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ABSTRACT

Heritability is a fundamental parameter in genetics. Traditional estimates based
on family or twin studies can be biased due to shared environmental or non-additive
genetic variance. Alternatively, those based on genotyped or imputed variants typically
underestimate narrow-sense heritability contributed by rare or otherwise poorly-tagged
causal variants. Identical-by-descent (IBD) segments of the genome share all variants
between pairs of chromosomes except new mutations that have arisen since the last
common ancestor. Therefore, relating phenotypic similarity to degree of IBD sharing
among classically unrelated individuals is an appealing approach to estimating the near
full additive genetic variance while avoiding biases that can occur when modeling close
relatives. We applied an IBD-based approach (GREML-IBD) to estimate heritability in
unrelated individuals using phenotypic simulation with thousands of whole genome
sequences across a range of stratification, polygenicity levels, and the minor allele
frequencies of causal variants (CVs). IBD-based heritability estimates were unbiased
when using unrelated individuals, even for traits with extremely rare CVs, but
stratification led to strong biases in IBD-based heritability estimates with poor precision.
We used data on two traits in ~120,000 people from the UK Biobank to demonstrate
that, depending on the trait and possible confounding environmental effects, GREML-
IBD can be applied successfully to very large genetic datasets to infer the contribution
of very rare variants lost using other methods. However, we observed apparent biases
in this real data that were not predicted from our simulation, suggesting that more work

may be required to understand factors that influence IBD-based estimates.
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INTRODUCTION

The proportion of phenotypic variance due to additive genetic variation, termed
narrow-sense heritability (h?), is perhaps the most fundamental aspect of a trait's
genetic architecture and has both medical and evolutionary significance (Visscher et al.,
2008; Tenesa and Haley, 2013). Traditionally, h? has been estimated from family-based
studies (h®ram), Which have suggested that for many complex traits, much of the
phenotypic variance is due to additive genetic variance (Polderman et al., 2015).
However, h’ran estimates may be biased by factors shared by close relatives, such as
non-additive genetic and common environmental effects (Eaves et al., 1978; Coventry
and Keller, 2005; Yang et al., 2010; Zuk et al., 2012; Tenesa and Haley, 2013).
Alternatively, the variance explained by genetic markers in unrelated individuals, for
instance from genome-wide association studies (GWAS), may avoid many of the
possible confounding factors of family-based studies. However, the thousands of
variants associated with complex traits (Visscher et al., 2012; Ripke et al., 2014; Wood
et al., 2014) often explain only a fraction of trait heritability, with the difference often
called the “missing heritability.” This missing heritability may result from causal variants
(CVs) that are rare or otherwise poorly tagged by commercial genotyping arrays,
insufficient sample sizes to detect small effect variants that do not reach genome-wide
significance, and biases that inflate h%zau.

Recently, methods have been developed to estimate the phenotypic variance
explained by all genotyped markers simultaneously in unrelated individuals, h’sye (Yang

et al., 2010; Speed et al., 2012; Bulik-Sullivan et al., 2015). Most of these approaches
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generally use a genetic relatedness matrix (GRM) that reflects allele sharing or the

average correlation between individuals i and j across genotyped SNPs with entries:

o _ 1 om &ik—2Pr) (X jk—2Pk)
A” B mZk 2pk(1-pk) (1)

where m is the number of SNPs, xj is the genotype (coded as 0, 1, or 2) of individual j
at the kK locus, and py is the minor allele frequency (MAF) of the k™ locus. The
variance-covariance of the phenotype is

var(y) = Ac2 + Ic? (2)
where the variance explained by the SNPs (¢%,) and error variance (o%) are estimated
using restricted maximum likelihood (REML). The method, termed GREML, is
implemented in packages such as GCTA (Yang, et al., 2011). We refer to matrix A (of
dimension n x n and with elements Aj) as the “SNP-GRM.” The proportion of the
variance explained by all SNPs is an estimate of “SNP-based heritability” (h’syp = 6%, /
(6®, + 6%)). By using unrelated individuals, these approaches avoid the confounding of
non-additive genetic and environmental effects that can occur in family or twin-based
studies, and by estimating all marker effects jointly, the contribution from variants with
small effect sizes is captured. Using marker-based approaches, h?sne estimates for
some complex traits, such as height, have approached h’zay, suggesting that little of the
heritability remains missing (Yang et al., 2015). For other traits, such as BMI,
schizophrenia and neuroticism, h®zay estimates remain larger than h’syps, and a
substantial amount of the heritability remains “still missing” (Lee et al., 2012; Yang et al.,
2015).

Advances on the original approach by Yang et al. (2010) have better captured

the effects of rare CVs and account for linkage disequilibrium (LD) of markers across
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95  the genome, leading to increased h?syp estimates (Yang et al., 2015). However, even
96  with the best-performing methods such as MAF- and LD-stratified GREML (GREML-
97 LDMS) and large imputation reference panels, downward bias is likely. Imputation
98 quality declines at low MAF, resulting in a downward bias when causal variants are very
99 rare (MAF<0.0025) and for diverse populations underrepresented in sequencing panels
100  (Evans et al., 2017). The underestimation of variance due to rare CVs may partly
101 explain why h’syp remains below h?zay for many traits. Thus, developing alternative
102  methods to estimate the variation caused by very rare variants is an important goal.
103 One such alternative is to leverage information on the proportion of the genome
104  shared identical-by-descent (IBD) between pairs of individuals in a sample (Visscher et
105 al., 2006; Hayes et al., 2009; Zuk et al., 2012; Browning and Browning, 2013), and use
106 a GRM whose elements are the estimated proportions of IBD between all pairs of
107 individuals (IBD-GRM) to estimate heritability (h%sp). This is in some ways similar to
108 classical family-based estimates of heritability, which are based on the expected
109  proportion of the genome shared IBD between close relatives (Falconer and Mackay,
110  1996; Lynch and Walsh, 1998; Visscher et al., 2006). However, rather than using close
111  relatives, an appealing alternative is to estimate pairwise IBD segments directly
112 between all pairs of unrelated (or technically, distantly related) individuals in a sample
113 and use these estimated relationship values to estimate the additive genetic variation.
114 Such an IBD-based approach should capture additive genetic variation due to all but the
115 rarest variants and, so long as close relatives have been removed from the sample, the
116 IBD-based h? estimate should be uncontaminated by confounding factors shared by

