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Summary: 8 
Application of genomic approaches to “obscure model organisms” (OMOs), meaning species 9 
with little or no genomic resources, enables increasingly sophisticated studies of genomic basis of 10 
evolution, acclimatization and adaptation in real ecological contexts. Here, I highlight sequencing 11 
solutions and data handling techniques most suited for genomic analysis of OMOs. 12 
 13 
 14 
Glossary: 15 

- Allele Frequency Spectrum, AFS (same as Site Frequency Spectrum, SFS): histogram 16 
of the number of segregating variants depending on their frequency in one or more 17 
populations.  18 

- Restriction site-Associated DNA (RAD) sequencing: family of diverse genotyping 19 
methods that sequence short fragments of the genome adjacent to recognition site(s) for 20 
specific restriction endonuclease(s).  21 

- Linkage Disequilibrium (LD): in this review, correlation of genotypes at a pair of 22 
markers across individuals. 23 

- LD block: typical distance between markers in the genome across which their genotypes 24 
remain correlated. 25 

- Genome scan: profiling of genotypes along the genome looking for unusual patterns. 26 
Often used to look for signatures of natural selection or introgression. 27 

-  “Denser-than-LD” genotyping: genotyping of several polymorphic markers per LD 28 
block. 29 

- Highly contiguous reference: genome or transcriptome reference sequence containing 30 
the least amount of fragmentation. 31 

- Phased data: data showing which SNP alleles belong to the same homologous 32 
chromosome copy. 33 

- Cross-tissue gene expression analysis: looking for individual-specific shifts in gene 34 
expression detectable across multiple tissues. Such shifts are predominantly genetic in 35 
nature. 36 

