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Abstract 10 

 11 

High-throughput data generation platforms, like mass-spectrometry, microarrays, 12 

and second-generation sequencing are susceptible to batch effects due to run-to-13 

run variation in reagents, equipment, protocols, or personnel. Currently, batch 14 

correction methods are not commonly applied to microbiome sequencing 15 

datasets. In this paper, we compare multiple batch-correction methods applied to 16 

microbiome case-control studies. We introduce a model-free normalization 17 

procedure where features (i.e. bacterial taxa) in case samples are converted to 18 

percentiles of the equivalent features in control samples within a study prior to 19 

pooling data across studies. We look at how this percentile-normalization method 20 

compares to ComBat, a widely used batch-correction model developed for RNA 21 

microarray data, and traditional meta-analysis methods for combining 22 

independent p-values. Overall, we show that percentile-normalization is a simple, 23 

model-free approach for removing batch effects and improving sensitivity in case-24 

control meta-analyses.  25 

 26 

Author Summary 27 

 28 

Batch effects present a significant obstacle to comparing results across 29 

independent studies. Traditional meta-analysis techniques for combining p-30 

values from independent studies, like Fisher’s method, are effective, but 31 

statistically conservative. If batch-effects can be corrected, then statistical tests 32 

can be performed on data pooled across studies, increasing sensitivity to detect 33 

differences between treatment groups. Here, we show how a simple, model-free 34 

approach corrects for batch effects in case-control datasets. 35 

 36 

Introduction 37 

Data generated by high throughput methods like mass-spectrometry, second-38 

generation sequencing, or microarrays are sensitive to experimental and 39 

computational processing [1]. This sensitivity gives rise to ‘batch effects’ between 40 

independent runs of an experiment. Even when different research groups adhere 41 
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to the same methodologies, these effects can arise due to slight differences in 42 

hardware, reagents, or personnel [2]. Thus, it is inadvisable to directly compare 43 

non-normalized data across studies. 44 

 Several tools for reducing batch effects in RNA expression microarray 45 

data have been developed. For example, surrogate variable analysis (SVA) 46 

estimates a set of inferred variables (eigenvectors) that explain variance 47 

associated with putative batch effects [3]. These inferred variables are then 48 

incorporated into a linear model to correct downstream significance tests. SVA is 49 

part of a family of batch-correction methods that use different varieties of factor 50 

analysis or singular value decomposition [3-5]. The most relied upon method to 51 

date [6], called ComBat, uses a Bayesian approach to estimate location and 52 

scale parameters for each feature within a batch [7]. These methods are most 53 

effective when batch effects are not conflated with the true biological effects [1]. 54 

Furthermore, these methods work best when batch effects are not diffuse and 55 

can be projected onto a low-dimensional manifold.  56 

Unfortunately, batch effects are often diffuse and conflated with biological 57 

signals [8-10], limiting the usefulness of these methods. This is especially true for 58 

low-biomass samples in microbiome sequencing studies, like samples taken from 59 

the built environment [11], where the biological signal is relatively weak and 60 

batch effects can be quite large [12]. One way to get around this issue is to 61 

calculate statistics within a given batch, and then compare significant features 62 

across batches using classic meta-analysis techniques for combining p-values, 63 

like Fisher’s and Stouffer’s methods [13, 14]. These meta-analysis techniques 64 
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are robust to batch effects across independent studies. However, in cases where 65 

pooling raw data across studies might increase statistical power to detect subtle 66 

differences or in cases where batches are not statistically independent of one 67 

another (e.g. multiple sequencing runs within the same study), these methods fall 68 

short. 69 

Here, we describe a simple data-normalization procedure for controlling 70 

batch effects in case-control microbiome studies. Case-control studies include a 71 

built-in population of control samples (e.g. healthy subjects) that can be used to 72 

normalize the case samples (e.g. diseased subjects). For every feature (e.g. 73 

bacterial taxon) with sufficient representation in the data, the case abundance 74 

distributions can be converted to percentiles of the equivalent control abundance 75 

distributions (Fig. 1). Study-specific batch effects present in the case samples will 76 

also be present in the control samples, and by converting the case data into 77 

percentiles of the control distribution these effects are effectively removed. Upon 78 

conversion to percentiles of the within-study controls, percentile-normalized 79 

samples from multiple studies with similar case-control definitions can be 80 

appropriately pooled for statistical testing. We show that this approach controls 81 

batch effects in microbiome case-control studies and we compare this method to 82 

pooling non-normalized relative abundance data, pooling ComBat-corrected 83 

data, and to Fisher’s and Stouffer’s methods for combining p-values from 84 

unpooled analyses. 85 
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 86 

Figure 1. Theoretical feature abundance distributions for the control samples (blue) and case 87 

samples (orange) are shown in the upper panel. Converting the control distribution into 88 

percentiles of itself naturally gives rise to a uniform distribution (blue horizontal line in lower 89 

panel), while converting the case distribution into percentiles of the control distribution produces a 90 

non-uniform distribution when these two distributions differ (lower panel). Black lines show where 91 

control distribution percentiles lie on the original and percentile-normalized histograms (10th, 30th, 92 

