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The question of whether familiarity and recollection independently contribute to recognition
has been an issue of contention for decades. A related question is whether these signals can
each lead to recognition (enabling two routes to recognition) or whether the memory system
integrates all available evidence. To distinguish between single and dual-route accounts of
recognition memory, we quantified neural evidence for recognition decisions as a function of
time, using multivariate classifiers trained on spectral EEG features. Classifiers trained on a
small portion of the decision period performed similarly to those also incorporating informa-
tion from previous time points indicating that neural activity reflects an integrated evidence
signal. These results, along with a strong correspondence between classifier outputs and task
performance, firmly link recognition decisions to other types of decisions under uncertainty,
which are commonly assumed to rely on a unitary evidence signal differentiating between the
response options.

A repeated exposure to people or objects sometimes
evokes only a vague sense of familiarity; at others, it elic-
its vivid recollections of contextual details from previous en-
counters. This distinction is formalized in dual-process mod-
els of recognition memory that posit two independent types
of evidence subserving recognition decisions (with recollec-
tion commonly, but not always, conceptualized as a thresh-
old process) (Diana, Reder, Arndt, & Park, 2006; Yoneli-
nas, 2002; Yonelinas, Aly, Wang, & Koen, 2010; Malmberg,
2008). In apparent support of these models, neuroscientific
studies of recognition memory have identified patterns of
brain activity with distinct time courses thought to reflect an
early familiarity signal (peaking around 400 ms after onset
of a memory probe) and a later recollection signal (peaking
around 600 ms after probe onset) (Curran, 1999; Rugg &
Curran, 2007).
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Most dual-process models assume that familiarity and
recollection signals can each separately lead to recognition
(Reder et al., 2000). In some models, however, the mem-
ory system integrates evidence from different sources into
a unitary evidence signal (Rotello, Macmillan, & Reeder,
2004; Wixted & Mickes, 2010). This results in a single
route to recognition despite the contributions from different
types of evidence. From this perspective, such models are
conceptually similar to single-process models which assume
only a single evidence source (Malmberg, 2008). One in-
dication that two separate routes to recognition may not be
neccesary to account for recognition performance is the fact
that single-process models have been highly successful at
accounting for intricate relationships between response time
distributions, accuracy, and confidence ratings across a wide
range of experimental manipulations (e.g., (Ratcliff, 1978;
Ratcliff & Starns, 2009; Wixted, 2007; Dunn, 2004, 2008;
Cox & Shiffrin, 2012; Diller, Nobel, & Shiffrin, 2001; Starns,
White, & Ratcliff, 2012; Starns & Ratcliff, 2014; Shiffrin &
Steyvers, 1997)).

Because the single- vs. dual-process labels do not reliably
differentiate between the number of routes to recognition, we
will refer to models as single- or dual-route models to make
this distinction explicit. Specifically, we label models that
assume that different types of evidence can give rise to dif-
ferent kinds of recognition decisions (e.g., (Yonelinas, 1994,
1997; Reder et al., 2000; Diana et al., 2006)) as dual-route
models. Single-route models are those that assume a sin-
gle type of evidence source and those that assume that ev-
idence from multiple sources/processes is integrated into a
unitary evidence signal (e.g., (Rotello et al., 2004; Wixted &
Mickes, 2010)). Within the framework of dual-route mod-
els, it makes sense to label individual recognition decisions
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with respect to the type of evidence (e.g., “familiarity” vs.
“recollection”) that gave rise to them, whereas such a cate-
gorization of individual recognition memory decisions is not
meaningful within the framework of single-route models, be-
cause information from all available sources contributes to
recognition decisions. We propose that conflating the ques-
tion about the number of recognition signals (i.e., the dis-
tinction between single- vs. dual-process models) with the
question about the number of different routes to recognition
may have contributed to the apparent disconnect between the
evidence for separate familiarity and recollection signals and
the success of single-process models.

Capitalizing on the presumed temporal separation of fa-
miliarity and recollection signals (Diana et al., 2006), we
quantify the neural evidence distinguishing targets from lures
in various partitions of the period leading up to the recogni-
tion decision. Specifically, we ask if combining neural ev-
idence from multiple time bins during the recognition deci-
sion tells us more about whether an item has been studied
than just the latest considered time bin by itself. If we are
picking up on independent signals at different points in the
recognition decision, then combining information from both
should boost our ability to use neural activity to distinguish
between old and new items. If, however, the neural signal
corresponds to an integrated/unitary evidence signal, infor-
mation from previous time points should not contain infor-
mation that is not also present in the neural activity at later
points.

