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Abstract

Magnetoencephalography and electroencephalography (MEG, EEG) are essential
techniques for studying distributed signal dynamics in the human brain. In particular,
the functional role of neural oscillations remains to be clarified. Imaging methods need
to identify distinct brain regions that concurrently generate oscillatory activity, with
adequate separation in space and time. Yet, spatial smearing and inhomogeneous
signal-to-noise are challenging factors to source reconstruction from external sensor data.
The detection of weak sources in the presence of stronger regional activity nearby is a
typical complication of MEG/EEG source imaging. We propose a novel,
hypothesis-driven source reconstruction approach to address these methodological
challenges1. The imaging with embedded statistics (iES) method is a subspace scanning
technique that constrains the mapping problem to the actual experimental design. A
major benefit is that, regardless of signal strength, the contributions from all oscillatory
sources, which activity is consistent with the tested hypothesis, are equalized in the
statistical maps produced. We present extensive evaluations of iES on group MEG data,
for mapping 1) induced oscillations using experimental contrasts, 2) ongoing
narrow-band oscillations in the resting-state, 3) co-modulation of brain-wide oscillatory
power with a seed region, and 4) co-modulation of oscillatory power with peripheral
signals (pupil dilation). Along the way, we demonstrate several advantages of iES over
standard source imaging approaches. These include the detection of oscillatory coupling
without rejection of zero-phase coupling, and detection of ongoing oscillations in deeper
brain regions, where signal-to-noise conditions are unfavorable. We also show that iES
provides a separate evaluation of oscillatory synchronization and desynchronization in
experimental contrasts, which has important statistical advantages. The flexibility of
iES allows it to be adjusted to many experimental questions in systems neuroscience.

Author summary

The oscillatory activity of the brain produces a repertoire of signal dynamics that is rich
and complex. Noninvasive recording techniques such as scalp magnetoencephalography
and electroencephalography (MEG, EEG) are key methods to advance our
comprehension of the role played by neural oscillations in brain functions and
dysfunctions. Yet, there are methodological challenges in mapping these elusive

1The code accompanying this paper can be found at https://github.com/pwdonh/ies_toolbox.
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components of brain activity that have remained unresolved. We introduce a new
mapping technique, called imaging with embedded statistics (iES), which alleviates
these difficulties. With iES, signal detection is constrained explicitly to the operational
hypotheses of the study design. We show, in a variety of experimental contexts, how
iES emphasizes the oscillatory components of brain activity, if any, that match the
experimental hypotheses, even in deeper brain regions where signal strength is expected
to be weak in MEG. Overall, the proposed method is a new imaging tool to respond to
a wide range of neuroscience questions concerning the scaffolding of brain dynamics via
anatomically-distributed neural oscillations.

Introduction 1

The role of neural oscillations in population codes of brain functions, and the possible 2

mechanisms of inter-regional communication between brain regions are not entirely 3

understood. Source imaging techniques with magnetoencephalography (MEG) or 4

electroencephalography (EEG) are time-resolved, non-invasive tools used to test a great 5

diversity of neurophysiological hypotheses (1). In principle, MEG/EEG imaging can 6

map multiple regional sources of oscillatory activity from external sensor data. However, 7

spatial smearing and heterogeneous signal strength across brain locations limits the 8

performance of current source imaging methods. Consequently, if nearby brain regions 9

express an effect of interest, the area of stronger magnitude will mask the detection of 10

weaker sources, as illustrated in Fig 1. The detection of multiple oscillatory sources 11

therefore remains challenging to MEG/EEG imaging. This limits the insight about 12

distributed brain dynamics that can be gained from the technique. 13

MEG/EEG localization of oscillatory generators typically relies on a procedure that 14

is non optimal in terms of signal detection. Source time-series are first reconstructed 15

using imaging or beamforming approaches (2). Second, inferential statistics based on 16

the experimental hypothesis are tested at each voxel of the source space – e.g., using the 17

ratio of oscillatory power between two experimental conditions. Significant and 18

spatially-distinct regional clusters are then interpreted as distinct sources of oscillations. 19

This approach hinders the detection of weaker or deeper sources in the presence of 20

stronger regional activity. We refer to this methodology as the standard approach. 21

We introduce a novel methodology to alleviate this problem. The technique performs 22

Fig 1. Illustration of the field-spread effect on the detection of weak MEG
sources. Point-like sources are typically recovered using beamforming or
minimum-norm estimation (MNE) imaging at the expense of exaggerated spatial
smearing in the source space. The Source 1 and Source 2 maps are examples of such
effect when active separately. When both sources are active simultaneously, their
relative strengths impact the ability of source imaging to spatially resolve between the
two active regions. When both source magnitudes are similar (Source strength 1 = 2),
the map can display their respective contributions. When one source is weaker than the
other (Source strength 1 < 2), its presence in the resulting source map may be masked
by that of the strongest source (here Source 2).
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imaging with embedded inferential and group prevalence statistics (iES) altogether. 23

With iES, the experimental hypothesis is not deferred to the stage of statistical 24

inference on the estimated source values. Rather, it explicitly constrains the solution to 25

the hypothesis tested. In essence, iES reduces the (spatial) dimensions of the data, to 26

detect and equalize the contribution of source components that are consistent with the 27

tested hypothesis. The iES methodological apparatus is based on generalized eigen 28

decompositions (see e.g. 3), nonparametric statistics (4; 5) and subspace scanning 29

(MUSIC, see 6). We explain here that iES 1) has key statistical advantages, yielding 30

improved detection sensitivity, 2) can be used in conjunction with the standard 31

approach, for complementary estimation of source strengths, 3) improves the detection 32

of functionally connected regions, and that 4) iES can implement a wide range of 33

experimental hypotheses. 34

Results and Discussion 35

Overview of the approach 36

We describe the basic principles of iES and illustrate the steps involved using a MEG 37

data example. The method per se is detailed in Materials and Methods. 38

Basic principles 39

We propose to transcribe the experimental hypothesis into a quality function f(s) over 40

a signal s. f(s) is defined such that it returns larger values if s is consistent with the 41

hypothesis. In Fig 2a we show the quality functions featured as examples in this article, 42

with multiple possible variations, as discussed below. For example, in the case where 43

stimulus-induced responses in the gamma band (50-85 Hz) are expected, f(s) would be 44

designed to return the ratio of gamma power between time segments when the stimulus 45

is presented vs. when the stimulus is absent. Note that the tested design is a directed 46

one: in the latter example, testing for gamma power increases vs. decreases are two 47

different hypotheses that are evaluated separately. Fig 2a) shows several use cases and 48

signals s that are either consistent or inconsistent with the hypothesis quantified by f(s) 49

values. 50

Let x[t] denote the MEG/EEG time-series recorded from an array of channels 51

(Fig 2b) and X the data matrix (channels × time samples t). The quality function f is 52

used in an optimization problem to identify spatial filters wi and spatially-filtered 53

signals si[t] = wT
i x[t] in the data such that the quality function is maximized as 54

argmax
w

f(wTX) (1)

and spatial patterns pi, i = 1, ..., D describing the corresponding topographies that 55

contribute to the recorded time-series as 56

x[t] = p1 · s1[t] + ...+ pD · sD[t] + ε (2)

(Fig 2c). The combination of spatial filters, patterns and corresponding signals is 57

comparable to the notion of ’components’ in independent component analysis (ICA, 7), 58

which yields mixing (spatial patterns pi) and unmixing (spatial filters wi) matrices as 59

well as ICA time-series (spatially filtered signals si[t]). The spatial patterns of signals 60

that conform to the tested hypothesis (i.e. have high quality function values f(s)) 61

represent a subspace of the MEG/EEG channel space (the signal subspace, see 6). 62

The MEG/EEG forward model predicts spatial patterns g(ρ) produced at the 63

channel array by an elementary current source at location ρ (Fig 2d). Therefore the 64

PLOS 3/31

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 18, 2017. ; https://doi.org/10.1101/164731doi: bioRxiv preprint 

https://doi.org/10.1101/164731
http://creativecommons.org/licenses/by/4.0/


Fig 2. Basic principles of iES. a) Examples of designs: The experimental design
(shown as a black trace) determines the quality function f(s), so that this latter takes
high values for signals consistent with the hypothesis (in orange; the signals that do not
correspond to the tested hypothesis are shown in blue). b) MEG data: the multichannel
MEG recordings are captured in the matrix X = {x[t = 1], ...,x[t = T]}. c) Computing
the signal subspace: spatial patterns P = {p1, ...,pD} are extracted from the MEG data
by optimizing the quality function with respect to spatial filters W = {w1, ...,wD}.
Whereas W is used to extract the signals of interest from the multichannel MEG data,
P are the forward fields of these signals as they contribute to the measured MEG data.
d) Computing the forward model: shown are the MEG spatial patterns G(ρ) generated
by two tangential dipoles at location ρ in a single subject. e) Subspace correlation as a
scanning metric: The spatial patterns from c) and d) span a subspace of the MEG
sensor space. A grid of source locations is scanned with a subspace correlation metric
(6), quantifying the smallest possible angle between the data and source subspaces. This
yields a distributed map of scores, which highlights possible source locations consistent
with the hypothesis.