50th, 70th, and 90th percentiles). The control distribution was produced by randomly sampling 100 93 

times from a lognormal distribution with parameters μ = 0.1 and σ = 0.7. The case distribution 94 

was produced in a similar fashion, with distribution parameters μ = 0.8 and σ = 0.5.  95 

 96 

Methods 97 

Datasets 98 

We used a collection of case-control datasets obtained from the MicrobiomeHD 99 

database [15] to validate our batch-normalization method. We focused our 100 
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analyses on studies spanning four diseases: colorectal cancer (CRC), Crohn’s 101 

Disease (CD), Ulcerative Colitis (UC), and Clostridium difficile induced diarrhea 102 

(CDI). For a subset of three CRC studies [16-18], we were able to obtain 103 

sequence data from the same region of the 16S gene so that these data could be 104 

processed together. The remaining MicrobiomeHD case-control datasets were 105 

processed separately using the same pipeline, and then Operational Taxonomic 106 

Units (OTUs) were summarized at the genus level for comparison across studies. 107 

 108 

Sequence Data Processing 109 

To perform OTU-level analyses across the CRC studies, we downloaded the raw 110 

data from all of the MicrobiomeHD datasets that sequenced the V4 region of the 111 

16S gene. We quality filtered and length trimmed each V4 dataset as described 112 

in [15] and concatenated these raw, trimmed FASTQ files into one file. We 113 

removed any unique sequences that did not appear more than 20 times and 114 

clustered the remaining reads with USEARCH [19] at 97% similarity. We 115 

assigned these OTUs taxonomic identifiers using the RDP classifier [20] with a 116 

cutoff of 0.5. 117 

For genus-level analyses, data and metadata were acquired from the 118 

MicrobiomeHD database (https://doi.org/10.5281/zenodo.569601). Raw data 119 

were downloaded from the original studies and processed through our in-house 120 

16S-processing pipeline 121 

(https://github.com/thomasgurry/amplicon_sequencing_pipeline) as described in 122 

[15]. Each study’s OTU table was converted to relative abundance by dividing 123 
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each sample by the total number of reads and collapsed to genus level by 124 

summing all OTUs with the same genus, throwing out any OTUs which did not 125 

have a genus label. 126 

To plot data in ordination space, Bray-Curtis distances were calculated 127 

from relative abundance data using Scikit-learn 128 

(sklearn.metrics.pairwise.pairwise_distances; metric=’braycurtis) [21]. Non-metric 129 

multidimensional scaling (NMDS) coordinates were calculated for two axes 130 

based on Bray-Curtis distances using Scikit-learn (sklearn.manifold.MDS; 131 

n_components=2, metric=False, max_iter=500, eps=1e-12, 132 

dissimilarity=’precomputed’). 133 

 134 

Percentile Normalization 135 

Empirical relative abundance distributions were converted to percentiles using 136 

the SciPy v 0.19.0 [22] stats.percentileofscore method (kind=’mean’). Within each 137 

study, control distributions for each individual OTU or genus were converted into 138 

percentiles of themselves and case distributions were converted into percentiles 139 

of their corresponding control distribution (Fig. 1). We restricted our analysis to 140 

OTUs that occurred in at least one third of control or one third of case samples in 141 

order to avoid statistical artifacts due to sampling effects. We have written a 142 

python script that performs percentile-normalization given an OTU table, a list of 143 

case sample IDs, and a list of control sample IDs as inputs 144 

(https://github.com/seangibbons/percentile_normalization) 145 

 146 
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ComBat 147 

For each disease, we applied ComBat [6] to the case-control data sets analyzed 148 

in this study. Relative abundances (OTUs in the CRC analysis or OTUs 149 

collapsed to the genus level in the genus-level analysis) were log-transformed 150 