Figure 1 illustrates our approach with the help of two
toy models of evidence in recognition memory. Figure 1A
shows activation for two sources of evidence containing in-
formation about the old/new status of an item as a function
of time, and Figure 1B shows two alternative ways these
sources could give rise to an evidence signal for the recog-
nition decision (in this toy example we assume an “early”
and a “late” source, analogous to the presumed dynamics of
familiarity and recollection signals). The top panel of Fig-
ure 1B illustrates a dual-route model: the recognition de-
cision is based exclusively on whichever source has accu-
mulated more evidence at the time of response. Thus any
information from the non-dominant evidence source is lost.
Assuming sources with different temporal signatures, the ev-
idence signal will initially be determined by activity from the
early source, which sometimes will be exceeded by activity
from the later source by the time the response is initiated.
The bottom panel of Figure 1B illustrates a single process
model: here the evidence for the recognition memory deci-
sion at any given time reflects the information accrued across
all sources so far. Even when the relative contributions of the
different sources change, no information is lost, because all
relevant information contributes to the evidence signal.

It is difficult to distinguish between these alternative ac-
counts on the basis of recognition decisions alone, because
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Figure 1. (A) Probability density functions (PDFs) illustrat-
ing two sources of evidence for recognition memory deci-
sions. (B) Cumulative density functions (CDFs) for the PDFs
shown in (A) along with CDFs for the evidence on which
the recognition memory decision is based. The top panel
illustrates a case where the evidence is determined by a sin-
gle source of evidence leading to different routes to recog-
nition memory depending on which source determines the
evidence signal at the time of response (in the case of two
sources, we label this class of models “dual-route models”).
The bottom panel illustrates a case where the evidence signal
integrates information from all sources (we label this class
of models “single-route models” regardless of the number of
sources contributing to the evidence). (C) Expected patterns
of performance for classifiers trained on features from indi-
vidual (I) or cumulative (C) time bins partitioning the time
between probe onset and recognition response (see text for
details). Assuming the sources contribute independent in-
formation with distinct dynamics, dual-route models predict
diverging performance for classifiers trained on individual
and cumulative time bins (top panel), whereas single-route
models predict identical performance (bottom panel; C and
I lines are overlapping). AUC indicates area under the re-
ceiver operating characteristic curve, a measure of classifier
performance.

these presumably only reflect a snapshot of the evidence sig-
nal from around the time when the response was initiated.
Recordings of brain activity, however, allow us to assess
the evolution of a neural evidence signal in the lead-up to a
recognition response. We used multivariate (“machine learn-
ing”) classifiers to quantify the neural evidence distinguish-
ing between targets and lures during the processing of the
probe (i.e., between probe onset and just prior to the execu-
tion of a response). By comparing performance for classifiers
trained on neural features from various partitions of this time
period, we can make inferences about whether relevant infor-
mation is integrated into a single evidence signal or whether
evidence from an earlier signal is sometimes lost.

Figure 1C illustrates the logic of the main analyses. As ex-
plained in the Methods section, we partition each recognition
decision into time bins and train classifiers either on individ-
ual time bins or on a cumulatively increasing number of time
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bins. If brain activity reflects different evidence signals that
contribute independent information at different time points,
then performance of a classifier trained on neural features
from multiple time bins should exceed that of a classifier
trained on features from a single time point, since it is able to
capitalize on the information from distinct evidence signals
(top panel of Figure 1C). If, on the other hand, the neural evi-
dence signal integrates information from all sources, then the
signals from previous time points do not contain additional
information. Thus, we would expect no benefit for classifiers
trained on neural features from multiple time bins in that case
(lower panel of Figure 1C).

Materials and methods

Participants

The current data set of 132 participants is a subset of the
data set for which we previously presented analyses of overt
responses (Weidemann & Kahana, 2016) (basic analyses of
recognition accuracy and response times are repeated here
for this subset). Each participant provided informed consent
and all procedures were approved by the Institutional Review
Board of the University of Pennsylvania. We selected those
participants who completed 20 sessions of various free re-
call tasks. This enabled us to train statistical classifiers on
individual participants’ data from 19 sessions (holding out
data from one session for cross-validation of classifier per-
formance). This yielded enough data to train non-linear clas-
sifiers even in cases where not all trials contributed to the
classification (as detailed below, some of our analyses placed
restrictions on response times).