forward fields of current sources with different orientations also form a subspace of the 65

MEG/EEG channel space. The iES method proceeds by scanning each elementary 66

brain location of the source space. The source space can be a uniform 3-D grid of the 67

brain volume, or restricted to the cortical surface (Fig 2e). At each tested brain 68

location, the correspondence between the forward fields from this location and the data 69

spatial patterns identified by the quality function is evaluated using the measure of 70

subspace correlation (subcorr). This latter quantifies the smallest principle angle 71

between two subspaces (6). Intuitively, the data and the physical forward models are 72

compared at each brain location, with respect to the experimental hypothesis. The 73

procedure generates a map of possible sources, which activity accounts for the 74
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experimental effect of interest. 75

Since the effect strength is entirely captured in the quality function f(s), it does not 76

directly influence the subcorr values. Therefore, the contribution of the 77

hypothesis-consistent sources are equalized in the resulting maps, which contributes to 78

their detection, regardless of their respective strengths. 79

Extension to group-level analysis 80

So far, subspace scanning techniques have been mostly used to identify sources of 81

event-related trial averages in single-subject MEG/EEG data (6; 8). We describe a 82

principled approach to conduct group level analyses with the proposed method, using 83

an example data set. The data was obtained from a variation of the visual attention 84

experiment in (9), where a contracting circular grating was presented to participants in 85

MEG. In each trial, after 3-5 seconds following stimulus onset, a change in the 86

contraction speed occurs and participants had to indicate their perception of the change 87

with a button press. To illustrate the methodology, iES was used to identify the regions 88

where gamma-band (50-85Hz) power was stronger during visual stimulus presentation, 89

with respect to baseline, prestimulus periods. Gamma oscillations generated in occipital 90

visual regions are expected to be reliably enhanced by this paradigm (9). The quality 91

function finduced was defined as the ratio between the gamma power during the interval 92

[1, 3] seconds post-stimulus onset, and the gamma power during the baseline interval [-2, 93

0] seconds (0s corresponds to stimulus onset). 94

Fig 3 shows the iES group analysis workflow in detail. First, the signal subspace 95

estimation described above yields components from each participant that can be 96

interpreted similarly to those of a principal component analysis (PCA) decomposition 97

(Panel A). The subset of spatial patterns retained for source-space scanning corresponds 98

to the iES components with highest quality function scores, exceeding a threshold 99

f∗induced. This threshold is determined by a permutation procedure under the null 100

hypothesis of exchangeability of baseline and stimulus data segments. A permutation 101

histogram of finduced values is obtained, and f∗induced is set to the value that is higher 102

than 1− pcrit/2 values of the permutation distribution, with pcrit = .05 in the example 103

presented. In our example, this procedure yields five spatial components to be included 104

in the definition of the signal subspace (Fig 3a). The sensor spatial patterns suggest 105

occipital signal origins of stronger gamma-band activity during stimulus presentation. 106

The iES decomposition, akin to PCA, produces orthogonal signal components si. Thus 107

the corresponding spatial patterns do not necessarily represent anatomically distinct 108

sources: the spatial localization of corresponding sources is subsequently obtained via 109

scanning of the source space. 110
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Fig 3. iES group analysis: mapping induced gamma oscillations during
visual stimulation. a) Subspace computation, example subject: (left) values of the
quality function finduced for all the spatial patterns in the MEG data, ranked in
decreasing order. The components with the 5 largest values of the quality function were
deemed consistent with the tested hypothesis (highlighted with black dots - left, and
their sensor topographies shown to the right). This was determined via permutation
tests, which yielded f∗induced, a threshold indicating the minimum value of the quality
function for significance (p < 0.05). Note that the number of significant components
may vary per subject, as illustrated hereafter. b) Effect prevalence, group level: (left)
number of significant spatial components for each subject (Kobs = 17 is the number of
participants in this example). The subject illustrated in Panel A is shown in blue;
(right) prevalence testing results (as detailed in Materials and Methods) showing the
likelihood of the data under a population prevalence γ. γ = .83 is the highest value that
can be rejected at p < 0.05. c) Spatially-filtered signals, example subject: (left) three
example trials: the increase in gamma oscillations after stimulus presentation can be
readily appreciated visually in the spatially-filtered signals; (right) average
time-frequency map across 220 trials: here too, the strong induction of gamma activity
is clearly visible. d) Spatially-filtered signals, group level: (left) average power spectra of
spatially-filtered signals in the two experimental conditions (baseline and visual
stimulus) are scaled with respect to empty-room MEG recordings, shaded regions are
standard errors; (right) the difference of the power spectra between the two conditions,
with thin lines representing single-subject data. e) Subspace correlation maps, example
subject: (top) Map of subcorr values in the 3-D source grid, indicating the location of
brain regions generating stimulus-induced gamma activity, (bottom) Fisher-z
transformed map. f) Subspace correlation maps, group level: (left) a permutation
procedure to determine a statistical threshold to apply on the average subcorr scores.
The figure shows the histograms of the permuted and observed subcorr values; (right)
group-level average subcorr map, thresholded at p < 0.05. The effect confirms the
single-subject data shown, and localizes to the occipital visual cortex. 112

At the group level, our approach acknowledges that the effect being tested may be 113

absent in some participants. Concretely, their data may not contain a spatial pattern 114

whose finduced exceeds the critical value f∗induced. Rather than pretending otherwise and 115

averaging across all participants, as is done in the standard approach, we put forward 116

the concept of population prevalence γ to account effectively for the variability of the 117

tested effect in the group (Fig 3b) (see also 10, for similar discussions). This notion 118

enables to form a prediction on how many subjects in the sample are expected to show 119

an effect. A prevalence null hypothesis, H0 : γ ≤ γ0, can be tested using a simple 120

binomial distribution. The null hypothesis can be e.g., that the effect is absent from the 121

population (γ0 = 0, global null hypothesis) or that it is present in less than half of the 122

population (γ0 ≤ .5, majority null hypothesis). The null hypothesis is rejected if 123

observing the number of subjects presenting the effect has a probability lower than a 124

critical value (here pcrit = .05). In the present example of induced gamma oscillations, 125

all subjects in the sample show the effect of interest. This means we can reject the 126

majority null hypothesis (γ0 ≤ .5), and the highest γ0 that can be rejected at the given 127

significance level is γ0 = .83, which can be interpreted as a lower-bound estimate on the 128

population prevalence. 129

The spatial patterns pi in Fig 3a all have corresponding spatially-filtered signals 130

si[t]. We show in Fig 3c and d examples of time series, time-frequency decompositions 131

and power spectra of the signals corresponding to the largest effect (s1[t]). By 132

construction (in terms of maximizing the finduced quality function), these signals 133

present the largest ratio of gamma power between stimulus and baseline periods. 134

Strong, tonic gamma oscillations are clearly visible after stimulus onset, along with 135
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reductions in alpha/beta power (9). A 3.2-Hz oscillatory component is also found: it 136

corresponds to the entrainment of lower-frequency neural components at the 137

pattern-repetition frequency of the contracting circular grating. 138

We used the subcorr metric to produce source-level maps for each effect-prone 139

subject, i.e. whose data features a non-null signal subspace. We show an example of an 140

individual subcorr map in Fig 3e), which as expected, indicates a spatial peak in 141

occipital visual regions. The Fisher-z transform arctanh(subcorr) can be applied to 142

obtain a sharper map (referred to as subcorr-z). We then performed statistical inference 143

at the group level, using group averaged subcorr maps in a permutation procedure 144

(Fig 3f). A permutation distribution of the maximum-statistic is computed under the 145

null hypothesis of exchangeability of signal subspace with a dimension-matched subspace 146

drawn from the opposite end of the decomposition spectrum in Fig 3a. The null 147

hypothesis thus reflects the assumption that the effects were not localized and spatially 148

consistent across the tested cohort. This procedure yielded a statistically thresholded 149

map of average subcorr values, highlighting the brain regions spatially consistent across 150

the group, with an activity profile responding to the experimental question of interest. 151

Here, the resulting map pointed to the visual cortex as the source of the gamma 152

oscillations induced by the visual stimulus. This result was expected from published 153

reports, and therefore further strengthens the validity of the proposed approach. 154