117  close relatives. Note that we use “IBD” to denote two homologous chromosomal
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118 segments that came from the same common ancestor without intervening

119 recombination, such that the sequence identity of the two segments is identical except
120  at sites where new mutations arose since the last common ancestor. The probability

121  that such mutations arose is a function of the time since the last common ancestor, and
122  therefore a function of the length of the shared IBD segment (Wakeley, 2009). Very long
123  segments are therefore more likely to be identical at all sequence sites, whereas shorter
124  ones are more likely to have occasional differences at sites harboring typically very rare
125  variants. Thus, IBD-GRMs calculated from increasingly long IBD thresholds should

126  capture sharing at increasingly rare CVs.

127 Such IBD-based GRMs have been used in several instances to estimate

128  heritability. Price et al. (2011) and Zaitlen et al. (2013) used IBD segments in an

129 Icelandic dataset with close relatives to estimate heritability in quantitative and disease
130 traits, leveraging the known familial relationships within the Icelandic cohort to identify
131 IBD segments. While they demonstrated that IBD could be used for heritability

132 estimation, using close relatives leads to possible confounding of shared environmental
133 or non-additive genetic effects, as noted above. Indeed, Zaitlen et al. (2013) found

134 higher heritability estimates using closer relatives, consistent with confounding from

135 non-additive genetic and/or shared environment effects. Using simulated data, Zuk et al.
136  (2012) demonstrated that the slope estimated from regressing phenotypic similarity

137  (defined as the standardized phenotypic product of individuals i and j, Z; x Z;) on the

138 IBD-GRM elements from long IBD segments—known as Haseman-Elston (H-E)

139  regression—provides an unbiased estimate of the additive genetic variance in isolated

140  founder populations. Browning and Browning (2013) estimated IBD tracts in a Finnish
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141  cohort of 5,400 individuals, and used the resulting IBD GRM in both H-E regression and
142 GREML to estimate h?sp for nine quantitative metabolic traits. h%sp was higher than

143 h%snp for only five of the nine traits, and never significantly so. The most notable result of
144  their study was the over two-fold higher standard errors for h®p (~0.17) compared to
145 h%snp (~0.07), due to the lower variation in the off-diagonal elements of the IBD-GRM
146  compared to the SNP-GRM, suggesting that very large sample sizes will be required to
147  obtain meaningful results in non-founder populations.

148 Several important questions about IBD-based heritability estimation remain in
149 light of these findings. First, can an IBD-based approach account for very rare CVs?
150  Previous studies (e.g., Browning and Browning, 2013) have simulated CVs from SNPs
151  present on genotyping arrays, which are more common, have generally higher LD than
152  most variants throughout the genome, and are shared across ancestry groups, and

153 therefore do not provide an accurate picture of how h? estimation methods perform

154 when CVs do not share these same properties. Thus, it is unclear whether h?p

155 estimates are unbiased estimates of h? in the presence of rare CVs. Second, the

156  studies mentioned above utilized isolated founder populations that were both more

157 homogeneous and more related than non-founder populations. To what extent does
158  genetic stratification bias h?sp, and how feasible are such IBD-based method in

159 samples from non-founder populations, which are much more readily available?

160 To address these questions, we used thousands of recently sequenced whole
161 genomes from the Haplotype Reference Consortium (McCarthy et al., 2016) to simulate
162  phenotypes under a range of conditions, including various genetic architectures and

163 levels of stratification, then estimated narrow-sense heritability (h®zp) using the an IBD-
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164  GRM, either alone or in combination with various SNP-based GRMs. By simulating CVs
165 from whole genome sequences rather than commercial array SNPs, our study was able
166  to examine the role of all but the rarest frequency classes of CVs in the genome under
167  realistic genomic conditions. We then estimated h?sp for height and BMI in the UK

168  Biobank with over 120,000 individuals.

169

170 MATERIALS AND METHODS

171  Samples and Population Structure

172 We tested the h?p estimation method using simulated phenotypes derived from
173  Haplotype Reference Consortium (HRC) whole genome sequence data (McCarthy et
174  al., 2016). Full details of the HRC can be found in McCarthy et al. (2016). Briefly, this
175  resource comprises roughly 32,500 individual whole genome sequences from multiple
176  sequencing studies, with phased genotypes with a minor allele count of at least 5 at all
177  sites. This large sequence dataset allowed us to simulate CVs across all MAF classes
178  down to ~.0003 with real patterns of LD (within and among chromosomes). It also