Experimental task

As part of a large-scale study of episodic memory, we
asked participants at the end of each of 20 sessions to make
recognition memory decisions and confidence ratings about
words that had been presented earlier in the session for study
in various free recall tasks. Throughout the experiment, we
obtained high-density EEG recordings, allowing us to inves-
tigate brain activity as it unfolds during processing of a mem-
ory probe. Each session included a final recognition memory
test that probed target words, which had been previously (i.e.,
in the same session) studied for free recall, and previously
unstudied lure words. Each recognition memory trial con-
sisted of the presentation of a probe word, which required
a verbal response to the question of whether the given item
had been previously studied. We asked participants to substi-
tute “pess” and “po” for “yes” and “no” when answering this
question in order to facilitate determination of response times
on the basis of the onset of the verbal response (we excluded
trials with response times below 300 ms and above 3000 ms
from further analyses). Following each binary recognition

memory decision, we asked participants to indicate their con-
fidence in the response on a scale from 1 to 5 with 5 indi-
cating the highest level of confidence and 1 indicating low
confidence. Mmost participants indicated confidence ratings
verbally; any reference to response times in this manuscript
is with respect to the binary recognition decision and not for
the confidence ratings. Further details were as described pre-
viously (Weidemann & Kahana, 2016).

Data availability

De-identified data and analysis code used in this
study may be freely downloaded from the authors’ web-
sites (http://cogsci.info and http://memory.psych
.upenn.edu/Electrophysiological_Data).

EEG data collection and processing

EEG data were recorded with 129 channel Geodesic Sen-
sor Nets using the Netstation acquisition environment (Elec-
trical Geodesics, Inc.). Cz was used as a reference during
recording, but all recordings were converted to an average
reference offline. Twenty-six electrodes that were placed on
the face (rather than the scalp) were excluded from further
analyses.

EEG data were partitioned into events starting 500 ms
before the onset of a test item and ending 100 ms be-
fore the onset of the verbal recognition response. We ap-
plied a time-frequency decomposition using Morlet wavelets
with 5 cycles for 15 log-spaced frequencies between 2 and
200 Hz, log-transformed the resulting power values, and z-
transformed these within session. We used a 1500 ms buffer
at the beginning of the events and mirrored 1500 ms at the
end of each event to avoid edge artifacts and to prevent EEG
activity from periods during the verbal recognition memory
response from bleeding into the analyzed time bins (Cohen,
2014). Data were initially sampled at 500 Hz and down-
sampled to 100 Hz after wavelet transformation. We then
discarded samples before the onset of the test items, resam-
pled power values for each event to 360 samples, and aver-
aged these samples into 36 equal-time bins for the univariate
analyses (Figure 2) and into six equal-time bins for the mul-
tivariate classifiers. The lengths of the individual time bins
were identical within each trial, but because response times
varied across trials, so did the lengths of the (“vincentized”
(Ratcliff, 1979)) time bins. We chose to fix the number of
time bins to allow us to compare the neural signals across
trials as a function of the proportion of each trial’s response
time, but we also present some complementary analyses us-
ing fixed-length (100 ms) time bins below. To aid with in-
terpretation, whenever reasonable, figures show mean times
associated with time bins rather than indicating the corre-
sponding ordinal time bin numbers.
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Classification of EEG data

We used the scikit-learn library (Pedregosa et al., 2011)
to train support vector machine classifiers with a radial ba-
sis function kernel for each participant using a leave-one-
session-out cross-validation procedure (all reported classi-
fier results are from left-out sessions). Features were all
z-transformed log-power values (the z-transformation was
within each session and thus completely separate for train-
ing and testing data) either from an individual time bin or
from varying ranges of time bins starting with the first time
bin. We used the default regularization parameter (C = 1.0)
and set up the classifier such that the weights were adjusted
inversely proportional to class frequencies (using “balanced”
as input to the “class_weight” keyword, to take into account
unequal numbers of target and lure trials).