prior to running ComBat, adding a pseudocount of 1.0 to replace zeros in the 151 

OTU count matrix. ComBat-corrected data were then transformed back from log-152 

space (i.e. exponential transformation) prior to downstream analyses. 153 

 154 

Statistical Analysis 155 

We used the Wilcoxon rank-sum test, as implemented in SciPy v0.19.0 156 

(sicipy.stats.ranksums) [22], to determine significant differences between 157 

independent groups of samples. Wilcoxon tests were calculated either within or 158 

across studies. In order to calculate statistics across datasets, case and control 159 

samples from multiple studies of the same disease were combined together into 160 

the same OTU table. Hereafter, combining datasets is referred to as ‘pooling.’ P-161 

values were multiple-test corrected using the Benjamini-Hochberg False 162 

Discovery Rate (FDR) procedure, as implemented in StatsModels v 0.8.0 163 

(statsmodels.sandbox.stats.multicomp.multipletests) [23]. Differences in overall 164 

community structure were assessed using the Permutational Multivariate 165 

Analysis of Variance (PERMANOVA) test in R’s vegan package [24] as 166 

implemented in scikit-bio (skbio.stats.distance.permanova). Fisher’s and 167 

Stouffer’s methods for combining p-values were performed using SciPy v0.19.0 168 

(scipy.stats.combine_pvalues; method=’fisher’ or method=’stouffer’). For 169 
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Stouffer’s method, weights for each study were defined as the square root of the 170 

number of cases plus the number of controls. 171 

 172 

Results 173 

Batch effects at OTU-level resolution 174 

To minimize possible biases across data sets, we identified three colorectal 175 

cancer (CRC) studies that sequenced the same region of the 16S gene (V4). We 176 

reprocessed the raw sequence data from each study in the same quality filtering 177 

and OTU picking pipeline to obtain bioinformatically-standardized results. OTUs 178 

that occurred in at least a third of case or a third of control samples (i.e. either 179 

within individual studies or across studies) were retained for all downstream 180 

statistical analyses. Despite standardizing the computational processing of these 181 

data, we saw significant batch effects in healthy patients across studies 182 

(PERMANOVA p < 0.001; Fig. 2). The similarity between samples from the 183 

Baxter and Zackular studies is due to the fact that they were sourced from the 184 

same patient cohort, making this comparison a good pseudo-negative control for 185 

batch effects [16, 18]. There was an apparent reduction in the batch effect after 186 

applying ComBat, although differences between batches remained statistically 187 

significant (PERMANOVA p < 0.001; Fig. 2) [6]. Due to the non-independence 188 

between the Baxter and Zackular patient cohorts, we removed the smaller of the 189 

two studies (Zackular) from all downstream analyses. Out of a total of 5,585 190 

OTUs found in healthy controls, 725 OTUs differed significantly in relative 191 
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abundance between the Baxter et al. (2016) and Zeller et al. (2014) controls 192 

(FDR q <= 0.05). 193 

 194 

Figure 2. Non-metric multimentional scaling (NMDS) plot showing the distribution of healthy 195 

controls from three colorectal cancer studies in ordination space (Bray-Curtis distances of relative 196 

abundance data). Despite standardized bioinformatic processing, healthy patients differed 197 

significantly in their gut microbiomes across studies (PERMANOVA p < 0.001). Studies were still 198 

significantly different even after applying ComBat, an established batch-correction method 199 

(PERMANOVA p < 0.001).  200 

 201 

As expected for the Wilcoxon rank-based statistical test, within-study 202 

results at the OTU level were identical before and after percentile-normalization. 203 

In addition, these within-study results were also identical with the results from 204 

ComBat-corrected data. In the Baxter study, there were 172 healthy (control) 205 

samples and 120 CRC (case) samples, with 3 OTUs (from Parvimonas, 206 
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Porphyromonas, and Peptostreptocuccus genera) showing significant differences 207 

in abundance between cases and controls for all analyses (FDR q <= 0.05). For 208 

Zeller, there were 71 control and 40 case samples, with 4 OTUs (from 209 

Fusobacterium, Closridium XIVa, Peptostreptococcus, and Dialister genera) that 210 

differed significantly across cases and controls for all analyses (FDR q <= 0.05).  211 

We ran an in silico titration experiment to simulate pooling of control 212 

samples from different datasets before calculating significant differences. Healthy 213 

samples from one study were mixed with healthy samples from another study at 214 

different proportions prior to calculating significant differences in OTU 215 

frequencies between cases and controls (Fig. 3). Case and control groups were 216 

subsampled to 30 samples each. Control samples were substituted by samples 217 

from another study along a fractional gradient (0-100% control samples from 218 

another study; see conceptual outline in Fig. 3). For the relative abundance data 219 