179  allowed us to simulate SNP markers available on existing commercial genotyping arrays
180 in order to mimic the process of IBD detection in SNP data. We obtained permission to
181 access the following HRC cohorts (recruitment region & sample size): AMD (Europe &
182  worldwide; 3,189), BIPOLAR (European ancestry; 2,487), GECCO (European ancestry;
183  1,112), GOT2D (Europe, 2,709), HUNT (Norway; 1,023), SARDINIA (Sardinia; 3,445),
184  TWINS (Minnesota; 1,325), 1000 Genomes (worldwide; 2,495), UK10K (UK; 3,715)

185 (see (McCarthy et al., 2016) for additional details of the HRC). This set of cohorts, which

186 included isolated subpopulations of European descent, allowed investigation into the
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187  effects of stratification on estimates. The subset totaled 21,500 whole genome

188  sequences comprising 38,913,048 biallelic SNPs. This is the same set of individuals
189  and simulated phenotypes used in Evans et al. (2017) to compare SNP-based

190 heritability methods. Below, we briefly describe our approach.

191 Our goal was to assess the accuracy and potential bias of the h?zp estimation
192 method using data similar to those collected for a typical GWAS analysis and h’sye

193  estimation. In order to mimic this kind of data, we first extracted variant positions

194  corresponding to a widely-used commercially available genotyping array, the UK

195 Biobank Affymetrix Axiom array. We then identified individuals of primarily European
196  ancestry, using principal components analysis with 133,603 MAF- and LD-pruned

197  markers (plink2 (Chang et al., 2015) command: --maf 0.05 --indep-pairwise 1000 400
198 0.2) to identify a grouping associated with the 1000 Genomes European individuals in
199 the HRC. This dataset comprised 19,478 individuals including Finnish and Sardinian
200 samples (Fig. S1).

201 From within this European ancestry dataset, we identified clusters that contained
202  different levels of genetic heterogeneity within them (Fig. S2). The most structured

203  group contained all samples (N=19,478). The somewhat structured group excluded

204  Sardinian and Finnish samples (N=14,424). The low structure group contained

205  northern/western European samples (N=11,243), and the least structured was a subset
206  of mainly British Isles samples (N=8,506). We used GCTA (Yang, et al., 2011) with LD-
207 and MAF-pruned SNPs to estimate relatedness and remove the minimal number of
208 individuals from pairs with relatedness > 0.1 within each of the four samples. In the most

209  homogeneous and smallest sample with no genetic structure, this left 8,201 individuals.

10
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210 In order to eliminate the influence of varying sample size in our comparison across the
211  range of stratification, we randomly chose 8,201 of the unrelated individuals from within
212 each of the other three stratification subsamples. We similarly tested a lower

213 relatedness cutoff of 0.05 within each group (leaving 7,792; 8,115; 8,129; and 8,186

214 individuals for the four subsamples), and used both subsets later to examine how a 0.1
215  or 0.05 relatedness cutoff influences h?sp estimates.

216

217  Simulated Phenotypes Using Whole Genome Sequencing Data

218 To test how h?zp estimation our method performed on a range of genetic

219  architectures, we simulated phenotypes from CVs drawn randomly from five MAF

220  ranges: common (MAF>0.05), uncommon (0.01<MAF<0.05), rare (0.0025<MAF<0.01),
221  very rare (0.0003<MAF<0.0025), and all variants randomly drawn with MAF>0.0003.
222 Phenotypes were generated with 1,000 or 10,000 CVs from the model y; = g; + e;, where
223 gi=>Xwipk Wi is the genotype (coded as 0, 1, or 2) of individual i at the kK" CV, and S«
224 s the K" allelic effect size, drawn from ~N(0,1/[2px(1-px)]), Where px is the MAF of allele
225  k within each of the four samples, which assumes larger additive effects for rarer

226 variants. The g;'s were standardized and residual error was added as ~N(O,(1- h?)/h?) for
227  asimulated h? of 0.5. A total of 400 replications were performed for each CV MAF range
228  and for each of the four stratification subsets.

229

230  Mixed Models for Heritability Estimation

231 We estimated heritability for each simulation using GCTA (Yang, Lee, et al.,

232 2011). We tested different models to assess our IBD-based GREML method (GREML-

11
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233 IBD). First, we used the single IBD-GRM with GREML to estimate h?sp. Second, to

234  partition the genetic variance into that tagged by common SNPs and that tagged by
235  haplotype sharing, presumably from rarer CVs, we used a two GRM model (GREML-
236  IBD+SNPs) with the IBD-GRM (h?sp) and a common SNP-GRM derived from Axiom
237  array positions with MAF>0.01 (h®snp). Last, we estimated genetic variances due to LD-
238  and MAF-stratified imputed variant SNP-GRMSs (hsye) as well as the IBD-GRM (h?zp)
239 as a comparison to the GREML-LDMS method, which we term GREML-IBD+LDMS.
240  From previous work, we knew that GREML-LDMS underestimates variance attributable
241  to the rarest CVs when using imputed data. We therefore wished to determine if the
242  IBD-GRM could capture that missing heritability. To do this, we estimated 16 SNP-

243  GRMs stratified into the above 4 MAF categories and 4 LD score quartiles using

244  imputed genome-wide variants, and included these plus the IBD GRM in the model (17
245  GRMs total). To determine if the IBD-GRM captured the genetic variance due to the
246 rarest CVs, we also tested a model with 12 SNP-GRMSs, removing the rarest MAF

247  category described above, for a total of 13 GRMs in the analysis (three MAF categories
248  Xfour LD score quartiles + 1 IBD-GRM). To impute, we first phased SNP data using
249  SHAPEIT2 (Delaneau et al., 2013), imputed using minimac3 (Das et al., 2016), and
250  retained variants with imputation R%>0.3 (Yang et al., 2015). We used the HRC

251 sequence data as our imputation reference panel after removing all target (8201

252  unrelated + relatives) individuals in the HRC reference panel, thereby assuring

253  ~independence (no relatedness) between the target and reference panels. Additional
254  details of the imputation procedure can be found in Evans et al. (2017). We estimated

255 LD scores for the LD stratification using GCTA. In all cases we used the —reml-no-

12
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256  constrain option of GCTA, and included 20 principal components (PCs; 10 from

257  worldwide PC analysis and 10 from the specific subsample PC analysis) as continuous
258  covariates, with sequencing cohort as a categorical covariate.