For the classification of features from 100 ms time bins,
we only included trials where responses occurred 750 ms or
more after probe onset and only included the 100 (out of 132)
participants with at least 30 such trials in each session. Be-
cause we considered the time bin starting at probe onset, as
well as 11 additional time bins that each had a 50 ms overlap
with the previous time bin, this ensured that the last time bin
(ending 650 ms after the probe onset) was separated from the
response by at least 100 ms.

Results

Traditionally, researchers have averaged voltage time se-
ries from EEG recordings to obtain event-related potentials
(ERPs) whose peaks and troughs can be compared across
conditions (Luck, 2005). ERPs mainly reflect phase-locked
low-frequency power of the underlying EEG activity and are
less sensitive to other spectral features that have been shown
to reflect cognitive processes involved in episodic memory
(Nyhus & Curran, 2010; Jacobs, Hwang, Curran, & Kahana,
2006). For our analyses, we therefore decomposed the EEG
signal into power across a wide range of frequencies. As
described above, we were careful to exclude any brain activ-
ity overlapping with the verbal response by analyzing brain
activity only up to 100 ms before the execution of the recog-
nition decision and by using a mirrored buffer that prevented
any later brain activity from leaking into the analyzed time
period (Cohen, 2014).

Power contrasts

Studies of testing effects in recognition memory have sug-
gested that previous recall of an item selectively enhances
recollection in a recognition memory test (Chan & McDer-
mott, 2007). We aimed to identify any signals reflecting
recollective processes by contrasting spectral power for cor-
rectly recognized targets (“hits”) that were previously re-
called with that for hits that were not. Figure 2A shows the
dynamic patterns of these contrasts for sensors in two regions

of interest (ROIs) that have been frequently used in EEG
investigations of familiarity and recollection (Schwikert &
Curran, 2014). The contrasts in the two ROIs were broadly
similar, although there was a pattern of larger θ (4–7 Hz)
power for previously recalled hits in later time bins at the
posterior ROI, which may be related to higher ERP ampli-
tudes often found at the posterior ROI for hits with recollec-
tive experiences (Schwikert & Curran, 2014).
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Figure 2. Differences in power for previously recalled vs.
not previously recalled hits (A) and for all targets vs. lures ir-
respective of response (B). Left and right panels show these
differences for anterior and posterior ROIs (illustrated in the
middle panels) respectively across frequencies and vincen-
tized time bins (mean times associated with some of the time
bins are indicated on the abscissas). We used t-values for
the differences between trial categories for each participant
to calculate t-values across participants. Red shades indicate
higher power for previously recalled hits (A) or for all targets
(B) and blue shades indicate higher power for not previously
recalled hits (A) or for lures (B; within each panel, values
that did not reach statistical significance with a false discov-
ery rate of .05 are set to white).

To directly track neural evidence distinguishing old from
new items, we also calculated contrasts between spectral
power for targets and lures irrespective of the subsequent re-
sponse. Figure 2B shows that the pattern of these contrasts
was remarkably similar to those for contrasts between pre-
viously recalled and not previously recalled hits (shown in
Figure 2A). Under the assumption that memory is strongest
for previously recalled targets, weaker for not previously re-
called targets, and weakest/absent for lures, the patterns in
Figure 2 could reflect a single memory strength signal that
falls out of any contrast between two conditions that vary in
memory strength (Squire, Wixted, & Clark, 2007). The fact
that these patterns changed quite drastically in the lead-up to
the memory decisions, however, might also reflect indepen-
dent sources of evidence with distinct time courses. An as-
sessment of the relative merits of these alternative accounts,
therefore, requires us to quantify the neural evidence in the
trial-by-trial variability of EEG activity that distinguishes be-
tween targets and lures in the lead-up to a recognition mem-
ory decision.
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Quantifying neural evidence