 37 
 38 
The focus of this review is mainly on the type of sequencing data required and how to obtain it in 39 
the most cost-efficient way rather than on analytical approaches. That said, I could not help but 40 
mention some highly promising analytical methods that are not yet broadly adopted by OMO 41 
researchers, such as demographic inference based on allele frequency spectra and annotation-42 
independent analyses of gene expression data.  43 
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 44 
I will start with the summary of general types of questions in OMO studies and corresponding 45 
data types required. We might be interested in the following four layers of genomic information, 46 
each requiring a specific type of experimental and reference data:  47 
 48 
1. Genome-wide patterns of neutral variation. This data can elucidate population structure, 49 
population sizes, and migration rates, as well as changes of these parameters through time. This 50 
analysis benefits from high quality genotype calls but does not require dense genome coverage; it 51 
can even be performed in the absence of reference genome.  52 
 53 
2. Regions in the genome particularly affected by non-drift processes (natural selection, 54 
introgression, etc). This type of analysis, typically referred to as “genome scanning”, takes 55 
genome-wide neutral variation as baseline and looks for regions in the genome exhibiting highly 56 
dissimilar patterns. It requires “denser-than-LD” genotyping and a highly contiguous reference 57 
(see Glossary) to make sure no signal is overlooked.  58 
 59 
3. Genome-wide gene expression, an extremely information-rich resource reflecting both 60 
environmental and genetic variation. Streamlined transcript counting methods represent a cost-61 
efficient alternative to the industry-standard RNA-seq for generating quantitative data. Analysis 62 
of gene expression does not require a genome reference, although a transcriptome reference must 63 
be generated at some point. The reference does not have to be highly contiguous. 64 
 65 
4. Epigenetics, here limited to DNA methylation. A variety of methods have been recently 66 
developed that can generate data for DNA methylation analysis. For vertebrates, genome 67 
reference is needed, but for other animals or plants, in which DNA methylation is much less 68 
prevalent and predominantly occurs in exons, transcriptome or exome presents a good cost-69 
efficient alternative. The reference does not have to be highly contiguous. 70 
 71 
Genome-wide neutral variation 72 
 73 
Allele Frequency Spectrum analysis 74 
 75 
Neutral genetic markers are traditionally analyzed using summaries of allele frequency 76 
differences between populations, such as FST. The large amount of markers accessible through 77 
next-generation sequencing opened up the possibility to dramatically enhance this approach by 78 
modeling the evolution of the whole allele frequency spectrum (AFS, see Glossary). AFS 79 
represents a rich source of information to fit alternative models with time-resolved population 80 
sizes and migration rates as parameters (Box 1) based on coalescent simulations (fastsimcoal2, 81 
[1]), diffusion approximation (dadi, [2]), or ordinary differential equations (moments, [3]). Model 82 
selection is then based on likelihood ratio tests or Akaike information criterion. The new moments 83 
method is particularly promising, as it is substantially faster than its predecessors and includes 84 
built-in bootstrap, demographic model plotting, and capacity to analyze up to five populations 85 
simultaneously. It is also very helpful that moments inherits the python code structure well 86 
familiar to dadi practitioners. 87 
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 88 
Experimental data 89 
 90 
The data required for AFS analysis is several thousand biallelic neutral single nucleotide 91 
polymorphisms (SNPs). Ideally, SNPs must not be closely physically linked in the genome to 92 
represent independent data points, although it is fully appropriate to analyze linked SNPs with 93 
AFS methods. The lack of requirement for contiguous SNP coverage makes various flavors of 94 
restriction site-associated DNA (RAD) sequencing (recently reviewed in [4,5], see Glossary) well 95 
suited for this analysis. In our experience, dadi [2] and moments [3] work robustly with 5-10 96 
thousand SNPs (a typical RAD output) when analyzing populations individually or in pairs. 97 
Fitting models with three (dadi) or more (moments, fastsimcoal2) populations might be 98 
problematic with this relatively low number of SNPs but is usually not required for OMOs (Box 99 
1). Recent population size changes are often of special interest in OMOs; since they 100 
predominantly affect rare alleles, their robust detection requires 20 or more high-quality 101 
genotypes per population [6]. This preference for more individuals rather than more SNPs per 102 