Distinct evaluation of positive and negative effects improves 155

statistical power 156

The iES source maps highlight sources whose signals are consistent with a directed 157

hypothesis across a group of subjects. When two experimental conditions are 158

contrasted, this implies that two distinct source maps can be produced: for instance in 159

the previous case example, one map corresponding to increased oscillatory power in one 160

condition over the other; the other map corresponding to decreased oscillatory power. 161

The benefit resulting from this is that mutual interference in the detection and 162

statistical evaluation of the two sets of sources is avoided. 163

We demonstrate these methodological assets using the same experimental MEG data 164

as above. We analyzed task-induced oscillations in the beta band (13-30 Hz), with the 165

hypothesis that they were strongly suppressed during attention-demanding tasks in the 166

occipital visual cortex (9; 11). We also wished to test whether other brain regions would 167

reveal a selective increase in beta power during stimulus presentation. This contrast 168

thus serves to illustrate how a strong power effect (decreased beta power) can challenge 169

the detection of weaker opposite responses (increased beta power) with the standard 170

approach, but not with iES. 171

Figure 4 shows results for the hypothesis of increased beta band power during 172

stimulus presentation. The data from an example subject (Panel a) contained one 173

spatial component consistent with that hypothesis. At the group level, only eight 174

subjects out of 17 showed the effect of interest. Here, we shall emphasize the 175

importance of the notion of effect prevalence, since the majority null hypothesis could 176

not be rejected (Fig 4b). However, the prevalence null hypothesis can be rejected up to 177

γ0 = 0.22, which indicates there is a subgroup of the population from which our 178

subjects were drawn, which show the hypothesized effect. To better illustrate the 179

significance of this notion, let us first assume the effect is not present in the population. 180

With a probability of 0.95, one may still observe out of chance an effect in up to 3 out 181

of the 17 subjects. The prevalence test therefore indicates that the observed data is 182

unlikely under the assumption that prevalence is 22% or less (at a false positive rate of 183

p < .05). Thus we pursued further the analysis of the subgroup of 8 participants (see 184

Fig 4b), bearing in mind that the results may not generalize to the majority of the 185
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population. The validity of such a decision depends on whether the scientific question is 186

pertinent to generic vs. restricted effects among participants. For instance, it can be 187

particularly valuable for identifying effects that are more specific of a sub-type of 188

participants in terms of behaviour or clinical condition. 189

190
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Fig 4. Effects in a subgroup of participants: mapping induced oscillations
in the beta band (13-30 Hz) during visual stimulation. The data is that of
Figure 3, and the present figure layout is identical. a) Subspace computation, example
subject: in this participant, only one significant spatial dimension was retained for the
signal subspace contributing to stronger power in the beta band. b) Subspace
computation, group level: γ = .22 was the highest population prevalence that could be
rejected at a p = 0.05, thus the majority null hypothesis could not be rejected. The
analysis was pursued with the subgroup (n=8) of participants that showed the
hypothesized effect. The purpose was to appreciate the spatial concordance across
subjects and compare iES to standard source imaging approaches. c) Spatially filtered
signals, example subject: induced power changes in the band of interest (beta, but also
in alpha band) are clearly visible in 3 example trials. d) Spatially filtered signals, group
level: induced power changes in the band of interest were found in the participant
subgroup (n=8). e) Subspace correlation maps, example subject: the hypothesized effect
localized to the right post-central/parietal cortex. f) Subspace correlation maps, group
level: the effect localized to the right post-central gyrus. Note that this effect cannot be
generalized to the majority of the population that the subjects were drawn from (see b)
but only to a subset, which may present interesting capacity for identifying subtypes in
participants. 191

Fig 4c-d shows typical signal traces in a subject from the subgroup presenting 192

stronger beta and alpha oscillations building up during stimulus presentation. The 193

sharp waveforms and the combined alpha/beta spectral pattern were typical of the 194

somatosensory mu rhythm (12; 13). The effect was localized to right postcentral regions, 195

as shown in the example subject and the group subcorr maps (Fig 4e-f). This result 196

replicates previous observations of lateralized beta oscillations during an 197

attention-demanding task (14). 198

To compare these findings with those from the standard approach, we obtained 199

source maps of log-power ratios using minimum-norm imaging kernels. We used the 200

MNE implementation of Brainstorm, with default parameters (15). The resulting maps 201

were statistically thresholded following the same permutation procedure based on the 202

maximum statistic. Note that with this procedure, distinct maps of positive and 203

negative effects cannot be produced. For comparison purposes, we used the data from 204

the subgroup (n=8) that showed the desired effect of higher beta power during stimulus 205

presentation. 206

Fig 5a shows the complete beta band iES results (i.e. increases and decreases). In 207

addition to the increased stimulus-induced beta power over right postcentral regions, we 208

observed beta suppression in the visual cortex. The prevalence assessment revealed that 209

this latter effect was observed in the entire group, and thus may generalize to the 210

majority of the population. In the minimum-norm map (Panel b), the suppression of 211

beta oscillations in the visual cortex was also readily observed, with similar spatial 212

extension. However the increased, stimulus-induced beta oscillations over the right 213

central regions were absent from the minimum-norm map produced from the 8 subjects 214

presenting the effect in iES. The non-thresholded maps are shown in Supplementary 215

Material, and confirm that a positive peak was indeed present in the minimum-norm 216

maps, but was not deemed statistically significant. The reason for the observed 217

discrepancy between methods can be understood from the permutation and data 218

histograms (Fig 5, right column): By definition, the permutation histograms of the 219

log-power ratios were mirror images for the evaluation of positive and negative effects 220

respectively. This was the case because we drew exhaustive permutations from the data 221

from the 8 subjects (28 = 256). Thus every unique permutation of labels had a 222

corresponding opposite permutation. The consequence was that the variance and spread 223

of the resulting distribution were determined by the strongest effect in magnitude – here 224
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Fig 5. Comparing statistical performance of iES with minimum-norm
imaging for mapping induced oscillations. a) Subspace scanning results: (left)
significant average subcorr map (p < .05, see text for procedure). Note that results
were obtained from the subgroup of participants that presented the hypothesized effect
(n=8, see Fig 4). (right) histogram from observed data and permutation tests to derive
a subcorr threshold corresponding to p < .05. b) Minimum-norm imaging results:
average maps of log-transformed power ratios (stimulus/baseline, p < .05). Note that
the distinction between positive and negative effects is not possible. The results were
derived from the same subgroup (n=8) to allow comparison with a), the results
obtained with the full group (n=17) are shown as an outline. Contrary to iES, no
increase in beta power could be detected over the right post-central gyrus region, with
the same subgroup of subjects. Unthresholded maps are shown in the supplementary
material. (right) histograms of observed data and permutation tests to determine
significance of minimum-norm maps at p < .05. Note how the strong negative effects
inflated the permutation distribution and prevented the detection of the smaller positive
effects. As shown using iES, positive and negative effects could be evaluated separately
and specifically.

the negative effect of beta suppression. The histogram of the observed data indicated 225

that the right tail of the histogram indeed did not reach the statistical threshold. The 226

iES allowed to test two directed hypotheses separately. Hence the permutation 227

distributions were distinct and adapted to each respective hypothesis, revealing the 228

positive effect in the iES statistical source map that were absent in the standard 229

approach. 230
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Supplementary insight gained compared to standard approaches 231

We detail in Methods that iES requires the computation of cross-spectral or covariance 232

matrices, and their decomposition in the generalized eigenvalue framework. This means 233

that in addition to the subcorr statistical maps produced, a corresponding map of the 234

standard approach can be obtained by applying a minimum-norm imaging kernel to 235

those matrices, which allows plotting the value of the quality function f at each location 236

of the source grid. Fig 5 shows an example of this approach to obtain a map of 237

log-power ratios. We emphasize that the combined use of subcorr and minimum-norm 238

source maps enabled by the proposed method provides complementary information with 239

respect to the experimental hypothesis of interest. 240

We demonstrate such benefit using the same visual-attention MEG data, to detect 241

the origins of narrow-band oscillations (Fig 2a). The corresponding quality function 242

fnarrow quantifies the ratio of signal power in a frequency range of interest with respect 243

to the total power of the broadband signal. Such a quality function highlights signals 244

with a peaky spectral profile (16), which is of specific interest when studying 245

stimulus-independent ongoing oscillations. We used the data of the ongoing visual 246

stimulus period ([1, 3] s after stimulus onset) to investigate the anatomical origins of 247

three frequency bands of interest: theta (4-8 Hz), alpha (8-13 Hz) and beta (13-30 Hz). 248