Despite previous efforts to relate the familiarity and recol-
lection components of dual-process models to different (tem-
porally distinct) neural signals (Curran, 1999; Rugg & Cur-
ran, 2007), little is known about the actual dynamics of
information accumulation in recognition memory decisions
and how they relate to accuracy, response times (RTs), and
response confidence. Building on the success of machine
learning techniques in neural data analyses that have pro-
vided unique insights into the dynamics of cognitive pro-
cesses (Polyn, Natu, Cohen, & Norman, 2005; Norman,
Polyn, Detre, & Haxby, 2006; Ratcliff, Philiastides, & Sajda,
2009; Philiastides & Sajda, 2006), we trained statistical clas-
sifiers on spectral EEG features to track the neural dynamics
of evidence accumulation during recognition memory deci-
sions. A classifier’s ability to distinguish targets from lures
can be directly compared to an individual’s recognition mem-
ory performance through the use of receiver operating char-
acteristic (ROC) functions relating hits to “false alarms” (in-
correct classifications of lures as “old”). The area under an
ROC curve (AUC) serves as a convenient index of classifica-
tion performance, with an AUC of .5 indicating chance per-
formance and an AUC of 1.0 indicating perfect classification
(Fawcett, 2006). We previously used confidence ratings and
latencies for binary recognition memory decisions to gen-
erate ROC functions and showed a strong correspondence
between the respective AUCs in the dataset from which the
current dataset was derived (Weidemann & Kahana, 2016).
Here we assess the evolution of a neural signal indexing
evidence for the recognition memory decision by generat-
ing ROC functions from the outputs of classifiers that were
trained to distinguish targets from lures using spectral EEG
features from various intervals during the recognition period.
To reduce computational complexity and generate more reli-
able features for the classifiers, we aggregated the time bins
shown in Figure 2 by averaging them in groups of six, par-
titioning each recognition memory decision into six equal-
time bins (see Methods for details).

Neural evidence across the entire recognition period.
For each participant, we trained a classifier on spectral EEG
features from all six time bins to confirm (in held out ses-
sions) that the neural signal in individual trials reliably dis-
tinguished between targets and lures (AUC = .71, t(131) =

34.59, SE = 0.021, p < .001; Figure 3A). Single-process
models of recognition memory commonly assume that evi-
dence for targets is more variable than that for lures (Wixted,
2007), with converging evidence for this assumption com-
ing from fits of detailed models of evidence accumulation
(Starns & Ratcliff, 2014; Starns, 2014; Ratcliff, Sederberg,
Smith, & Childers, 2016). Larger target variability can result
in increased AUCs that are based only on “old” responses
(or corresponding classifier output) compared to those re-
flecting overt responses or classifier output for “new” deci-

sions only (Weidemann & Kahana, 2016). These conditional
AUCs indicate how much signal the measure of interest con-
tains for each response class (beyond the signal contained
in the binary classification of test items as “old” or “new”
(Weidemann & Kahana, 2016)) and were consistently larger
for “old” classifications across all measures (t(131) = 8.22–
33.22, SE = 0.005–0.008, ps < .001).

In principle, a classifier trained on neural data to dis-
tinguish targets from lures may use different signals than
those which are most important for the individual’s recog-
nition memory decision. Indeed, it is unlikely that the coarse
measure of scalp EEG activity (compressed into power for
a small number of frequencies) could reflect the neural sig-
nals leading to the recognition memory decision with high
fidelity. In that light, it is of particular interest to what extent
the qualitative pattern of (conditional) AUCs is similar across
measures. Figure 3B illustrates similarly close relationships
between AUCs based on overt responses (AUCC and AUCL,
with the subscripts denoting confidence ratings and response
latency, respectively) and AUCs based on EEG-classifier out-
put (AUCEEG; r = .71 & .76, t(130) = 11.53 & 13.36, ps
< .001) We also observed strong correlations between con-
ditional AUCs based on overt responses and EEG activity
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Figure 3. (A) Areas under the ROC functions (AUCs) for
confidence ratings, response latencies, and EEG activity.
AUCs for conventional ROC functions are shown in gray
and those for conditional ROC functions based on only “old”
or “new” responses (or corresponding classifier output) are
shown in red and blue respectively. Error bars correspond
to 95% confidence intervals. (B) Scatter plots illustrating
the relationships between AUCs for either confidence rat-
ings (AUCC; left panel) or response latencies (AUCL; right
panel) and EEG activity (AUCEEG). (C) Scatter plots illus-
trating the relationships between conditional AUCs for either
confidence ratings (AUCC; top panels) or response latencies
(AUCL; bottom panels) corresponding to “old” (left panels)
or “new” (right panels) recognition decisions and EEG ac-
tivity (AUCEEG) for “old” and “new” classifications. Corre-
sponding correlation coefficients are indicated in the top left
of each scatter plot and the main diagonals are shown for
convenience.
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(Figure 3C; r = .17–.81, t(130) = 1.97–15.58, p ≤ .05).
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Figure 4. (A) AUCs for the EEG classifier as a function
of time bin for features from individual time bins (I) and
for cumulatively adding features from each time bin (C; top
panel). The bottom panel shows the differences between
AUCs (∆AUCs). (B) Mean Spearman’s ρ between confi-
dence ratings and output of the EEG classifier using features
from individual time bins as a function of time bin. (C, D)
AUCs for the EEG classifier as a function of vincentized time
bin (C) or fixed-length (100 ms) time bin (D) when tested on
targets that were previously recalled (R) or previously un-
recalled (U) and corresponding differences (∆AUC). Mean
times corresponding to vincentized time bins are indicated
on the abscissas in (A) and (B); because RTs differed as a
function of previous recall only ordinal time bin labels are
indicated in (C). Shaded regions correspond to 95% confi-
dence intervals.