individual is an additional factor that makes cost-efficient RAD the approach of choice for AFS-103 
based analysis. That said, relatively low number of independent (unlinked) SNPs generated by 104 
some RAD protocols might limit the power of the AFS analysis, and a good subject for a future 105 
study would be the effect of the number of unlinked SNPs on AFS model selection and 106 
uncertainties of parameter estimates. In this regard it is worth noting that RAD flavors differ 107 
considerably in the number of unlinked loci in the genome that they interrogate [4,5]. 108 
 109 
For demographic inference, the AFS data must be filtered to exclude potential sites under 110 
selection. Whichever test is used to identify such sites (for example, Bayescan, [7]), for their 111 
removal the false discovery rate should be set as high as 0.5 to ensure purging of the majority of 112 
non-neutral sites. Although under this setting half of the removed sites would be neutral, their 113 
removal will not affect the overall AFS as long as the removed fraction does not comprise more 114 
than 1-2% of the total number of sites.  115 
 116 
Genotyping quality  117 
 118 
In diploids, the most common genotyping error is missing one of the alleles in a heterozygote (i.e., 119 
a false homozygote call); and the next most common error is missing the whole SNP locus 120 
entirely. Both these “missing data” errors are due to insufficient sequencing coverage, the 121 
problem that is pervasive in today’s OMO studies. Such errors strongly affect AFS in the region 122 
of rare alleles, which is unfortunate since rare alleles are the most informative about recent 123 
population history [6,8]. A telltale sign of poor heterozygote calling is under-representation of 124 
singletons, but frequencies of doubletons and higher-order frequency bins are also distorted, 125 
which has strong effect on AFS itself and inferred demographic parameters until mean 126 
sequencing coverage approaches ~10x [9]. When coverage is 10x or higher a good way to filter 127 
data is to select SNPs genotyped in >90-95% of samples [10]; importantly for RAD approach, 128 
this would select SNPs that are unlikely to be affected by null alleles due to mutation in the 129 
restriction endonuclease recognition site [4]. For obvious reasons, for AFS analysis genotype 130 
calls should never be quality-filtered based on allele frequencies (for example, retaining only 131 
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variants that are detected in a minimum of two individuals or requiring minor allele frequency to 132 
exceed some cutoff). A robust empirical way to evaluate the consistency of genotype calls is to 133 
compare results for independently processed biological samples of the same genotype [11]. Such 134 
genotyping replicates are quite feasible in RAD and are also useful to identify true SNPs for 135 
training variant quality score recalibration model of the GATK pipeline [12]. For low-coverage 136 
data (<10x), a general solution is provided by the ANGSD package [13], which generates AFS as 137 
well as other population genetic statistics based on genotype likelihoods without actually calling 138 
genotypes [14]. This method generates unbiased single-population AFS even with 2x coverage 139 
[9]. Still, there is a concern that high variation in coverage across samples and populations might 140 
affect ANGSD statistics; to avoid this potential issue it is recommended to discard the lowest-141 
coverage outliers and down-sample reads from highest-coverage outliers (J. Ross-Ibarra, pers. 142 
comm.).  143 
 144 
PCR duplicates 145 
 146 
Presence of PCR duplicates in many early RAD applications has been repeatedly highlighted as a 147 
source of genotyping errors [4,15] due to induced over-dispersion of read counts among alleles 148 
and loci. Interestingly, the proportion of PCR duplicates does not depend on the number of PCR 149 
cycles performed during library preparation. Instead, it depends on the ratio between the number 150 
of reads sequenced (Nr) and the number of unique fragments present in the sample prior to PCR 151 
(No): the fraction of duplicates is the same as expected when sampling Nr from No with 152 
replacement. Fortunately, PCR duplicates are easy to identify and remove using degenerate tags 153 
ligated to RAD fragments prior to amplification [16]. Most present-day RAD protocols now 154 
implement this simple deduplication procedure, including the current version of 2bRAD [11]. 155 
 156 
Genome reference for AFS analysis 157 
 158 
A great advantage of RAD-based AFS analysis for OMOs is that SNPs can be called based on 159 
RAD reads themselves, without the need for genome reference. Several de novo RAD genotyping 160 
pipelines have been developed, such as STACKS, pyRAD, and UNEAK (see references in [4]) 161 
that work for most RAD flavors, plus a similarly structured pipeline for 2bRAD 162 
(https://github.com/z0on/2bRAD_denovo) that takes into account the fact that in 2bRAD either 163 