The reference broadband signal against which to contrast possible effects in the narrow 249

frequency bands of interest was taken between 2 and 100 Hz. 250

We compared the subcorr statistical maps with the minimum-norm maps of fnarrow 251

(Fig 6). The log-transform of the ratios was not applied because negative effects were of 252

no interest to the question, thus a symmetric measure was not required. A threshold 253

0 < f∗narrow < 1 for selecting relevant signal subspace patterns was computed with the 254

bootstrap procedure described in Materials and Methods. In the alpha and beta bands 255

the results were similar between our approach and standard imaging. Commonly 256

observed brain regions as strong sources of these ongoing rhythms were found (see e.g., 257

17). Alpha activity was prominent in medial occipital-parietal regions; beta activity was 258

stronger over bilateral sensory-motor regions. Alpha band oscillations were also found 259

prominently over the right postcentral region, which parallels the finding of enhanced 260

alpha and beta power during the stimulus period in the same brain area, as shown in 261

the previous section. 262

We found differences between iES and minimum-norm maps in the theta band. The 263

subcorr statistical map revealed involvement of the medial temporal lobes (MTL) 264

bilaterally, and of medial frontal/anterior cingulate regions. Theta oscillations in MTL, 265

including the hippocampus and parahippocampal regions, have been extensively 266

described (18). Due to their relative depth and therefore lower MEG signal-to-noise 267

ratios (SNR), they have been considered more challenging to detect (19; 20; 21). The 268

MNE power-ratio maps though showed a lateralized distribution of theta activity in the 269

right MTL. We argue that both results are not mutually exclusive: they indicate that 270

both the left and right MTL were consistent sources of theta oscillations in the tested 271

group. However, the effect strength in the right MTL was higher in the average power 272

ratios of theta. Such insight could not be gained with either approach taken separately 273

and required the direct comparison of the iES and MNE statistical maps. 274

Fig 7 shows simulation results to illustrate and underline further the difference in 275

sensitivity between the iES and standard approach. For each simulation run (300 276

iterations) we generated five minutes of data. Source time-series with a 1/f spectral 277

profile were generated for 68 source locations distributed evenly across the brain 278

according to the Desikan-Killiany atlas from Freesurfer (22). For two of these locations 279

(precentral left and right), we selectively amplified power in the frequency of interest 280

(8-13 Hz) to obtain a specified ratio fnarrow between narrow-band and broadband power 281

(1-100 Hz). Whereas an fnarrow of 0.6 was targeted for source 1, the targeted fnarrow 282
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Fig 6. Mapping of narrow-band oscillations. The sources of narrow-band signals
were mapped for the theta, alpha and beta frequency bands using a) iES subspace
scanning and b) power ratios from minimum norm imaging (narrow-band over
broadband 2-100 Hz). iES allows for statistical thresholding across the group using
permutation procedures that are equivalent for all use cases. The theta band results
showed marked differences between the two approaches in deeper, medial temporal
regions. iES revealed bilateral sources whereas MNE power ratio maps pointed at
predominant source activity in the right hemisphere.

for source 2 was varied between 0.2 and 0.6. After generating MEG data from this 283

simulation setup, we applied iES (with a f∗narrow threshold of 0.22) and the standard 284

approach to detect narrow-band oscillations in the frequency band of interest and 285

computed a metric that quantified the probability of detecting both sources of 286

narrow-band oscillations. Fig 7d) shows that the two methods differ systematically: the 287

sensitivity of the standard approach scales with the differences in fnarrow between the 288

two sources, whereas iES’ sensitivity is not influenced by uneven source activity and 289

detects sources above the chosen threshold with a constant probability. This encourages 290

using the different sensitivity profiles of the two methods in conjuncton, to obtain 291

complementary information as shown in the data example above. 292

Assessment of functional connectivity 293

Because of spatial smearing, the study of functional connectivity is a challenging 294

problem for MEG and EEG source imaging (see Fig 1). Since the seed region is 295

maximally correlated with itself and neighbouring regions, with correlated time series 296

due to field spread of the MEG/EEG inverse operator, functional connectivity maps 297

tend to be biased towards artificially inflated values of connectivity measures. This 298
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Fig 7. Simulation results comparing sensitivity of iES and standard
approach. a) Examples of simulated time-series that follow a 1/f spectral distribution
(grey trace) or target a pre-specified fnarrow, which is the ratio between narrow-band
and broadband power (blue traces). b) Simulation setup: Two sources of interest in
blue targeting pre-specified fnarrow (blue traces) are embedded in background brain
noise composed of 1/f signals evenly distributed across 66 locations. c) Metric of
detection probability: We quantified the probability that the two sources of interest
were detected in a source map by using a range of different thresholds: the two sources
were detected, if they were contained in two separate clusters after thresholding. Here
we show 4 different thresholds in two simulation scenarios using the standard imaging
approach. In the first scenario, sources were detected with 2 out of 4 (detection
probability: 0.5) threshold values. In the second scenario, sources were detected only
with 1 out 4 (detection probability: 0.25) threshold values. This configuration
illustrates the issue of concurrent sources with different strengths on the detection of
separate clusters of activity. d) Comparison of methods: the maps from each simulation
run were thresholded using 50 different values to estimate a detection probability as in
c). Since the range of data values for both MNE and iES were different, we normalized
the detection probability by the maximum value obtained in each method. Thus we did
not compare the absolute detection probability between the two methods, but rather
how it varied with respect to the difference in fnarrow, between the sources of interest.

issue is discussed in (23) and generally addressed with methods that discard all 299

contributions of zero phase-lag time series, either by orthogonalizing signals (23) or via 300

measures of the imaginary part of coherence (24). However, zero-lag coherence between 301

distant regions is plausible theoretically (25) and was observed physiologically (26). We 302

demonstrate the relevance of iES to address this issue, by studying amplitude 303

correlations in the alpha band (8-13 Hz) with respect to an anatomical seed placed in 304

the sensorimotor cortex. The tested hypothesis was to reveal amplitude correlations 305
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Fig 8. iES mapping amplitude correlations of a seed region with the rest of
the brain during rest. a) We show example traces of co-occurring oscillatory bursts
in the alpha band (8-13 Hz) in the resting-state, from the same MEG sessions as
presented in previous sections. The two examples have different phase lags, around 270◦

and 180◦ respectively (which would be discarded in other approaches, see e.g., 23). b)
Correlation of alpha amplitudes between the seed region (circle) and the rest of the
brain, using minimum-norm imaging in an example subject. c) (left) iES subcorr map
showing source locations whose amplitudes correlated with the seed region’s at r > .4.
The homologous contralateral region is emphasized in this map. (right) the same map
with the data projected away from the spatial pattern of the seed region. d) Same as b)
but averaged over the group e) same as c) but averaged over the group and statistically
thresholded using the permutation approach explained above.

with homologous contralateral brain regions (23; 27; 28). 306

Fig 8 shows results from resting-state data obtained during the same recording 307

session as the visual stimulus experiment. a) shows example time series of co-occurring 308

oscillatory bursts, which form the basis of amplitude correlations between two distant 309

brain regions. The time series were extracted from bilateral central regions. We show 310

occurrences of 270◦/90◦ phase differences during alpha bursts – note that the phase 311

estimation of MEG source signals has a 180◦ ambiguity due to arbitrary conventions on 312

source direction (29) – and of 180◦/0◦ phase differences, which would be discarded by 313

other methods (23; 24). We argue that the zero-lag correlations shown here are not 314

spurious, as evidenced by their differences in waveform and amplitude dynamics. This 315

data example provides a proof of principle that studying zero-lag connectivity using 316

MEG is achievable. We next proceeded to map significant inter-regional amplitude 317

correlations in the presence of field spread. 318

We extracted the source time series yref from the left central sulcus location that 319

was the closest to the activation peak (MNI coordinates [-39, -27, 55] mm) 320

corresponding to the search term ’finger’ in the Neurosynth meta-analysis tool (30). We 321

defined the iES quality function fampcorr(s,yref ) as the correlation between the 322
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Fig 9. Mapping correlation of a peripheral signal with neural oscillation
amplitudes. a) video frames from an eye tracker camera during a MEG recording at
rest, pupil diameter was extracted using a fitted ellipse. b) pupil diameter time-series
time-locked to a visual stimulus onset (overlaid trials). The gray bar indicates the
baseline time period for analysis. c) subcorr map showing sources whose amplitudes
correlate with pupil diameter across trials during the visual task. The signal subspace
for this analysis contained one significant component which signal correlated at
r = −0.44 with changes in pupil diameter. The maps were threshold at 75% of the
maximum value.)