Tracking neural evidence across time. Having estab-
lished a neural signal that reliably distinguishes between tar-
gets and lures and that strongly correlates with recognition
memory decisions, we next asked how this evidence accrues
over time. If different types of evidence accrue with distinct
time courses, this would lead to distinct relative contributions
at different points in the decision process. In dual-route mod-
els, these signals are assumed to reflect independent sources
of evidence and thus should give a distinct advantage to any
classifier trained on features from multiple time bins (which
would thus be posed to capitalize on both types of evidence
to boost performance), relative to classifiers trained on fea-
tures from a smaller portion of the recognition period. To
test this prediction, we compared performance for classifiers
trained on features from a cumulatively increasing number

of time bins to performance from classifiers trained on fea-
tures from individual time bins only. Figure 4A shows the
corresponding AUCs for these two types of classifiers as a
function of time, as well as respective differences (∆AUC).
The AUCs for both types of classifiers were very similar and
increased gradually with time (regression slopes and inter-
cepts for both were 0.02 and 0.59, respectively; correspond-
ing r values for classifiers trained on individual and cumula-
tive features were 0.52 and 0.53 respectively, SEs = 0.001,
ps < .001). The two types of classifiers are identical for the
first time bin and, in the absence of over-fitting, the addi-
tional features used by the cumulative classifier for later time
bins cannot decrease classification performance relative to
the classifiers using features from only one time bin. At the
last time bin, the number of features differ by a factor of six
for the two classifiers and, even though the features from ear-
lier time bins clearly contained relevant signal (as shown by
reliable classification performance for previous time bins),
the difference in classification performance between the two
classifiers was minuscule (∆AUC = .003 at the last time bin
and < .01 throughout). This pattern of results is what would
be expected if the classifier output reflected an integrated ev-
idence signal as it accumulates in the lead-up to a decision.

To properly assess this evidence against dual-route ac-
counts of recognition memory, it is important to link our neu-
ral classifiers to overt responses. Above we compared (con-
ditional) AUCs for memory decisions to those from classi-
fiers trained on neural features from all time bins (Figure 3).
Here we track the correspondence between brain activity and
overt responses across time by correlating the trial-by-trial
output of classifiers trained on individual time bins with sub-
sequent confidence ratings. If classifiers trained on features
from different time bins were picking up on different types
of relevant signals, we would expect the correlation between
classifier output and confidence ratings to peak whenever
each signal type provides maximal evidence (e.g., a peak
in correlation reflecting an early familiarity signal, followed
by another peak reflecting contributions from later recollec-
tive processes). From the perspective of a single, continu-
ously accumulating, memory strength signal, however, we
would expect gradually increasing correlations as a function
of time. Figure 4B shows positive and increasing correla-
tions (measured by Spearman’s ρ) for outputs from classi-
fiers and confidence ratings as a function of time (regression
slope and intercept were 0.43 and 0.22, respectively, r = .56,
SE = 0.002, p < .001).