(non-normalized), the number of significant OTUs greatly increased due to batch 220 

effects as more control samples were substituted in from another study. 221 

However, the ComBat-corrected and percentile-normalized results were almost 222 

totally unaffected by the proportion of control samples coming from another 223 

study, indicating that batch effects were no longer driving spurious associations 224 

in the normalized data. 225 

 226 
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 227 

Figure 3. In silico titration experiment, where the control group from one study is gradually 228 

substituted with randomly chosen control samples from another study (non-normalized, 229 

percentile-normalized, and ComBat-corrected), keeping the total number of case and control 230 

samples fixed at n=30 (see conceptual illustration on the left). Mixing non-normalized data from 231 

control samples from another study often gave rise to spurious significant results due to technical 232 

differences across studies (blue lines). However, when the data were percentile-normalized or 233 

ComBat-corrected, we did not see a large increase in significant OTUs as control samples from 234 

different studies were mixed in (solid orange and green dashed lines). 235 

 236 

 In the absence of batch effects, pooling data across datasets of the 237 

same disease should increase sensitivity to detect significant associations. We 238 

pooled relative abundances, percentile-normalized abundances, and ComBat-239 

corrected abundances, respectively, across the Baxter and Zeller studies to look 240 

for OTUs that differed significantly across cases and controls. These pooled 241 

results were then compared to classic methods for combining p-values from each 242 

dataset’s individual results. For the relative abundance data, we found six OTUs 243 

(from Porphyromonas, Fusobacterium, Clostridium XIVa, Peptostreptococcus, 244 

Dialister, and Parvimonas genera) that differed significantly across cases and 245 
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controls (FDR q <= 0.05). After pooling the percentile-normalized data, we found 246 

seven OTUs that were significantly enriched in cancer patients relative to 247 

controls -- two OTUs from the Clostridium XlVa genus, one from Parvimonas, 248 

one from Peptostreptococcus, one from Porphyromonas, one from Dialister, and 249 

one from Fusobacterium (FDR q <= 0.05). The pooled ComBat-corrected results 250 

included the same significant hits identified in the percentile-normalization 251 

results. Fisher’s method identified just two significant OTUs from the 252 

Peptostreptococcus and Parvimonas genera, which were also found in the 253 

pooled results. Stouffer’s method identified one significant OTU from the 254 

Peptostreptococcus genus, which was also identified in the pooled results. 255 

Overall, the pooled methods maximize statistical power to detect significant 256 

OTUs over traditional meta-analysis methods. For example, OTUs from 257 

Fusobacterium, Porphyromonas, Clostridium XIVa and Dialister genera were 258 

identified as significantly enriched in CRC patients by the normalization methods 259 

but not by Fisher’s or Stouffer’s methods. Previous meta-analyses of CRC 260 

microbiome studies have shown these genera to be consistently associated with 261 

CRC, which supports our findings [15, 25]. 262 

 263 

Batch effects at genus-level resolution across multiple diseases 264 

In order to assess the performance of different meta-analysis techniques across 265 

a larger set of studies and diseases, we summarized OTU abundances at the 266 

genus level for four diseases - Clostridium difficile induced diarrhea (CDI), 267 

Crohn’s disease (CD), ulcerative colitis (UC), and CRC - across 11 case-control 268 

studies. There were a total of 306 unique genera detected across studies. There 269 
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were two CDI case-control studies: Schubert et al. (2014) had 154 control and 93 270 

case samples [26]; Vincent et al. (2013) had 25 control and 25 case samples 271 

[27]. There were four inflammatory bowel disease (IBD) studies that included CD 272 

patients and three that also included UC patients: Papa et al. (2012) had 24 non-273 

IBD control sample, 23 CD samples, and 43 UC samples [28]; Morgan et al. 274 

(2012) had 18 control, 61 CD and 47 UC samples [29]; Willing et al. (2010) had 275 

35 control, 16 UC and 29 CD samples [30]; Gevers et al. (2014) had 16 non-IBD 276 

control and 146 CD samples, with no UC samples [31]. There were four 277 

independent CRC studies, including the Baxter and Zeller studies listed in the 278 