amplitude of other source time series s and yref . The outcome to this optimization 323

process is the third use case of iES and is illustrated in Fig 2a. The optimization is done 324

using a solution described in (31). We set a correlation threshold of r > 0.4 for spatial 325

components to be included in the signal subspace for the subcorr analysis. 326

Fig 2b-c shows – in a single subject example – that iES was able to reveal the 327

contralateral anatomically-homologous region as the primary distant connected region 328

with the reference brain location. The conventional minimum-norm based map of 329

correlation values was dominated by spurious crosstalk correlation surrounding the seed 330

region. The performance of iES is explained by the equalized contribution of spatial 331

components that are consistent with the embedded hypothesis (r > 0.4). To further 332

limit the contribution of the seed region to the data, it is possible to project the signal 333

subspace and forward fields away from the spatial forward field of the seed region, as 334

illustrated in Fig 2c. The group analysis further reveals that connectivity maps were 335

dominated by crosstalk effects from the seed reference signal, both in the 336

minimum-norm based maps and in the raw subcorr map (Fig 2d-e). Projecting away 337

the seed’s contribution before computing every subject’s maps was necessary to confirm 338

the hypothesized contralateral coupling. Note that with iES and in contrast with other 339

approaches (23), the temporal dynamics of the seed region are not projected away from 340

the data; only the spatial topography of the seed region is subtracted from the sensor 341

data. Thus iES does not exclude the detection of physiological zero-lag coupling. 342

Applicability to a wide range of experimental questions 343

As summarized in Fig 2a, iES can be used for a greater variety of experimental designs: 344

whenever a reference signal yref defined 1) on a trial-by-trial basis or 2) as a continuous 345

signal is considered, fampcorr is used to obtain subcorr maps of sources, whose source 346

dynamics correlate with yref . We illustrate such case in Fig 9, using simultaneous MEG 347

and pupil diameter recordings. 348

We first formed the iES hypothesis based on recent demonstrations in mice (32) that 349

continuous pupil diameter fluctuations correlated with alpha power at rest. Measures of 350
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pupil diameter were extracted from continuous video eye-tracking recordings by fitting 351

an ellipse to the pupil on a frame-by-frame basis. We demonstrate the case of 352

trial-by-trial correlations by analyzing pupil diameter changes prior to visual stimulus 353

presentation from data presented in Fig 3. The signal subspace was defined with spatial 354

components who were deemed significant below a p-value of 0.05 computed by a 355

shuffling procedure across trials. The iES maps indicated brain regions in the occipital 356

cortex, consistent with the upcoming onset of a visual stimulus. 357

We emphasize that a specific strength of the iES approach is its versatility: it can be 358

extended to a great variety of experimental designs and research hypotheses, since the 359

experimental question is formulated as an optimization problem. We derive in Methods 360

the mathematical formulation for iES coherence with a reference signal, as an additional 361

experimental use case. The experimental hypotheses discussed here all have 362

corresponding quality functions that can be solved analytically. An identical framework 363

can be used for hypotheses that require numerical optimization of the corresponding 364

spatial filters. We foresee that the introduction of the iES approach will establish a 365

generic framework for an increasing number of experimental contexts related to a 366

growing diversity of research questions. 367

Materials and Methods 368

MEG data 369

Participants 370

17 healthy participants were recruited (21-45 years; 5 female). The study was approved 371

by the Montreal Neurological Institute’s ethics committee, in accordance with the 372

Declaration of Helsinki. All participants gave written informed consent and were 373

compensated for their participation. 374

Stimuli 375

Subjects were presented with a variation of the visual stimulation paradigm in (9): A 376

circular sine wave grating (diameter of 5°with 100% contrast) contracts towards the 377

fixation point (velocity: 1.6 deg/s). The contraction accelerated (velocity step to 2.2 378

deg/s) at an unpredictable moment between 3-5 seconds after stimulus onset. Subjects 379

had to indicate with an index-finger button press that they detected the velocity change. 380

The button press ended one trial and the stimulus was turned off. Inter-trial intervals 381

were 5 seconds long with a jitter. During the inter-trial interval subjects were presented 382

with a central fixation cross. Stimuli were generated using the Psychophysics Toolbox 383

(33). 384

Experimental Procedure 385

Participants received both oral and written instructions on the experimental procedure 386

and the task. The recording session started with a 5-minute resting state run with eyes 387

open. The participants were presented with 10 test trials, to become familiar with the 388

task. They were then presented with a total of 240 stimulus sequences (trials). 389

Participants performed 60 trials per acquisition block. After each block, they received a 390

feedback on the accuracy of their responses. A trial was considered correct if subjects 391

responded within 500 ms after the actual velocity change occurred. Between each block, 392

the participants were given a break of self-determined length. After completion of the 393

240 trials, subjects were given a 15-minute break. A further 5-minute resting-state 394

recording concluded the session. 395
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Fig 3, 4, 5 and 6 are based the visual experiment phase of the recording sessions, 396

whereas figure 8 is based on the two resting-state sessions. Fig 9 is based on the visual 397

experiment phase of one subject, during which eye videos were recorded concurrently 398

with MEG. For this we used a Point Grey Flea3 camera, capturing at 15 frames per 399

second, with an infrared filter and infrared illumination of the subject’s face to improve 400

the contrast for pupil segmentation. 401

Data acquisition 402

The participants were measured in a seated position using a 275-channel VSM/CTF 403

MEG system with a sampling rate of 2400 Hz (no high-pass filter, 660 Hz anti-aliasing 404

online low-pass filter). Three head positioning coils were attached to fiducial anatomical 405

locations (nasion, left/right pre-auricular points) to track head movements during 406

recordings. Head shape and the locations of head position coils were digitized 407

(Polhemus Isotrak, Polhemus Inc., VT, USA) prior to MEG data collection, for 408

co-registration of MEG channel locations with anatomical T1-weighted MRI. Eye 409

movements and blinks were recorded using 2 bipolar electro-oculographic (EOG) 410

channels. EOG leads were placed above and below one eye (vertical channel); the 411

second channel was placed laterally to the two eyes (horizontal channel). Heart activity 412

was recorded with one channel (ECG), with electrical reference at the opposite clavicle. 413

A T1-weighted MRI of the brain (1.5 T, 240 x 240 mm field of view, 1 mm isotropic, 414

sagittal orientation) was obtained from each participant, either at least one month 415

before the MEG session or after the session. For subsequent source analyses, the nasion 416

and the left and right pre-auricular points were first marked manually in each 417

participant’s MRI volume. These were used as an initial starting point for registration 418

of the MEG activity to the structural T1 image. An iterative closest point rigid-body 419

registration method implemented in Brainstorm (15) improved the anatomical 420

alignment using the additional scalp points. The registration was visually verified and 421

adjusted manually, if necessary. 422

MEG data preprocessing 423

All MEG data analysis steps were performed with Brainstorm (15), with the novel 424

approaches described in this paper implemented as a Brainstorm plug-in written in 425

MATLAB (available through: https://github.com/pwdonh/ies_toolbox). 426

Artifact removal and rejection 427

Eye-blink and heart-beat artifacts were removed from MEG data using a PCA-based 428

signal source projection (SSP) method, using recommended procedures (34). The ECG 429

and EOG channels were used to automatically detect artifact events. Noisy MEG 430

channels were identified by visually inspecting their power spectrum and removing those 431

who showed excessive power across a broad band of frequencies. The raw data were 432

further visually inspected to detect time segments with excessive noise e.g., from jaw 433

clenching or eye saccades. Sinusoid removal at the power line frequency and harmonics 434

(60, 120, 180 Hz) was applied to the continuous data. A high-pass filter above 1 Hz was 435

also applied to reduce slow sensor drifts. The MEG data were centered around the 436

baseline mean after epoching. All the filters used in the current study are zero phase 437

shift non-causal finite impulse filters coded and documented in Brainstorm. 438

MEG data were epoched to the interval [-2, 3] seconds around the visual stimulus 439

onset. We refer here to the stimulus period as the interval [1, 3] seconds, and the 440

baseline period as [-2, 0] seconds with respect to visual stimulus onset. 441

PLOS 18/31

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 18, 2017. ; https://doi.org/10.1101/164731doi: bioRxiv preprint 

https://github.com/pwdonh/ies_toolbox
https://doi.org/10.1101/164731
http://creativecommons.org/licenses/by/4.0/