Neural evidence as function of prior recall. Given the
converging evidence against dual-route accounts, we set out
to maximize our ability to detect any contributions from rec-
ollective processes by assessing the classifiers’ performance
conditional on previous recall of targets (Chan & McDer-
mott, 2007). Figure 4C shows that AUCs from recalled tri-
als exceeded those for unrecalled trials across all time bins
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(ts(131) = 21.08–31.19, SEs = 0.003, ps < .001) and that
both types of AUCs increased with time (regression slopes
for both were 0.02 with intercepts of 0.54 and 0.61 for AUCs
based on unrecalled and recalled targets respectively). Fur-
thermore, the differences between AUCs based on recalled
and unrecalled targets also increased with time (regression
slope and intercept for ∆AUC were 0.006 and 0.073, respec-
tively, r = .27, SE < 0.001, p < .001). Regardless of previ-
ous recall status, classifier performance increased gradually
with time as one would expect if evidence accumulated con-
tinuously (but at different rates) for both types of trials.

Because differential RTs for targets as a function of previ-
ous recall could have contributed to the differences shown in
Figure 4C, we also trained classifiers on 100 ms bins of spec-
tral EEG features that we moved from probe onset in steps of
50 ms until the time window that ended at 650 ms after probe
onset. Again, AUCs from recalled trials exceeded those for
unrecalled trials across all time bins (ts(99) = 3.6–19.76,
SEs = 0.002–0.003, ps < .001) and both types of AUCs in-
creased with time (with regression slopes of 0.004 and 0.009
and corresponding intercepts of 0.5 for the AUCs based on
unrecalled and recalled targets respectively; corresponding
rs = .45 & .64, SEs < 0.001, and ps < .001). Also
as above, the differences between AUCs based on recalled
and unrecalled targets increased with time (regression slope
and intercept for ∆AUC were 0.004 and 0.003, respectively,
r = .53, SE < 0.001, p < .001). For both types of analyses,
evidence accrual for recalled and unrecalled targets appears
most consistent with the continuous accumulation of differ-
ent amounts (rather than different kinds) of evidence.

Discussion

Despite a long history of research on recognition memory,
there is considerable disagreement about the nature of the ev-
idence that allows us to distinguish repeated encounters from
novel experiences (Diana et al., 2006; Dunn, 2004, 2008;
Wixted, 2007; Wixted & Mickes, 2010; Squire et al., 2007;
Kirwan, Wixted, & Squire, 2010; Dede, Wixted, Hopkins,
& Squire, 2013; Yonelinas, 2002; Yonelinas et al., 2010;
Malmberg, 2008; Merkow, Burke, & Kahana, 2015). By
training multivariate classifiers to distinguish between previ-
ously studied and novel items based on spectral EEG features
recorded prior to the execution of a recognition response, we
were able to track the accrual of this evidence. We found
performance of classifiers trained on a small fraction of the
recognition period to be nearly identical to that of classifiers
that were able to also capitalize on features from all previous
time bins (Figure 4A). This suggests that the classifiers di-
rectly tracked an evidence signal, rather than a signal over
which a decision process integrates to calculate the accu-
mulated evidence—an interpretation also supported by the
strong correspondence between classifier output and overt
responses (Figures 3 & 4B) and by the increasing classifier

performance as a function of time (Figure 4A, C–D). These
findings, as well as the strong qualitative similarities between
classifier performance as a function of time for previously
recalled vs. not previously recalled targets (Figure 4C–D),
are difficult to reconcile with dual-route models that posit
different kinds of recognition decisions based on indepen-
dent and temporally distinct familiarity and recollection sig-
nals (Reder et al., 2000; Yonelinas, 2002; Diana et al., 2006;
Yonelinas et al., 2010).

A recent study pursued similar goals to the present work
by training a linear classifier on a sliding window of EEG
voltages recorded during recognition memory decisions and
by relating classifier output at two time points to drift rates
in a drift diffusion model (DDM) (Ratcliff et al., 2016). De-
spite several differences in methodology (e.g., the use of lin-
ear vs. non-linear classifiers, the use of fixed vs. vincentized
time bins, and the use of voltage vs. spectral EEG activity as
classifier features), the conclusions from both studies largely
complement each other. Specifically, both studies make a
case in favor of a unitary evidence signal underlying recogni-
tion memory decisions that is more variable for targets than
for lures (as described above, our finding that areas under
conditional ROC functions were larger for “old” compared
to “new” classifications is compatible with the latter asser-
tion (Weidemann & Kahana, 2016)). That previous study’s
conclusions, however, relied on strong assumptions about the
relationship between EEG voltage in two fixed time bins and
the drift rates in a DDM (Ratcliff et al., 2016). None of our
conclusions depend on a specific model of recognition mem-
ory or binary choice. Our inferences, however, do rely on a
set of important assumptions, to which we now turn.