OTU-level analysis (see above for sample sizes). The remaining two CRC 279 

studies added to the genus-level analysis are Wang et al. (2012), which had 54 280 

control and 44 case samples [32], and Chen et al. (2012), which had 22 controls 281 

and 21 cases [33].  282 

The number of genera that differed significantly across cases and controls 283 

changed depending on how the data were normalized, pooled, and analyzed 284 

(Table 1). Wilcoxon rank-sum tests yielded identical within-study results for non-285 

normalized and percentile-normalized data. However, unlike the OTU-level 286 

analysis, within-study ComBat-corrected results showed fewer significant genera 287 

than the non-normalized results for unpooled, within-study tests (Table 1). Thus, 288 

in correcting for batch effects, ComBat appears to smooth out some biological 289 

signal. While pooling non-normalized data across studies is technically 290 

inappropriate, it frequently resulted in significant hits that were consistent with 291 

percentile-normalized results, suggesting that the biological signal was often 292 
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stronger than the batch effect. Except in the case of UC, pooling percentile-293 

normalized data consistently yielded more significant hits than pooling non-294 

normalized data (see ‘across’ column in Table 1). ComBat-correction generally 295 

resulted in many fewer significant genera after pooling, especially for CD and 296 

UC. Half of the IBD studies included non-IBD patients with inflammatory 297 

symptoms as controls rather than clinically healthy patients. These biologically 298 

relevant differences in inflammatory symptoms between control cohorts were 299 

conflated with batches and were likely smoothed out by ComBat. In all cases, 300 

Fisher’s and Stouffer’s methods identified fewer significant results than pooling 301 

the percentile-normalized data. These results illustrate that pooling data is more 302 

sensitive than classic meta-analysis techniques [34] and that percentile-303 

normalization further increases the statistical power to detect differences while 304 

controlling for batch effects.  305 

 306 

disease normalization studies within across shared Fisher Stouffer 

CDI none 2 31 33 30 30 29 

  ComBat 2 29 33 29 29 27 

  percentile 2 31 33 30 30 29 

CD none 4 3 16 1 0 0 

  ComBat 4 0 0 0 0 0 

  percentile 4 3 18 3 0 0 

UC none 3 8 10 6 3 0 

  ComBat 3 3 3 1 1 0 

  percentile 3 8 9 6 0 0 

CRC none 4 7 4 2 3 0 

  ComBat 4 2 4 1 0 0 

  percentile 4 7 7 3 3 0 

 307 
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Table 1. Numbers of taxa that differ significantly between cases and controls for four diseases. 308 

The normalization column indicates how the data were treated prior to running significance tests 309 

(non-normalized, ComBat -corrected, or percentile-normalization). In the ‘disease’ column, ‘CD’ = 310 

Crohn’s Disease, UC = Ulcerative Colitis, CRC = Colorectal Cancer, and CDI = Clostridium 311 

difficile induced diarrhea. The significance threshold used was q <= 0.05 (FDR). The ‘within’ 312 

column shows how many significant taxa were identified when running the statistics for each 313 

study independently, while the ‘pooled’ column shows the number of significant taxa identified 314 

when running the statistics on the combined datasets. The ‘shared’ column shows how many taxa 315 

overlap between the ‘within’ and ‘pooled’ columns. The ‘Fisher’ and ‘Stouffer’ columns show the 316 

number of significant taxa identified using Fisher’s and Stouffer’s methods for combining p-values 317 

from the independent within-study tests. 318 

 319 

 To better assess how percentile normalization impacted the pooled 320 

results, we looked at genera that were significant within a single-study but not 321 

across studies after pooling and also at OTUs that were significant across pooled 322 

studies but not within a given study. We ran this analysis on the CRC data, 323 

where we had the largest number of independent studies with consistently 324 

defined healthy control cohorts (n = 4). There were two genera that were 325 

significant within a subset of studies, but not across all studies after pooling (Fig. 326 

4). Lachnospira was absent in three out of the five CRC studies and was 327 

enriched in controls in the two studies where it was detected. Flavonifractor was 328 

more abundant in cases for two studies, but this signal was not consistent across 329 

all studies. Thus, these taxa were either too rare or sensitive to different 330 

experimental and/or processing techniques to be reliable biomarkers. There were 331 

five genera that showed significant differences after pooling studies together but 332 
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were not significant in any individual study. Escherichia/Shigella, Enterobacter, 333 

and Desulfovibrio genera were slightly enriched in CRC patients in most studies, 334 

but did not show a statistically significant enrichment in any individual study (Fig. 335 