strand of the locus can be sequenced. Still, using a reference genome to call RAD genotypes 164 
provides three important advantages. First, it identifies physically linked (and thus potentially 165 
non-independent) groups of SNPs, to be resampled as units during AFS bootstrap. The second 166 
advantage is particularly important for OMOs sampled in the field: mapping to reference genome 167 
automatically discards reads from contaminant DNA sources (viruses, bacteria, ingested food, 168 
symbionts etc). To be able to discard such contaminants in de novo RAD pipeline the experiment 169 
must include at least one sample generated from a clean source and consider only the RAD loci 170 
observed in that sample.  171 
 172 
The third advantage of reference-based genotyping is the possibility to discriminate between 173 
ancestral and derived SNP alleles, to attain the best power of AFS-based inference. Counter-174 
intuitively, the best reference for AFS analysis is not a genome of the species under investigation 175 
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but a genome of a related outgroup species, separated from the focal one by a few million years 176 
of evolution, because the SNP state as in the outgroup can be assumed to represent the ancestral 177 
state (e.g., [17]). If the reads are mapped to the same-species genome, to identify ancestral states 178 
of the variants a single well-sequenced RAD sample of an outgroup taxon could be included. The 179 
analysis will then be limited to sites that can be successfully genotyped both in ingroup and 180 
outgroup; in effect, the result is going to be the same as when mapping the reads from whole 181 
project to an outgroup’s genome. Although some proportion of ancestral states will be 182 
misidentified due to incomplete lineage sorting, convergence or technical artifacts, this error is 183 
easy to account for by including a single additional parameter into the model, specifying the 184 
proportion of the AFS that needs to be flipped when predicting the data (e.g., [18]). The reference 185 
for AFS does not have to be highly contiguous; the contigs should be just long enough to cover a 186 
typical LD block for meaningful bootstrapping. 187 
 188 
Genome scanning 189 
 190 
Since outlier regions by definition occupy only a small portion of the genome and typically do not 191 
form a single cluster, their confident detection requires “denser-than-LD” genotyping (see 192 
Glossary). It has been argued that in most situations, RAD-like approaches would sample the 193 
genome too sparsely to satisfy this requirement [19,20]. Although many successful genome scans 194 
based on RAD have been published [21], RAD cannot be recommended for genome scanning 195 
since it inevitably leaves considerable fraction of the genome unexplored. Even when LD is 196 
known to be extensive enough for RAD to produce “denser-than-LD” genotyping, a better 197 
solution might be to take full advantage of the extended LD and go instead for low coverage 198 
whole-genome sequencing (WGS) followed by imputation, to obtain full-genome phased data 199 
(Table 1). 200 
 201 
The types of sequencing approaches for genome scanning with their pros and cons are 202 
summarized in Table 1. Importantly, all of them require highly accurate reads mapped to a 203 
reference for confident SNP detection, making short Illumina reads the genotyping data type of 204 
choice. Some of the very promising approaches that have not yet been fully adopted for OMOs 205 
are exome-seq and ultra-low whole genome sequencing (WGS) with imputation. Exome-seq used 206 
to be a prerogative of model organisms because of the need for exome-capture platform 207 
development, but it has recently been shown that OMO exome can be captured just as efficiently 208 
using bead-bound normalized cDNA obtained from the OMO itself (EecSeq Puritz 2017). Such 209 
“home-made exome” sequencing could become an excellent alternative to RAD since it would 210 
interrogate essentially all the interpretable genetic variation for a comparably low cost.  Ultra-low 211 
WGS with imputation used to require extensive reference haplotype panels available only for 212 
well-established model organisms. However, several methods have been recently developed 213 
(most notably STITCH, [22]) that can impute phased genotypes and correct genotyping errors in 214 
ultra-low coverage data without relying on reference panels. Still, their applicability for each new 215 
OMO must be experimentally confirmed because the success of imputation critically depends on 216 
multiple polymorphisms occurring within a typical LD block, and whether this is so is not known 217 
for OMOs a priori. Demographic events such as strong recent bottleneck, domestication, or 218 
recent colonization would make imputation more efficient because of more extensive LD and 219 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 10, 2017. ; https://doi.org/10.1101/165928doi: bioRxiv preprint 