259

260  Estimating IBD-GRMs

261 To mimic computationally phased SNP data with realistic phase errors, we first
262  un-phased the sequence data for each data subset and then re-phased the Axiom array
263  positions using SHAPEIT2 (Delaneau et al., 2013). We then used FISHR2 (Bjelland et
264  al., 2017) to identify shared haplotype segments that are putatively IBD across all pairs
265  of individuals within each of our four structure samples. FISHR2 first uses a modified
266  version of GERMLINE (Gusev et al., 2009) to find candidate IBD segments. It then

267 improves the accuracy of the segment endpoints by comparing an observed moving
268 average of haplotype mismatches (potential phase or SNP call errors) for a given

269 candidate IBD segment to (a) the distribution of haplotype mismatches in segments that
270  are almost certainly IBD (the middlemost sections of very long IBD segments) and (b)
271  the distribution of haplotype mismatches in segments that are almost certainly non-IBD
272  (between random pairs of individuals at matched locations). FISHR2 truncates

273  candidate segments when this moving average becomes more consistent with non-IBD
274  than IBD. FISHRZ2 is more accurate than leading competitors at detecting long (> 3 cM)
275 IBD segments and is the only software that gives unbiased estimates of the true length
276  of IBD segments. The parameters we used for FISHR2 were stringent (command line -
277  err_hom 4 -err_het 1 —min_snp 128 —min_cm_initial 1 —min_cm_final 1 —window 50 —

278 gap 100 -h_extend -w_extend —homoz -emp-ma-threshold 0.06 -emp-pie-threshold

13
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279  0.015 -count.gap.errors TRUE), chosen to minimize false positive IBD detection

280 (Bjelland et al., 2017). We used an initial length threshold of 1 cM, but because longer
281 IBD segments are more likely to share rare variants, we also identified segments of
282 length greater than 2, 3, 4, 6, 9, and 12 cM. The FISHR2 parameters we used should
283  lead to consistently low false positive rates (<.05) at all threshold lengths, and should
284  lead to a sensitivity that increases as a function of the length of the true IBD segments,
285  and should be >.90 for IBD segments >3cM (Bjelland et al., 2017). To reduce the

286 influence of low recombination regions artificially extending segments (e.g., due to one
287  or a few matching IBS SNPs that are far from the termini of true IBD segments), we
288  windsorized genetic map positions by setting the maximum distance between adjacent
289  markers to 0.2 cM, and used an initial 1 cM minimum IBD segment length threshold.
290 We then summed the length in Mb of all segments shared between each pair of
291 individuals and divided by twice the length of the genome. This IBD-GRM then

292  represents the estimated proportion of the genome, Dj;, shared IBD between individuals
293  iandjin the sample, similar to the A; elements of the SNP-GRM. We created IBD-

294  GRMs for each minimum segment cM length threshold. As recombination rate varies
295  throughout the genome, in two of the subsamples we also tested whether an IBD-GRM
296 based on the summed cM length of segments influences heritability estimates.

297

298  Stratification Effects

299 We performed four additional analyses to further determine the influence of

300 stratification on h?gp estimates. First, to test whether bias observed in stratified samples

301 was due to inadequate control of structure, we ran K-means clustering on the somewhat
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stratified subsample for K=2 clusters, then ran PC analysis within each of the two
clusters. We included the first 35 PCs within each cluster, for a total of 90 PCs (the
original 20 plus 35 from each cluster). Because PC analysis was run within each cluster
separately, we set the PC scores for the alternate cluster to 0 (the mean).

Second, we tested, within the stratified subsample, whether including 10
additional PCs from very rare variants could correct for the upward bias (Mathieson and
McVean, 2012). We used 150,000 randomly selected very rare SNPs from the WGS
data and pruned for LD (plink2 command: --indep-pairwise 1000 400 0.2), leaving
129,710 variants for the PCA. As a comparison, we also estimated heritability with no
covariates included.

Third, we estimated h?sp for phenotypes in which all CVs were drawn from odd
chromosomes using IBD-GRMs estimated only from the even chromosomes. The
presence of uncontrolled cryptic relatedness or population structure can lead to cross-
chromosome LD that inflates h? estimates (Yang et al., 2011). We estimated the
correlation of off-diagonal GRM elements between the IBD-GRMs from even
chromosomes and those from odd chromosomes. We also examined the correlation
between the off-diagonal elements from IBD-GRMs and the off-diagonal elements from
GRMs built from very rare (0.0003<MAF<0.0025) and common (MAF>0.05) sequence
variants. This tested whether correlations between even and odd chromosome IBD-
GRMs were stronger in more stratified subsamples, and whether the correlation with
very rare variants was stronger with increasing minimum cM length of the IBD-GRM.

