 90 degree rotations. The views were fused using an image 
based registration algorithm followed by a sigmoidal blending of the 4 views. The fused stack 
was then segmented using the MARS algorithm [25] with an hmin parameter of 10. The raw 
data (all 4 views) was compressed at different levels, and segmented using the same 
pipeline. Segmentation results were then processed in Matlab to calculate the overlap score 
for the membranes using the Sørensen–Dice index (Supplementary Code). 
 
Single-molecule localization imaging 

 
In order to visualize microtubules, U2OS cells were treated as in [26] and imaged in a 
dSTORM buffer [27]. In brief, the cells were permeabilized and fixed with glutaraldehyde, 
washed, then incubated with primary tubulin antibodies and finally stained with Alexa Fluor 
647 coupled secondary antibodies. The images were recorded on a home-built microscope 
previously described [26], in its 2D single-channel mode.  
 
Single-molecule localization data analysis 
 
Analysis of single-molecule localization data was performed on a custom-written MATLAB 
software as in [28]. Pixel values were converted to photon counts according to measured 
offset and calibrated gain of the camera (EMCCD iXon, Andor). The background was 
estimated with a wavelet filter [29], background-subtracted images were thresholded and 
local maxima were detected on the same images. 7-pixel ROIs around the detected local 
maxima were extracted from the raw images and fitted with a GPU based MLE fitter [30]. 
Drift correction was performed based on cross-correlation. Finally, images were 
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reconstructed by filtering out localizations with a high uncertainty (>30 nm) and large PSF 
(>150 nm) and Gaussian rendering.   
 
Simulation of single-molecule localization data 
Single molecule localization data was simulated in Matlab (Supplementary Code) by 
generating a grid of pixelated Gaussian spots with standard deviation of 1 pixel. With a pixel 
size of a 100 nm, this corresponds to a FWHM of 235.48 nm. The center of each spot was 
slightly offset from the pixel grid at 0.1 pixel increments in both x and y directions. To this 
ground truth image a constant value was added for illumination background, and finally 
Poisson noise was applied to the image. This process was repeated 10000 times to obtain 
enough images for adequate accuracy. 
 
Code availability 
Source code and compiled binaries, including a filter plugin for HDF5, will be made available 
for download at https://git.embl.de/balazs/B3D. For immediate access, please send a request 
to balint.balazs@embl.de. 
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