https://doi.org/10.1101/165928
http://creativecommons.org/licenses/by-nc/4.0/


 6 

small number of founding haplotypes [22], and conversely, in large outbred populations 220 
imputation will be less accurate and might require sequencing of a very large number (thousands) 221 
of individuals.  The accuracy of imputation can be evaluated by sequencing a few individuals at 222 
high coverage (>10x) to generate high-confidence genotype calls and then attempting to impute 223 
them based on sub-sampled read sets to emulate low coverage. It must be noted that it is 224 
inappropriate to measure imputation accuracy by imputing genotype calls masked in high-quality 225 
datasets (as in, for example, [23]): masked data do not contain false homozygote calls and 226 
therefore do not correctly represent the real-life situation. 227 
 228 
Gene expression 229 
 230 

There are many aspects to gene expression, of which I here focus on just one: abundance 231 
or protein-coding (polyadenylated) transcripts. The reason is that transcript abundance is by far 232 
the most interpretable and it can be very easily analyzed in OMOs. 233 
 234 
Counting transcripts instead of resequencing them  235 
 236 
 Typical RNA-seq [24] resequences the whole transcriptome in each sample, but there is a 237 
much more economic way to count abundances of protein-coding transcripts: sequence just a 238 
single fragment per each transcript molecule and count reads corresponding to each gene. TagSeq 239 
[25], for example, sequences a single randomly generated fragment near the 3’-end of the 240 
transcript, which is the most economic use of sequencing effort and removes bias towards longer 241 
transcripts. In a recent benchmarking study TagSeq was actually more accurate than the standard 242 
RNA-seq in measuring transcript abundances, despite nearly tenfold lower cost [26]. More 243 
recently introduced QuantSeq [27] is conceptually similar to TagsSeq: it also sequences a single 244 
randomly generated fragment near the 3’-end of each transcript but has a different library 245 
preparation procedure, implemented as a kit from Lexogen (https://www.lexogen.com/quantseq-246 
3mrna-sequencing/). Bioinformatics analysis for both TagSeq ad QuantSeq is highly simplified 247 
compared to typical RNA-seq. TagSeq was originally designed for OMOs and so its pipeline uses 248 
transcriptome rather than genome as a reference to attribute reads to genes 249 
(https://github.com/z0on/tag-based_RNAseq). One notable feature of the current version of 250 
TagSeq pipeline is that it includes removal of PCR duplicates based on adaptor-derived 251 
degenerate tags [11], similarly to 2bRAD and for the same reason – to avoid PCR-associated 252 
over-dispersion or read counts.  253 
 254 
Analysis of gene expression “beyond gene lists” 255 
 256 

The unfortunate tradition that OMO research inherits from the biomedical field is putting 257 
too much emphasis on possible functional implications of expression changes of specific genes. 258 
For OMOs, this is bound to remain inconclusive because gene annotations are often absent, 259 
tentative or based predominantly on similarity to human genes, which may or may not serve the 260 
same function in the OMO. Even greater problem is interpretation bias: too often researchers 261 
focus primarily on genes that “make sense” and ignore the rest. This leads to conclusions 262 
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reflecting predominantly the researchers’ idea of what should be going on rather than what is 263 
actually happening.  264 
 265 

Table 2 lists alternative ways of objective analysis of gene expression data that are 266 
enabled by the large sample sizes feasible with TagSeq or QuantSeq. They either do not require 267 
gene annotations or rely sufficiently general functional summaries to be robust to occasional 268 
missing or mis-annotations. Particularly useful for OMOs are analyses that use gene expression 269 
patterns as anonymous multivariate readouts to compare and classify samples, such as principal 270 
coordinate analysis (PCoA) or differential analysis of principal components  (DAPC). Related 271 
multivariate analyses to visualize and classify genome-wide gene expression data, recently 272 
reviewed in [28], have become the mainstream tool of single-cell RNA-seq, where they are used 273 
to discover cell types and quantify differences between them. With appropriate experimental 274 
design, in OMOs these analyses can lead to much more definitive biological conclusions than 275 
studies scrutinizing long lists of differentially expressed genes passing a certain significance 276 
cutoff.  277 
 278 
Gene expression as functional summary of genotype 279 
 280 
Gene expression is best known for its context-dependence reflecting phenotypic plasticity, which 281 
is the view inherited from biomedical research dealing with genetically uniform models. In 282 
natural populations, one of the most important sources of gene expression variation is genetic 283 
difference among individuals, manifested as context-independent, individual-specific deviations 284 
in gene expression. This is easy to demonstrate in clonally replicated organisms such as corals. In 285 
two reciprocal transplantation experiments performed on different coral species in different 286 
oceans, stable between-genotype differences accounted for more than 50% of total gene 287 
expression variation despite transplantation of clonal fragments for up to a year to highly 288 
dissimilar sites [29,30]. In non-clonal model organisms such as mice or humans, the best 289 
demonstration of the effect of genetic variation on gene expression are abundant differences in 290 
expression between alleles of the same gene [31,32]. In humans, fixed between-population 291 
differences are exemplified by hundreds of genes that are differentially expressed between 292 
African and European Americans [33]. All this suggests that gene expression can be a proxy of 293 
not only phenotypic plasticity and acclimatization, but of genetic variation and adaptation. A 294 
major advantage of the use of gene expression for these types of studies is that gene expression 295 
integrates over many functionally relevant variants in the genome and thus represents a 296 
condensed functional summary of the genotype [34]. 297 
 298 
In humans, nearly half of all genetic variants affecting gene expression have detectable effects in 299 
all tissues [32], and so one feasible way to separate genotype-specific gene expression from 300 
context-dependent variation might be to perform “cross-tissue” comparison (see Glossary) to 301 
isolate body-wide expression shifts [35]. In the coming years, cross-tissue or similar analysis is 302 
likely to become a major approach to study functional genetic variation in natural populations.  303 
 304 
  305 
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Epigenetics 306 
 307 