Last, simultaneously fitting GRMs derived from each chromosome protects

against cross chromosome correlations induced by stratification or cryptic relatedness
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325 because the estimates of variance explained by one GRM are conditional on the other
326 GRMs (Yang et al., 2011). However, because the variances of the off-diagonal

327 elements in the IBD-GRMs were so small, models with 22 IBD-GRMs would not

328 converge. Instead, we tested a two GRM model with one IBD-GRM estimated from the
329  odd numbered chromosomes and a second from the even numbered chromosomes,
330  which should partially address the effects of long-range LD (Speed et al., 2012).

331

332 Heritability of Complex Traits in the UK Biobank

333 We applied the IBD-based approaches to height and body mass index (BMI) data
334 in the UK Biobank, a very large resource of ~500K adults from the UK, genotyped using
335 the Affymetrix Axiom array (Sudlow et al., 2015). The current release includes ~150K
336  genotyped individuals, imputed using the combined UK10K/1000 Genomes reference
337 panels. We used this resource previously, and full details on quality control can be

338 found in Evans et al. (2017). We identified putative IBD segments as described above
339 using FISHR2 and then calculating IBD-GRMs with minimum cM thresholds of 2, 3, 4, 6,
340 9, and 12cM. We applied a relatedness cutoff of 0.05, and used individuals of European
341 ancestry, resulting in a final sample size of ~120K individuals included in the analysis
342 (Fig. S2). We used GCTA to estimate variance components and included sex, UK

343  Biobank assessment centre, genotype measurement batch, and qualification (highest
344 level of educational attainment) as categorical covariates, and the Townsend

345 deprivation index, age at assessment, age at assessment squared, and the 15 PC

346 scores from the UK Biobank as quantitative covariates. We compared these models

347  using Akaike information criterion with sample size correction (AICc) (Burnham and
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348 Anderson, 2002), and used this to determine if additional information was added by
349 using an IBD-GRM.

350

351 RESULTS

352  Simulated Phenotypes — GREML-IBD

353 Using a single IBD-GRM, h?sp estimates varied greatly depending on the MAF
354 range of the CVs in simulated phenotypes and the amount of stratification in the

355  subsample (Fig. 1). In the two more homogeneous subsamples, h?gp increased then
356  stabilized with increasing IBD segment length threshold. The 95% CI overlapped the
357  true heritability (0.5) for all IBD thresholds > 4 cM and for all CV MAF classes,

358  suggesting that GREML-IBD produces unbiased estimates of h? in relatively

359  homogeneous samples. For phenotypes simulated from common CVs, unbiased

360 estimates of h?sp were also obtained using shorter cM thresholds. Results were similar
361 for different relatedness thresholds (Figs S3 & S4) and for larger numbers of CVs (Fig.
362  S5), although h?sp appeared to be biased upwards in phenotypes with 10,000 common
363 CVs and long IBD length thresholds in the low stratification subsample (Fig. S5).

364 In the two most stratified samples, we observed upward biases at long cM IBD
365 thresholds, particularly for the rarest CVs (h%sp > 1). This bias remained when using
366  higher or lower relatedness thresholds (Figs. S3-4), and with 10,000 CVs (Fig S5).
367  Controlling for 70 additional PCs or with additional PCs from very rare variants did not
368 correct for the upward bias in very rare CV phenotypes, though inclusion of PCs did
369 correct for bias in common CV phenotypes (Fig. S6). Furthermore, this bias was not

370  mitigated by summing genetic length (cM) of IBD segments for calculating the GRM
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371 rather than physical length (Fig. S7) nor when using a two-GRM model, with one IBD-
372  GRM calculated from even-numbered chromosomes and the second from odd-

373  numbered chromosomes (Fig. S8-S9). Fitting a larger number of IBD-GRMs (e.g., one
374  per chromosome) would better capture all the long-range correlations and might better
375  mitigate the bias, but this approach is impractical for GREML-IBD in real data because
376  the low variance of Dj; creates estimation problems. Thus, stratification has strong

377 impacts on GREML-IBD estimates of heritability that we were unable to control for.

378 To explore why stratification had such strong influences on h?sp, we first

379 examined the correlations of off-diagonal GRM elements between the odd chromosome
380 GRMs and even chromosome GRMs. Stratification clearly led to stronger long-range
381 correlations, as did, in most subsamples, longer IBD thresholds for the GRM (Fig. S10).
382 In the two least stratified subsamples, the correlation of even chromosome IBD-GRMs
383  with odd chromosome WGS SNP-GRMs, estimated from either common or very rare
384  WGS variants, was weak, and did not change drastically with increasing cM thresholds.
385  There were stronger correlations overall in the two most stratified subsamples,

386 especially between even chromosome IBD-GRMs and odd chromosome GRMs built
387 from either IBD segments or from very rare WGS variants. Thus, stratification induced
388 long-range correlations, such that D; for a pair of individuals at one chromosome

389  predicted rare variant sharing at other chromosomes, which can presumably lead to
390  over-estimation of h?sp due to rare CVs being redundantly tagged by IBD sharing.