Does classifier output reflect recognition evidence?

We have used ouputs of multivariate classifiers trained on
spectral EEG activity to track evidence for recognition de-
cisions as it evolved in the lead-up to a response. Our con-
clusions are conditional upon this approach’s ability to faith-
fully reflect information that is relevant for the recognition
decision. Alternatively, our conclusion that a unitary evi-
dence signal drives recognition decisions could also be due
to our approach’s inability to detect neural activity associated
with a separate evidence signal. The strong correlations of
classifier output with overt responses offer some reassurance
by limiting the variance that could be explained by unob-
served evidence signals. Additionally, ERP analyses during
recognition decisions are often interpreted as reflecting con-
tributions of independent familiarity and recollection signals
(Curran, 1999; Rugg & Curran, 2007), which should render
these signals observable in our approach.

Might different evidence signals overlap?

Our analyses depend on different evidence signals exhibit-
ing distinct temporal profiles. Whereas many dual-process

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 3, 2017. ; https://doi.org/10.1101/165225doi: bioRxiv preprint 

https://doi.org/10.1101/165225
http://creativecommons.org/licenses/by/4.0/


8 CHRISTOPH T. WEIDEMANN

models do not specify the dynamics of familiarity and recol-
lection, as discussed above, the near universal assumption is
that these signals are temporally distinct. To the extent that
evidence signals for different routes to recognition overlap in
time, we would not be able to distinguish them with our ap-
proach. Furthermore, to detect evidence signals correspond-
ing to multiple routes to recognition, our analyses assume
that combining information from the different corresponding
evidence signals allows for a better discrimination between
targets and lures, compared to the use of the evidence signal
for one route only. To the extent that different routes to recog-
nition are indeed distinct, and thus rely on independent evi-
dence, the corresponding evidence signals should meet this
requirement.

Novelty detection

Whereas we have considered different ways in which a
previously studied item might be recognized as “old”, some
evidence suggests that the detection of novelty can also sup-
port recognition memory (Daselaar, Fleck, Prince, & Cabeza,
2006; Davelaar, Tian, Weidemann, & Huber, 2011; Kafkas
& Montaldi, 2014; Bunzeck, Doeller, Fuentemilla, Dolan, &
Duzel, 2009). Our approach quantifies evidence distinguish-
ing between targets and lures and thus is agnostic with re-
spect to whether the relevant signals index familiarity or nov-
elty. It is likely that any familiarity and novelty signals would
be strongly (negatively) correlated in standard recognition
memory tasks, and some evidence suggests similar temporal
profiles for familiarity and novelty signals (Bunzeck et al.,
2009). Our approach does not distinguish between strongly
correlated and/or temporally overlapping signals and thus is
unable to differentiate familiarity and novelty signals with
these properties.

Conclusion

Debates about the relative merits of single- vs. dual-
process models often presuppose a false dichotomy between
a single route to recognition and contributions from multi-
ple sources of evidence (such as recollection and familiar-
ity) to recognition decisions. Notable exceptions are formal
models positing that recognition decisions are driven by an
evidence signal that combines contributions from familiar-
ity and recollection signals (Rotello et al., 2004; Wixted &
Mickes, 2010). Rather than asking what different sources of
evidence might lead to recognition, we focused on the ques-
tion to what extent available evidence is integrated into a uni-
tary evidence signal that drives recognition decisions. There
are inherent trade-offs between integrating all available ev-
idence, and thus maximizing the ability to distinguish old
from new items, and separately considering different sources
of evidence, and thus maximizing the ability to qualify recog-
nition decisions (e.g., with remember-know judgments). It
is therefore possible that the extent to which evidence from

different sources is integrated into a unitary signal is sensi-
tive to task demands (Rotello et al., 2004; Wixted & Mickes,
2010). At least for the standard old-new discrimination task
considered here, however, our results indicate that the mem-
ory system integrates available evidence into a unitary evi-
dence signal that drives recognition decisions. These find-
ings thus firmly link recognition decisions to other types of
decisions under uncertainty, which are commonly assumed
to rely on a unitary evidence signal differentiating between
the response options (Ratcliff et al., 2009; Nosofsky, Little,
& James, 2012; Philiastides & Sajda, 2006).
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