Among many covalent chromatin modifications I will discuss DNA methylation since it currently 308 
receives the most attention in OMOs.  Still it must be mentioned that in plants histone 309 
methylation appears be no less and perhaps even more involved in acclimatization and 310 
transgenerational plasticity [36]. While vertebrates show high methylation throughout the genome, 311 
invertebrates and plants methylate their genomes sparsely and mostly in protein-coding regions 312 
(so-called gene body methylation, GBM, [37]). The function of his ubiquitous and evolutionarily 313 
ancient DNA modification remains unclear [38,39] and the greatest challenge in the next few 314 
years will be to decipher it. The most important questions are: (i) Does GBM affect gene 315 
expression? (ii) Can it be modified on ecological timescale, to achieve acclimatization to a novel 316 
environment? (iii) Can acquired changes in GBM be transmitted across generations? If the 317 
answers to all three questions are “yes”, then we have a mechanism for transgenerational 318 
inheritance of acquired traits, which is an exciting (albeit tentative, [40]) possibility. Table 3 319 
summarizes the methods for generating DNA methylation data. If every gene in the genome has 320 
to be interrogated, MBD-seq and meDIP provide the best resolution for sequencing effort [38]. If 321 
the goal of the study is to characterize general methylation patterns rather than identify specific 322 
genes, highly cost-efficient solutions are provided by RRBS-seq and methylRAD. For studies 323 
requiring single base resolution, the best approach appears to be direct detection by PacBio or 324 
ONT – however, these exciting developments still require validation in complex genomes. 325 
 326 
Generating a reference sequence 327 
 328 
For all approaches described here, the accuracy of the reference sequence in terms of per-base 329 
error rate must only be high enough to allow unambiguous mapping of high-accuracy (Illumina) 330 
reads. The gold standard of genome sequence quality, Q30 or 99.9% accuracy, would not provide 331 
any benefit compared to a rough draft accuracy of 99%. Occasional errors in the reference would 332 
manifest themselves as SNPs that are not polymorphic in the analyzed samples and therefore 333 
irrelevant for analysis. This is the same reason why it is possible to use a genome of a related 334 
species as a reference. 335 
 336 
For AFS analysis, which does not require highly contiguous reference, even a rough genome draft 337 
that can be assembled from a single lane worth of 150b paired-end reads from Illumina HiSeq 338 
would be suitable. However, substantially better options are now becoming available for a 339 
comparably low price tag. The technology offered by 10x Genomics [41] attaches specific 340 
barcodes to short reads originating from the same long DNA fragment, which allows assembling 341 
Illumina HiSeq data into very long haplotypes. The two single-molecule long-read “third-342 
generation sequencing” methods, Single Molecule Real Time (SMRT) sequencing by PacBio and 343 
nanopore sequencing by ONT, produce reads with broad length distribution, including 344 
exceedingly long ones (tens to hundreds of kilobases) resulting in a qualitatively more contiguous 345 
genome assemblies [42–45] (Table 4, see [43] for recent benchmarking study of assembly 346 
pipelines). At the moment of this writing, read accuracy and cost of data for PacBio (Sequel 347 
system) and ONT (R9 flow cell) were equivalent; PacBio generated higher proportion of long 348 
reads than ONT; however, PacBio’s library prep required ten fold more high-quality DNA than 349 
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ONT. Both for PacBio and ONT it is critically important to obtain high molecular weight DNA in 350 
fragments exceeding 20kb in length. For new OMOs, it is also essential to confirm that the DNA 351 
is accessible to enzymatic modifications by trying to digest it with a frequent-cutting restriction 352 
endonuclease. 353 
 354 
For genome scanning, gene expression, or invertebrate DNA methylation analyses targeting 355 
protein-coding sequences (exome) genome sequence might not be the best reference; instead, a 356 
highly contiguous transcriptome assembly would be preferable. Until now the standard way to 357 
generate a de novo transcriptome was to perform high-coverage RNA-seq and assemble the 358 
results with Trinity [46]. In the coming years, it is expected that even higher-quality and lower-359 
cost OMO transcriptomes would be generated by PacBio or ONT sequencing of full-length 360 
cDNA (or, for ONT, direct mRNA sequencing). The long-read capacity of these technologies 361 
would essentially obviate the need for assembly, leaving only the sequence correction procedure 362 
to be performed.  363 