391 In simulations with odd chromosome CVs and IBD-GRMs calculated from even
392 chromosomes only, we observed upward biases in h?sp estimates for long IBD

393 thresholds that were particularly severe in stratified samples with rare odd-chromosome
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394  CVs (Fig. S11). This pattern of results was similar to the pattern observed in our primary
395  simulations (Fig. 1), consistent with the explanation that the upward biases in h?sp for
396 rare CVs we observed at long IBD thresholds was due to long-range, redundant tagging
397  of CVs in stratified samples. Note that the simulated h? for the even chromosomes was
398 0. Because there is more recent common ancestry within than between subpopulations,
399 there is more sharing of long IBD segments—and importantly more sharing of rare

400 (recently arisen) causal variants. Consequently, due to stratification, long, shared IBD
401 segments at one genomic location weakly predict not only sharing of long IBD

402 segments, but also sharing of rare variants and shorter IBD segments, at other genomic
403 locations. This redundant tagging of rare causal variants across the genome in stratified
404  samples presumably leads to inflated h?sp estimates. The same phenomenon has been
405  described h’syp in the context of stratification (Yang et al., 2011; Speed et al., 2012),
406  although the bias is less extreme and, because the variance of A; elements is much

407  greater than the variance of D, is more easily alleviated by fitting multiple GRM models.
408

409  Simulated Phenotypes — GREML-SNPs+IBD

410 The second model we tested was GREML-SNPs+IBD, which included a common
411  SNP-GRM and the IBD-GRM. For phenotypes with 1,000 or 10,000 CVs, the total

412 heritability (h%sp+h?sne=h*1or) Was unbiased in the two least stratified subsamples

413  regardless of the CV MAF range (Fig. S12, S13). However, h’r was again

414  increasingly over-estimated in the two most stratified samples for very rare CV

415 phenotypes. As expected, partitioning the variance to each of the GRMs, GREML-

416  SNPs+IBD attributed more of the phenotypic variance to the common SNP-GRM when
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417  the CVs were common, and more of the variance to the IBD-GRM when the CVs were
418 rarer (Figs. S14-S15). For common CV phenotypes, the variance attributable to the
419  common SNP-GRM was overestimated by ~20%, which is consistent with previous
420  findings for a common SNP-GRM based on the Axiom array positions and occurs

421  because CVs in the common bin have higher average MAF than the SNPs on the

422  Axiom array (Evans et al., 2017). Interestingly, this overestimate was balanced by a
423  negative variance estimate attributed to the IBD-GRM, such that the total estimated
424  heritability was unbiased at ~0.5 (Figs. S12-S15). Nevertheless, h®sp continued to be
425  overestimated for very rare CV phenotypes in structured samples.

426

427  Simulated Phenotypes — GREML-LDMS+IBD

428 Our third model included 16 imputed variant GRMs that were MAF- and LD-
429  stratified, and the IBD-GRM. We found that across subsamples, GREML-LDMS+IBD
430  produced unbiased h’row estimates with either 1,000 CVs or 10,000 CVs across all CV
431  MAF ranges (Figs. S16-S17). Partitioning the variance among GRMs revealed that for
432  the rare and very rare CV phenotypes, the IBD-GRM explained a small amount of the
433  variance, but was near-zero otherwise (Figs. S18-S19).

434 When we excluded the rarest MAF bin from the model, leaving 12 imputed

435  variant GRMs plus the IBD-GRM, GREML-LDMS+IBD produced unbiased h?roza

436  estimates with either 1,000 CVs or 10,000 CVs across all CV MAF ranges in

437  subsamples with little or no stratification (Figs. 2, S20). However, with increased

438  stratification, h’r estimates were again overestimated for very rare CV phenotypes in

439  the context of stratification. Partitioning the variance into that attributable to the LDMS
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440 imputed-variant GRMs and the IBD-GRM showed that, in unstratified samples, most of
441  the genetic variance was attributable to the LDMS GRMs for CV MAF ranges > 0.0025
442  while the IBD-GRM captured the genetic variance for very rare CV MAF ranges

443  (0.0003-0.0025) (Figs. 3, S21). While the variance attributed to the LDMS GRMs was
444  never overestimated, that attributed to the IBD-GRMs at longer IBD thresholds was

445  overestimated, resulting in total heritability estimates > 1 for the rarest CV phenotypes in
446  the presence of stratification.

447

448  Real Phenotypes from the UK Biobank

449 Using GREML-IBD, h?sp for height (but not for BMI) increased with longer

450  minimum shared haplotype length, did not stabilize at longer segment thresholds, and
451 appeared upwardly biased, similar to what we observed in stratified samples in our

452  simulations (Fig. 4a, Table S1). The 95% Cls increased with longer minimum IBD

453  length, as expected given the lower variance in D; at longer segment thresholds. For
454  comparison, h’sye estimates from approaches using only SNPs are also presented in
455  Table S1.

456 Using either GREML-SNPs+IBD or GREML-LDMS+IBD, we found similar

457  patterns of increasing h?sp estimates with longer minimum IBD length for height, but the
458  pattern was less extreme, and 95% Cls were generally smaller (Fig. 4b, Table S1).

459  Results for GREML-LDMS+IBD either including the rarest MAF category or excluding it
460  were similar: height h?gp estimates increased from 0.75 to 1.1 across the range of

461  minimum IBD lengths we examined. This increase in h%sp was due to increasing

462  estimates of variance attributable to the IBD-GRM rather than to the imputed variant
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463  SNP-GRMs (Fig. S22, Table S1). BMI h?sp estimates were again ~0.2-0.3, though at
464  longer minimum IBD length thresholds the standard errors were large, and the 95% CI
465 overlapped 0 (Table S1).