Intra-subject coregistration 442

Prior to the computation of signal subspaces, we performed a between-run 443

coregistration of the MEG data based on recorded head positions, using the movement 444

correction method similar to (35) available in Brainstorm. Briefly, we computed forward 445

models Gk based on the head positions of different runs k and Gavg using the average 446

head position. Then we computed coregistration operators Ωk to project the MEG data 447

from different runs into the same space as ΩkXk. Ωk was computed as 448

Ωk = GavgVnS−1n Un, using the singular value decomposition (SVD) Gk = USV 449

truncated corresponding to the largest n singular values. The index n is set so as to 450

preserve 99.99% of the squared singular value spectrum. We additionally took into 451

account that different runs had slightly different SSP projectors applied (see above). We 452

thus apply these projectors to the forward fields of individual runs before computing the 453

coregistration operators. 454

Source models 455

We defined a volumetric source grid on the MNI152 2009c nonlinear anatomical 456

template (36), using an adaptive procedure: an outer layer of 4000 grid points was 457

produced based on a brain envelope covering cortical and subcortical structures. This 458

outer layer was then shrunk and downsampled by a factor of 2.2. This procedure was 459

repeated to result in a total number of 20 layers containing 25740 grid points. For each 460

subject, we computed a linear transform of individual anatomy to MNI coordinates 461

using affine coregistration as implemented in SPM12 (function spm maff, 37). We 462

applied the inverse linear transform to project the default source grid onto each 463

subjects’ individual anatomy. 464

Forward modeling of neural magnetic fields was performed using the 465

overlapping-sphere model (38). Conventional MEG source imaging was obtained by 466

linearly applying the weighted-minimum norm operator, with default settings in 467

Brainstorm (2). The weighted-minimum norm operator included an empirical estimate 468

of the noise covariance at the MEG sensor array, obtained from empty-room recordings 469

(34). 470

For the extraction of a seed time-series for functional connectivity analysis in Fig 8 471

we found the optimal dipole direction at the seed location using SVD of the filtered 3 472

component time-series extracted with the MNE kernel K(ρ). 473

iES formulation 474

The iES method described in this paper is based on subspace scanning, which processes 475

the entire spatio-temporal MEG data matrix X, instead of reconstructing neural 476

activity independently at each time point (see e.g. MUSIC, 6). The method features 477

two steps, as shown in Fig 2: 1) extraction of the relevant spatial patterns from the data 478

(signal subspace identification), and 2) scanning of the source space for contributions 479

that explain the identified spatial patterns (subspace scanning step per se). 480

Subspace scanning 481

First a set of MEG topographies is identified that captures the signal components of the 482

MEG data matrix. We define the notion of signal in the following section. In (6), this 483

first step was equivalent to performing a PCA of the event-related average MEG signals. 484

The D components corresponding to the largest PCA eigenvalues spanned the signal 485

subspace: span(Ps). A particular MEG topography v lies within the signal subspace, if 486

there exists a linear combination t of the columns of Ps such that v = tTPs. A 487

geometric measure quantifies how close a particular MEG topography lies to the signal 488
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subspace. For instance, the cosine of the angle between v and the projection of v onto 489

Ps is a suitable measure (6). 490

A dipolar source at location ρ is described by an orientation (θ) and an amplitude 491

(a) parameter. All the MEG topographies that can be generated by this source are 492

described by a linear combination of the forward fields of dipoles along the three 493

orthogonal spatial directions (2). The resulting 3-column forward field matrix G(ρ) 494

thus also spans a subspace. A MEG topography produced by this dipole lies within the 495

signal subspace if there exist linear combinations u and t such that uTG(ρ) = tTPs. 496

Due to noise in measurements and inevitable approximations in the forward model 497

metric, a perfect match cannot be expected. Thus we use the subspace correlation 498

metric as the cosine of the smallest principal angle between subspaces 499

subcorr(G(ρ),Ps) (3)

as defined in (6). This metric quantifies how close the two subspaces lie to each other, 500

and thus how well a dipole source at the scanned location fits the signal subspace. This 501

metric is applied at each possible location across the anatomical volume. 502

Computing the signal subspace 503

The signal subspace is defined by the span of the full column-rank M ×D matrix Ps
504

where M is the number of sensors and D is the dimensionality of the subspace. Thus 505

Ps is a collection of D non-collinear sensor topographies. In the standard MUSIC case, 506

the first column of the signal subspace p1 is a vector/topography that, when applied to 507

the averaged MEG data X, results in a signal that has maximum variance (broadband 508

power): it is a solution to the optimization problem 509

argmax
p

pTXX
T
p (4)

subject to a norm constraint on p. The next subspace column p2 is the solution to the 510

optimization problem 511

argmax
p

pTΠ⊥XX
T
ΠT
⊥p (5)

where Π⊥ is the orthogonal projector away from the first subspace column 512

Π⊥ = I− p1p
T
1 . This corresponds essentially to a PCA of the event-related average X. 513

More generally, the signal subspace could be constructed by the solution of an 514

optimization problem 515

argmax
w

f(wTX) = argmax
w

f(s) (6)

where the function f is chosen according to the experimental question of interest. The 516

time-series s is the signal obtained by applying the spatial filter to the data as 517

s = wTX. In standard MUSIC, the experimental question of interest is to find the 518

sources that have the strongest contribution to the event-related responses, thus the 519

quality function is 520

f(s) = V ar(s) (7)

where s is the event-related trial average of s. However, many other experimental 521

questions can be expressed as an optimization problem. For example we might be 522

interested in finding sources whose power is correlated with a reference signal y (such as 523

an EMG recording or an audio stimulus envelope). In that case we would set the quality 524

function as 525

fampcorr(s,y) = Corr(|s|2,y) (8)

where Corr(a,b) is the correlation of signals a and b. While, in principle, it is possible 526

to use any quality function and proceed with numerical optimization, the subspace 527
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method is specifically attractive for quality functions that can be solved analytically for 528

computationally efficient implementations. Here we focus on a set of quality functions 529

that can be solved using the generalized eigenvalue problem (GEP). We show solutions 530

for four different experimental use cases, three of which are illustrated in Fig 2a). 531

Subspace computation using the GEP The generalized eigenvalue problem 532

(GEP, see e.g. 39) Aw = λBw, for symmetric matrices A and B, arises in optimization 533

situations like 534

argmax
w

wTAw

wTBw
(9)

or equivalently 535

argmax
w

wTAw, subject to wTBw = 1 (10)

To show how the GEP can be used to define a subspace, we focus on a) induced 536

responses as a first use case (see Fig 2a). Here we are interested in finding sources 537

whose power in a frequency band of interest [f1, f2] differs between two conditions or 538

time periods, e.g. stimulus and baseline periods. Thus the quality function becomes 539

finduced(sa, sb) =

∑f2
f=f1

Pow(sa)[f ]∑f2
f=f1

Pow(sb)[f ]
(11)

where Pow(sa,b)[f ] is the power of a signal s at frequency f in time periods a and b. 540

The power of a signal in a given frequency band [f1, f2] can be approximated by the 541

variance of the signal filtered in that frequency band. The quality function can thus also 542

be written as 543

finduced(sa, sb) =
V ar(sfilta )

V ar(sfiltb )
(12)

where superscript filt indicates that the signal was filtered in the frequency band of 544

interest. For readability, we will drop this superscript in the following. Since the 545

bandpass-filtered signal is zero mean, we can compute the variance using the dot 546

product 1
L−1sT s where L is the number of time samples. The quality function thus 547

becomes 548

finduced =
sTa sa
sTb sb

=
wTXaX

T
aw

wTXbXT
b w

=
wTCaw

wTCbw
(13)

where C is the covariance matrix of the filtered MEG signals X and w is a spatial filter 549

topography. This is now in the form of the GEP shown above and has been used in the 550

field of brain-computer interfaces as Common Spatial Patterns (CSP, e.g. 3; 40). 551

Alternatively, one can define the quality function directly in the frequency domain, and 552

compute C(a,b) as the average of the real part of the cross-spectral density matrices in 553

the frequency band of interest 554

Ca =

f2∑
f=f1

Re(CXaXa
[f ])

Cb =

f2∑
f=f1

Re(CXbXb
[f ])

(14)

where CXX [f ] is the M ×M MEG cross-spectral density matrix at frequency f . 555

The GEP can now be solved by defining a whitening projector 556

Π⊥ = S−
1/2UT (15)
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from the SVD: USVT = Cb, which equalizes the variance along the principal axes of 557

Cb, as required in the constraint of Eq 10. We then solve the ordinary eigenvalue 558

problem 559

Π⊥CaΠ
T
⊥φ = λCbφ (16)

where the eigenvector φ is now a spatial filter in the whitened data space. The 560

eigenvalue λ provides the ratio of power in the two conditions, thus is equal to finduced. 561