5). Conversely, Clostridium XVIII and Lachnospiraceae incertae sedis genera 336 

were enriched in controls across most studies. These OTUs show small, yet 337 

consistent effect sizes across independent studies that can only be detected after 338 

pooling (Fig. 5). 339 

 340 

Figure 4. The Flavonifractor and Lachnospira genera showed significant differences between 341 

cases and controls within a study (FDR q <= 0.05), but not after pooling across CRC studies.  342 

 343 

X 

+ 

=  control mean 

=  case mean 

. . =  pooled 
=  Wang et al. (2012) . =  Chen et al. (2012) . =  Zeller et al. (2014) . =  Baxter et al. (2016) 
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 344 

Figure 5. Five genera did not show a significant difference between cases and controls within an 345 

individual study, but were significantly different when pooling across CRC studies (FDR q <= 346 

0.05). Scatter plots show distributions of percentile-normalized data for case and control samples 347 

across studies. 348 

 349 

Discussion 350 

Batch effects are unavoidable when working with high-throughput data 351 

generation platforms. The RNA microarray community has been proactive in the 352 

development of tools for dealing with these effects [1, 6]. However, these tools 353 

are not as effective when batch effects are confounded with biological signals, or 354 

when these effects cannot be projected onto a small number of dimensions, 355 

which is often the case in microbiome case-control studies [35-37]. Fortunately, 356 

case-control studies can be internally normalized by their own control samples. 357 

Any study-specific batch effects in the case samples will be present in the control 358 

X 

+ 

=  control mean 

=  case mean 

. . =  pooled 
=  Wang et al. (2012) . =  Chen et al. (2012) . =  Zeller et al. (2014) . =  Baxter et al. (2016) 
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samples, and by converting the case data into percentiles of the control 359 

distribution these effects are removed.  360 

Relative abundance data -- but not the percentile-normalized or ComBat-361 

corrected data -- quickly gave spurious results when cases from one study were 362 

tested against controls from another (Fig. 3). For studies with small numbers of 363 

control and/or case samples, it is tempting to pool with other datasets to increase 364 

statistical power. In the past, pooling of non-normalized data from different 365 

studies has been done [31, 35, 38], but as demonstrated above, this is 366 

inadvisable. In these scenarios, datasets can first be percentile-normalized and 367 

then appropriately combined without introducing batch-related artifacts. 368 

We found substantial overlap in the relative abundance and percentile-369 

normalized results when calculating significance across studies. This overlap is 370 

expected when there is a strong biological signal that overrides batch effects 371 

[39]. Despite the similarity between pooled relative abundance and percentile-372 

normalized results, there were several cases where the percentile-normalized 373 

results identified significant differences between cases and controls that were 374 

missed in the non-normalized results and there was one instance (UC) where 375 

one fewer significant difference was found in the percentile-normalized results 376 

(Table 1).  Percentile-normalization also identified more significant hits than 377 

ComBat-corrected data in the genus-level pooled analyses, especially for UC 378 

and CD (IBD). The reduced number of significant hits from ComBat-corrected 379 

data for IBD was likely due to heterogeneous control cohorts across these 380 
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studies (i.e. healthy patients vs. non-IBD patients), which likely smoothed-out 381 

inflammation-associated signals. 382 

 We compared normalization and pooling methods (i.e. percentile-383 

normalization and ComBat) to Fisher’s and Stouffer’s methods for combining p-384 

values. Stouffer’s method is similar to Fisher’s, but includes weights for each p-385 

value based on the number of samples in a study. For all diseases, the pooling 386 

methods identified a larger number of significant hits than Stouffer’s and Fisher’s 387 

methods, indicating that pooling provides more sensitivity to detect differences 388 

between cases and controls. The bacterial taxa identified as significant by the 389 

percentile-normalization method were largely consistent with prior results [15]. 390 

 In conclusion, we present a robust, model-free procedure for transforming 391 

each feature in a case-control dataset into percentiles of its control distribution 392 

(Fig. 1). These percentile-normalized features can be pooled across independent 393 

studies for non-parametric, univariate statistical testing, circumventing the batch 394 

effect problem. We find that this procedure allows us to identify differences 395 

between cases and controls that are often missed by more conservative meta-396 

analysis techniques. Methods developed for batch-correction in microarray data, 397 

like ComBat, can reduce batch effects in microbiome studies (Fig. 2-3), but may 398 

also obscure real patterns if batch effects are not totally independent of biological 399 

signals. We suggest that ComBat and other similar methods are useful for 400 

studies without case and control groups. However, when studies have internal 401 

controls, percentile-normalization should be the preferred batch correction 402 

approach. 403 
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