466 Interestingly, inclusion of the IBD-GRM in addition to the SNP-GRM or LDMS-
467 GRMs often improved model fit and resulted in a lower AICc (Table S1). Often the

468 lowest AlICc was found with shorter IBD minimum length thresholds. For instance, for
469  height, the minimum AICc was found when using all LD- and MAF-stratified imputed
470  variant GRMs and the IBD-GRM with a 3cM minimum IBD length threshold (Table S1),
471  while AlCc increased with longer length thresholds. Thus, while increasing the minimum
472  length threshold led to unreasonable and uninterpretable total heritability estimates, at
473  shorter IBD length thresholds, the inclusion of the IBD-GRM was preferred. This

474  indicates that some additional variance remains to be explained over using only

475  imputed-variant GREML-LDMS and that inclusion of the IBD-GRM led to models that
476  Dbetter explained the observed phenotypic similarity, perhaps reflecting the effect of CVs
477  that are not well captured by imputed variants.

478

479 DISCUSSION

480 We present here the most thorough assessment to-date of an IBD-based

481 heritability estimation approach. The interest in using IBD information in classically

482  unrelated samples to estimate heritability arises from the potential to estimate the full
483  narrow-sense heritability without the confounding of effects shared within families that
484  can bias estimates when close relatives are used, and without the downward bias in

485  estimation when CVs are rare or poorly tagged by SNPs. We demonstrated that
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486  GREML-IBD can produce unbiased heritability estimates in realistic whole-genome SNP
487  data so long as there is little genetic stratification in the sample. Moreover, although we
488  showed only marginal improvement, at best, over imputed variant-based approaches,
489  IBD-based approaches should do increasingly better than ones based on imputed SNPs
490 in estimating heritability if CVs are even rarer (MAF < .0003) than we could simulate

491  here. That said, no estimation based on genomic sharing can capture variation due to
492  CVs that occur only once in the sample.

493 While IBD-based approaches are appealing in principle, our study highlights two
494  important drawbacks. First, stratification can bias heritability estimates upward,

495  depending on the allele frequencies of CVs. The effect of stratification is strong when
496 CVs are very rare, and is not controlled by inclusion of a large number of PC covariates,
497  the typical approach to controlling such effects (Price et al., 2010), or even PCs derived
498  from very rare variants (Mathieson and McVean, 2012). Similar overestimates have

499  been observed in a related method that used sharing at predefined, segregating

500 haplotypes (Bhatia et al., 2016). Overestimates appear to stem from redundant tagging
501 by long IBD segments of very rare CVs as well as shorter IBD segments, particularly in
502 stratified samples. Previous studies using IBD-based approaches (Zuk et al., 2012;

503  Browning and Browning, 2013) used isolated, homogeneous populations, which should
504  mitigate this source of bias. Our simulation results suggest somewhat less homogenous
505 samples, such as those of general northern/western European ancestry, can be used to
506  derive unbiased heritability estimates so long as there are no additional confounding

507 factors.
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508 Second, the standard error (SE) of the h?p estimate is large due to the very low
509 variance in IBD sharing among unrelated individuals in large, non-founder populations.
510  For example, for height in the UK Biobank when using GREML-LDMS+IBD, total

511  heritability SE=0.053 for minimum IBD lengths = 6¢M, largely due to the IBD-GRM

512  variance component SE. However, using just the imputed variant GREML-LDMS

513 approach SE=0.015. Thus, while the GREML-LDMS+IBD may have accounted for more
514  of the genetic variance, it did so with substantially lower precision. Very large sample
515 sizes will be required to reach high levels of precision. Taken together, it is not clear
516  whether the increased variance explained, arising from capturing rare CVs with IBD-
517 based GRMs, outweighs the very large increase in standard errors and the increased
518 potential for bias due to stratification or other factors we did not model here.

519

520  Heritability of Real Complex Traits

521 Our results from real UK Biobank data for height demonstrate the potential for
522  additional biases of an IBD-based approach that were not captured in our simulation.
523  The estimates of total heritability for height increased with minimum IBD cM length, and
524  were much greater than other reported estimates (e.g., Yang et al., 2015; Evans et al.,
525  2017). This was unexpected given that the UK Biobank sample was similar to simulated
526  data with respect to stratification. It is possible that the CVs, particularly rare CVs,

527  underlying height are more geographically stratified than those that influence BMI.

528 Indeed, evidence suggests that across Europe, genetic variance in height is more

529  geographically structured than BMI, though both traits are more genetically structured

530 than a neutral, drift-only model (Robinson et al., 2015). However, environmental
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531 variation in BMI across Europe appears to be stronger than genetic differentiation

532 (Robinson et al., 2015). Thus, for height, neutral structure (shared long IBD segments)
533  may covary with geographical variation in the CVs themselves, and lead to inflation of
534 h%gp. While consistent with our observed likely upward bias in height h%sp but not BMI
535  h%gp, we cannot be certain that divergent selection is driving these patterns.

536 Vertically-transmitted non-genetic effects, shared common environmental effects,
537  and assortative mating may also confound estimates of h%p. Estimates of h’zay using
538 close relatives can be altered by these factors (Eaves et al., 1978; Martin et al., 1978;
539  Coventry and Keller, 2005; Zuk et al., 2012). It is currently unknown how GREML-based
540 estimates, and IBD-based approaches in particular, are affected by assortative mating.
541 Common environmental effects, which can induce similarity across highly extended

542  pedigrees, would be confounded with IBD sharing, and are therefore a potential source
543  of bias in IBD-based estimates. Such extended pedigree environmental similarity would
544  be difficult to simulate using our simulation method, and so we did not explore how such
545  an effect might bias h?sp. Our results in the UK Biobank data suggest that our

546  assumption that removing close relatives (relatedness < 0.05) would mitigate shared
547  environment confounding may require further investigation. The use of lower

548 relatedness thresholds may alleviate the problem, but lower relatedness thresholds

549  decrease the sample size and variance of IBD sharing and therefore further exacerbate
550 the already high standard errors of these estimates. Rare variants are more differentially
551  confounded by stratification than common variants, and typical approaches using PCA
552 may not fully correct for such confounding (Mathieson and McVean, 2012). Extremely

553 rare SNPs, as with long IBD segments, will co-segregate along extended pedigrees,
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554  and future work must focus on the role of confounding between familial and

555  environmental effects and rare variants or long IBD segments.