This means that the signals of interest, which maximizes the quality function in Eq 12, 562

can be estimated from the MEG data as 563

ŝa,b = φTS−
1/2UTXa,b = φTΠ⊥Xa,b = wTXa,b (17)

where w combines the two steps of whitening (Π⊥) and filtering in whitened space (φT ) 564

to obtain a spatial filter in the data space as in Eq 13. The data generated by a specific 565

source signal can in turn be estimated by 566

X̂ = US
1/2φ s = p s (18)

where p is the spatial pattern vector, or forward field, of the source signal in sensor 567

space, since an inverse whitening step (US1/2) is applied to the forward pattern in 568

whitened space (φ). (see 41, for further discussion on the distinction between spatial 569

patterns and filters). 570

Solving the GEP this way, one obtains M spatial patterns pj that can be ordered 571

according to their corresponding quality function scores finduced = λ. The columns of 572

the signal subspace matrix Ps are then defined by the spatial patterns that exceed a 573

threshold f∗induced, yielding an M by D subspace matrix, where D is the number of 574

spatial patterns exceeding the threshold. We discuss the estimation of this threshold 575

below. As described above, the anatomical source space can then be scanned by 576

computing subspace correlations with the forward fields at each source location, using 577

subcorr(G(ρ),Ps) (19)

Additional use cases based on the GEP We describe three other use cases that 578

can be solved using an appropriate quality function in combination with the GEP (see 579

Fig 2a). The solutions are convenient in that they only require to change the definition 580

of Ca and Cb in Eq 13. 581

We define a signal showing b) narrowband oscillations as a signal that has 582

increased relative power in a frequency band of interest with respect to broadband 583

power. We thus define a signal frequency band of interest [fs1 , f
s
2 ] and a broad noise 584

frequency band [fn1 , f
n
2 ]. The quality function then becomes 585

fnarrow(s) =

∑fs
2

f=fs
1
Pow(s)[f ]∑fn

2

f=fn
1
Pow(s)[f ]

(20)

Analogously to Eq 13, this quality function can be expressed in the form of the GEP as 586

wTCaw

wTCbw
(21)

where 587

Ca =

fs
2∑

f=fs
1

Re(CXX [f ])

Cb =

fn
2∑

f=fn
1

Re(CXX [f ])

(22)
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Solving the GEP, we obtain spatially filtered signals that are ordered according to 588

their ratios of power fnarrow in the signal and noise frequency bands. This approach is 589

similar to what has been described in (16) as spatio-spectral decomposition. 590

As next use case, we consider the case of c) amplitude modulation using a 591

solution described in (31). Here we wish to find sources whose amplitude fluctuations in 592

a frequency band of interest covary with the value of a reference variable. This might be 593

a slow time-varying signal yref , or a variable that is defined on a trial-by-trial basis 594

such as reaction time or task difficulty. Here we describe the former case, but the latter 595

follows easily (31). 596

The data are split into epochs denoted by the index e. Epoch length needs to be 597

short enough to allow capturing fluctuations in the reference signal yref , and long 598

enough to estimate the power of data signals X filtered in the frequency band of 599

interest. The quality function can then be expressed as 600

fampmod(s,y) = fampmod(w
TX,y) =

Cov(V ar(wTX(e)),yref (e))

V ar(wTX)
(23)

where X(e) denotes the data matrix in epoch e. We thus maximize the covariance 601

between the power of s = wTX(e) and the value of yref (e) normalized by the power of 602

s = wTX = 1. Assuming that yref is a zero-mean and unit-variance signal, this can be 603

solved in the GEP framework by setting 604

Ca =
∑
e

CX(e)y(e)

Cb =
∑
e

CX(e)
(24)

where CX(e) is the covariance matrix of the filtered MEG signals in epoch e. Ca thus 605

represents a weighted (by yref (e)) average, and Cb the unweighted average of the single 606

epoch covariance matrices. Please refer to (31) for a derivation of these results. We can 607

obtain the correlation values from the above as 608

fampcorr(s,y) = Corr(V ar(wTX(e)), ˆyref (e)) =
wTCaw

V ar(wTCX(e)w)
(25)

In the analysis examples we used fampmod to compute the spatial filter basis using the 609

GEP in a computationally efficient manner. Ordering and selecting the components to 610

be included in the signal subspace was then based on fampcorr. 611

When the research hypothesis requires testing for source dynamics that are d) 612

coherent with a reference signal yref at a specific frequency, the quality function 613

becomes 614

fcoh(s,y) = Coh(s,y)[f ] (26)

The reference signal yref can be an external stimulus such as the envelope of an audio 615

signal, a simultaneously measured peripheral signal such as EMG, or a neural 616

time-series extracted using source imaging. 617

Magnitude squared coherence is computed as the ratio of cross-spectral to 618

auto-spectral densities as 619

Coh(s,y)[f ] =
|Csy[f ]|2

Css[f ]Cyy[f ]
(27)

where Csy[f ] is the cross-spectral density between signals s and y at frequency f , and 620

Cyy[f ] is the auto-spectral density of signal y. Since Cyy[f ] is constant, we can leave it 621

out of the quality function and remain with 622

|Csy[f ]|2

Css[f ]
=
Csy[f ]Csy[f ]∗

Css[f ]
(28)
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Now setting s = wTX we get 623

|wTCXy[f ]|2

wTCXX [f ]w
=

wTCXy[f ]CH
Xy[f ]w

wTCXX [f ]w
(29)

where CXy[f ] is the column vector containing the cross-spectral densities between the 624

reference signal and the MEG signals, and the H superscript stands for conjugate 625

transpose. The optimization problem can be solved by invoking the GEP as in Eq 21 626

and setting 627

Ca = Re(CXy[f ]CH
Xy[f ])

Cb = Re(CXX [f ])
(30)

Note that, as the matrix CXy[f ]CH
Xy[f ] is Hermitian, wTCXy[f ]CH

Xy[f ]w will be a real 628

number and thus be equal to wT Re(CXy[f ]CH
Xy[f ])w. Hence we only need to keep the 629

real part for Ca. 630

Covariance regularization As described above, at the core of our approach lies the 631

computation of a subspace using the GEP. This requires the inversion of matrix Cb, 632

which can be numerically unstable if some of its singular values are small (see Eq 15 for 633

its influence on the whitening projector). We thus regularize matrices Ca and Cb by 634

adding values to the diagonal as 635

Creg = (1− α)C + αTr[C]M−1I (31)

where α is a regularization parameter. We refer to this technique as diagonal loading. 636

Fig 10 shows the effect of regularization on the power of individual components, 637

illustrated using the data from Fig 3 (induced responses, stimulus vs. baseline). 638

Regularization affects mostly the components with smallest power values, which would 639

have detrimental effects during inversion. Their power ratios fj after regularization will 640

be very close to 641

f̂j =

∑
j saj∑
j sbj

(32)

where s(a,b)j are the singular values of the narrow-band covariance matrices C(a,b) 642

computed from stimulus (a) and baseline (b) periods, respectively. This can be 643

understood as the expected f based on the overall power across sensors in both time 644

periods. Because these components do not carry physiological information, we make 645

sure to never include them in the signal subspace. They were detected using a simple 646

bootstrap procedure: a confidence interval on the mean power of each component (saj 647

and sbj) is estimated from the unregularized data by sampling with replacement from 648

epochs e = 1, ..., E. We then verify whether saj and sbj computed from the regularized 649

data lie within the 99.9% confidence interval, and discard the components where this is 650

not the case. We used this approach in the analysis examples on induced responses and 651

narrow-band oscillations (Fig 3, 4, 5, 6 and 7) and set α = 0.05. 652

We also describe an alternative regularization approach, referred to as truncated 653

SVD. This entails removing the columns associated with the smallest singular values 654

from U during the computation of the whitening projector in Eq 15. We define the 655

regularization parameter ε and keep the singular values making up 100(1− ε)% of the 656

cumulated singular value spectrum. We see in Fig 10b that this results in a smaller 657

number of components extracted from the GEP, however yielding similar f values at 658

both ends of the spectrum. We used this approach in the analysis examples on 659

amplitude modulation (Fig 8 and 9) and set ε = 0.001. 660

PLOS 24/31

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 18, 2017. ; https://doi.org/10.1101/164731doi: bioRxiv preprint 

https://doi.org/10.1101/164731
http://creativecommons.org/licenses/by/4.0/


Fig 10. Regularization methods for covariance estimates. For illustration we
show GEP results from the single-subject data of Fig 3a comparing gamma power
between stimulus and baseline periods. The top panels display the power ratio finduced,
the bottom panels display the power associated with each component, computed as
wT
j Ca/bwj in the baseline and stimulus period. In a) component-wise power computed

from regularized and unregularized covariance matrices are compared using the diagonal
loading method. In b), regularized results using the truncated SVD method, which
results in a smaller number of components.