556 While we cannot conclude with certainty which factors led to the apparent bias in
557  height h%sp, estimates of hsp for BMI were more stable and also in line with previous
558  reports. They suggest that BMI h? is roughly 0.25-0.3, with up to 5% of the total

559  phenotypic variance due to very rare or otherwise poorly-imputed variants that are

560 captured by the IBD-GRM (see Table S1). As estimates from classical twin design

561  studies range from 0.4-0.8, this suggests that much of the family-based estimates are
562  due to shared environment, assortative mating, or non-additive genetic variance,

563  supported by extended twin design variance estimates (Coventry and Keller, 2005;

564  Keller and Coventry, 2005). This also suggests that little unexplained variance remains
565 for BMI, as estimates of BMI h®syp from recent studies range from 0.21 (Locke et al.,
566 2015) to 0.27 (Yang et al., 2015).

567 Our findings may also offer context to the observed heritability estimates reported
568 by several other studies that used haplotype-based approaches. Browning and

569  Browning (2013) reported h%gp for BMI of 0, with standard error of 0.16 (height was not
570  measured), although their upper 95% Cl estimate is not inconsistent with a true h? of
571  0.25-0.3. This low estimate may simply be due to sampling variance, arising from the
572 small number of individuals (5,402) in the Finnish sample they used. Zaitlen et al.

573 (2013) used IBD among close relatives to derive estimates of h%zp of 0.69 for height
574 and 0.42 for BMI. As discussed by the authors, these estimates may be upwardly

575  biased due to common environmental and non-additive genetic effects.

576
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Conclusions

Identical-by-descent haplotypes in common between a pair of chromosomes
capture sharing at all variants that existed along their length in the last common
ancestor. The ability to estimate such IBD segments using SNP data means that there
is potential to estimate narrow-sense heritability of traits in a way that should be
unbiased by factors that bias SNP or family-based estimates. We conclude that IBD-
based estimates can be used to obtain estimates of the near full narrow-sense
heritability. However, IBD-based estimates are imprecise and very sensitive to
stratification. Moreover, when we estimated h?sp in real data, we observed unexpected
biases that appeared similar to those that we had observed in more stratified samples in
our simulation, which suggests that there are biases in real data that we were not able
to adequately capture in our simulation. Taken together, these factors diminish the
appeal of IBD-based approaches for estimating heritability, especially when compared
to approaches that use imputed variants, such as GREML-LDMS. Nevertheless, until
whole genome sequence data is feasible for the large sample sizes required for h?
estimation from genotype data, IBD-based estimates may be able to capture the rarest
CVs better than imputation. In particular, though larger and more diverse reference
panels are becoming available, isolated populations may not be well-represented. IBD-
based approaches offer a method to capture rare genome-wide variants not
represented in imputation reference panels, and these isolated, homogeneous
populations may also be the most advantageous for IBD-based heritability estimation

due to the larger variance in IBD sharing.
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759  Figure 1. GREML-SC using an IBD-GRM. h?sp estimates (mean + 95% Cl from 400
760  replicates). X axis indicates the IBD shared haplotype length threshold for the IBD-
761  GRM. Phenotypes with 1,000 CVs randomly drawn from the MAF range specified in
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762  each panel. Different colors indicate degree of stratification in the sample. Relatedness
763  cutoff of 0.05 used.
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765  Figure 2. GREML-LDMS+IBD model. This model had 13 components, 12 LD & MAF-

766  stratified GRMs using imputed genome-wide variants, and one GRM from IBD shared

767  haplotypes. Total h? estimates are shown (mean * 95% CI from 400 replicates). X axis
768 indicates the different IBD shared haplotype length thresholds for the IBD-GRM.

769  Phenotypes with 1,000 CVs randomly drawn from the MAF range specified in each
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panel. Different colors indicate degree of stratification in the sample. Relatedness cutoff

of 0.05 used.
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Figure 3. GREML-LDMS+IBD. This model had 13 components, 12 LD & MAF-stratified
GRMs using imputed genome-wide variants, and one GRM from IBD shared
haplotypes. Separate h? estimates for each component are given by the symbols (mean
1 95% CI from 400 replicates). Note that the “Imputed LDMS” symbol represents the
sum of the imputed LDMS GRM variance estimates. X axis indicates the different IBD
shared haplotype length thresholds for the IBD-GRM. Phenotypes with 1,000 CVs
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779  randomly drawn from the MAF range specified in each panel. Different colors indicate
780  degree of stratification in the sample. Relatedness cutoff of 0.05 used.
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781
782  Figure 4. Total heritability estimates for three continuous traits in the UK Biobank. (a)
783  GREML-IBD, which had a single IBD-GRM. (b) GREML-LDMS+IBD for three
784  continuous traits in the UK Biobank. This model had 13 components, 12 LD & MAF-
785  stratified GRMs using imputed genome-wide variants, and one GRM from IBD shared
786  haplotypes. Total h? estimates are shown (+ 95% CI). X axis indicates the different IBD
787  shared haplotype length thresholds for the IBD-GRM. Relatedness cutoff of 0.05 used.
788
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