Estimating the dimensions of the signal subspace The estimation of the 661

dimension of the signal subspace can be obtained by setting a threshold on the quality 662

function score f in a hypothesis-driven way, as a measure of effect size. These scores are 663

readily interpretable as e.g., the power ratio between conditions (induced responses) or 664

the correlation between a reference signal and neural amplitude time-series (amplitude 665

modulation). In the following we show how we can set a threshold based on approaches 666

from non-parametric statistical testing. 667

For a) induced responses we compare oscillatory power between two conditions 668

using permutation testing. We describe the case of stimulus-baseline contrast where, for 669

each epoch e, a data matrix for baseline and stimulus periods is available to perform a 670

paired test. Other cases can be derived easily using standard approaches in 671

non-parametric statistics (see e.g. 4; 5). Under the null hypothesis of no difference, the 672

condition labels are exchangeable with respect to the statistic of interest f (here 673

finduced), which is the ratio of power between the two conditions 674

fj =
wT
j Cawj

wT
j Cbwj

(33)

which is defined for each of the potential columns j of the signal subspace matrix Ps. 675

The data are divided in e = 1, ..., E epochs, from which we compute empirical 676

covariances Ca(e) and Cb(e). We run O permutations, where at each iteration, a binary 677

permutation vector ω of length E is drawn. At each permutation we solve the GEP 678
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based on the permuted condition labels and compute a maximum statistic as 679

fmax = max
w

wTC∗aw

wTC∗bw
(34)

where 680

C∗a,b =
1

E

∑
e

{
Ca,b(e), if ωe = 1

Cb,a(e), if ωe = 0
(35)

and the fmax values are logged at each iteration. We then obtain a null distribution of 681

fmax (assuming exchangeability of the condition labels) against which to test the 682

observed fj ’s to obtain a permutation p-value. In this paper we use O = 600 683

permutations. 684

In the second use case b) narrowband oscillations the power ratios fj 685

(fnarrowband) will differ depending on the frequency band of interest. Due to 1/f in 686

electrophysiology power spectra, low-frequency bands have higher fj ’s than 687

high-frequency bands. To find spatial patterns pj whose relative power stands out from 688

the rest of the activity, we define an expected f̂ , as the ratio of overall power in the 689

narrow- and broad frequency bands 690

f̂ =

∑
j saj∑
j sbj

(36)

where s(a,b)j are the singular values of the narrow- and broadband cross-spectral 691

densities C(a,b) as defined in Eq 22. We use a bootstrap procedure to find the 692

dimensions j that reliably lie above this expected power ratio. A large number of 693

bootstrap samples can be obtained by sampling with replacement from the epoched data, 694

and logging the mean values over the fj(e) of each selected epoch. A confidence interval 695

based on the obtained bootstrap distribution is obtained and a dimensionality D up to 696

which the confidence interval does not contain the expected power ratio is therefore 697

defined. In Fig 6, we used a confidence interval of 99.9% to define the signal subspace. 698

Use cases c) amplitude correlation and d) coherence compute a measure of 699

temporal association between time-series. The temporal ordering between the reference 700

signal y and the data X can be scrambled under the null hypothesis of no association. 701

Thus we compute a null distribution of the respective f values by randomly assigning 702

epoched data of y(e) and X(e). At each iteration the GEP is solved resulting in a single 703

null distribution of f∗ against which to test all the observed fj . 704

Projection of the seed topography for functional connectivity analyses We 705

can project out the topographic contribution of the seed location ρs in a functional 706

connectivity analysis as shown in Fig 8. Using subspace correlation we define the 707

topography g at location ρs with orientation θ that maximizes the fit with the signal 708

subspace as 709

g = G(ρs, θ), where θ = argmax
θ

subcorr(G(ρs, θ),P
s) (37)

Then we find the orthogonal projector 710

Π⊥ = I− (ggT )/(gTg) (38)

to be applied to both the signal subspace and the leadfield matrices, so that we can 711

scan the source space as 712

subcorr(Π⊥PsΠT
⊥,Π⊥G(ρ)ΠT

⊥) (39)
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Group analysis 713

Testing the effect prevalence We have derived the dimensionality of each subject’s 714

subspace using tests described in the previous section. The subspace matrix Pi of 715

subjects i = 1, ..., N has an estimated dimensionality of D̂i. If D̂i > 0, one can claim 716

that subject i shows the effect of interest, i.e. there is a spatial dimension in which the 717

null hypothesis can be rejected. For example, the effect of interest could be that the 718

power of gamma oscillations in one spatial dimension of the subject’s sensor data is 719

stronger during presentation of a stimulus than during rest. As a first step for 720

group-level analyzes, we test if the mere presence of the effect is generalizable to the 721

population. If the effect is deemed generalizable, we run a procedure to test if there 722

exist consistent source spatial locations across the group, where the effect originates 723

from (see next section). 724

The first step requires formulating a prevalence hypothesis (see e.g. 10; 42; 43). In 725

this framework, a true effect is assumed to be present in a proportion γ of the 726

population. Hence if a subject i is randomly selected from the population 727

Di = 0 with probability 1− γ,

Di > 0 with probability γ
(40)

We then specify a prevalence null hypothesis that γ is smaller than or equal to a certain 728

proportion γ0. In order to claim that the effect is generalizable to the population, an 729

intuitive value for γ0 is 0.5, i.e. the effect would be present in the majority of the 730

population. If we observed that K out of N subjects showed an effect (D̂i > 0), we can 731

define a p-value for the likelihood of K or more out of N subjects showing an effect, if 732

the prevalence across the population is smaller than or equal to γ0: 733

p(k ≥ K|γ ≤ γ0, N) (41)

If this p-value is below a specified significance level, the effect is deemed generalizable to 734

the population. 735

A certain subject i can show an effect both if the effect is actually present (with 736

sensitivity β), or because of a false positive (at the specified α for the single-subject 737

tests). The probability to pick a subject i from the population that shows an effect, 738

assuming a population prevalence of γ, is thus 739

p(D̂i > 0|γ) = γβ + (1− γ)α (42)

The probability to pick a subject from the population that shows no effect is 740

p(D̂i = 0|γ) = γ(1− β) + (1− γ)(1− α) (43)

Thus the probability to observe K out of N subjects with an effect (see top panel) is 741

p(K|γ,N) =

(
N

K

)
(γβ + (1− γ)α)K(γ(1− β) + (1− γ)(1− α))N−K (44)

The sensitivity β is usually not known, and therefore is fixed at 1, to remain 742

conservative. Computing the p-value as in Eq 41 to test the prevalence null hypothesis 743

requires to sum over these values for K and higher and then to maximize over the range 744

of γ values covered by the null hypothesis (see middle panel) 745

p(k ≥ K|γ ≤ γ0, N) =

maxγ≤γ0 p(k ≥ K|γ,N) = p(k ≥ K|γ0, N) =
N∑

k=K

p(k|γ0, N)
(45)

PLOS 27/31

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 18, 2017. ; https://doi.org/10.1101/164731doi: bioRxiv preprint 

https://doi.org/10.1101/164731
http://creativecommons.org/licenses/by/4.0/


As discussed in (10), one can also report the largest γ0 value under which the null 746

hypothesis can be rejected at the given significance level. This can be interpreted as the 747

lower bound of a one-sided confidence interval about the true population prevalence γ, 748

which can be of interest to the research question. 749

Statistical thresholding of subcorr maps across subjects Statistical 750

thresholding of the average subcorr maps computed from each subject’s signal subspace 751

is obtained using permutation statistics, with the null hypothesis of exchangeability of 752

signal and noise subspaces with respect to the statistic of interest. This latter is the 753

average subcorr value across the group at a source location ρ. 754

subcorr(ρ) =
1

N

N∑
i=1

subcorr(G(ρ),Ps
i ) (46)

where Ps
i is the signal subspace of subject i in a group of i = 1, ..., N subjects. If signal 755

and noise subspaces are exchangeable with respect to the statistic of interest (the null 756

hypothesis), we can randomly substitute the signal subspace with a 757

dimensionality-matched noise subspace Pn
i by selecting the columns of Pi associated 758

with the smallest D values of the quality function f . We now run O permutations, 759

where at each iteration we draw a binary permutation vector ω of length N . Then we 760

compute the average subcorr value based on shuffled subspaces, where for each subject 761

we use 762

subcorr∗(ρ) =
1

N

N∑
i=1

subcorr(G(ρ),Pp
i ) where Pp

i =

{
Ps
i , if ωi = 1

Pn
i , if ωi = 0

(47)

and keep the maximum subcorr∗(ρ) over the volume at each iteration to obtain a null 763

distribution against which to test the observed subcorr(ρ) values across the volume. 764

Supporting information 765

S1 Fig. Additional contrasts and unthresholded maps for figure 5. All 766

analysis parameters are equivalent as described in the main part of the paper. 767
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