 364 
Finally, which tissue or body part to sample for sequencing? For genome sequencing it does not 365 
matter much as long as contamination by other DNA sources can be kept to a minimum, but for 366 
de novo transcriptomics it is not a trivial question, as gene expression varies dramatically across 367 
tissues and life cycle stages. In mammals, there is definitely an organ of choice that expresses 368 
nearly all genes in the genome: testis. Rather unexpected transcriptome complexity in the testis is 369 
putatively due to chromatin re-packaging during spermatogenesis, which results in genome-wide 370 
transcription leakage [47]. If so, testis might be a good choice for de novo transcriptomics not 371 
only for mammals but for any organism that produces compact sperm. 372 
 373 
Note on data sharing 374 
 375 
As we have seen, the best power of ecological genomics in OMOs is achieved using a genome or 376 
transcriptome reference. Every new reference dataset enables new biological questions, and the 377 
whole OMO field will get a great boost if these resources are promptly shared. Please consider 378 
rapidly sharing your reference data, at least as soon as the initial preprint of your paper is posted 379 
to bioRxiv and ideally sooner, by distributing the link to data through research-related email list 380 
or professional twitter feed. 381 
 382 
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  546 

Box 1:  AFS models. 
In the world of OMOs we are usually dealing with samples from many populations, which 
would be hard or impossible to model simultaneously; moreover, there are usually many 
populations left unsampled. To infer meaningful demographic parameters in a sparsely 
sampled system of many populations, a practical solution is to perform two-dimensional AFS 
analysis of all population pairs [10]. Typical hypotheses and corresponding tests are: 

- Are the two populations demographically separate?  
o compare model with split to model without split, under which the two 

compared populations are regarded as independent samples from the same 
population. 

- If yes, is there still gene flow between them?  
o compare split models with and without migration. 

- If yes, is the gene flow symmetric or asymmetric?  
o compare split model with two potentially different migration rates to a split 

model with a single symmetrical migration rate. 
- Was population size stable or went through changes in the past? 

o compare single-population model involving population size change in the past 
to a standard neutral model. 

Simple command-line scripts for AFS plotting and running basic pairwise models in moments 
can be found here: https://github.com/z0on/AFS-analysis-with-moments. To access the full 
potential of moments, however, the user is expected to compose python scripts of their own. 
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Table 1. Genotyping approaches for genome scanning. 547 
Approach Features Pros Cons 

Exome-seq 
[48,49] 

Isolates and 
sequences only the 
protein-coding 
portion of genome. 

Dense coverage of genes 
guarantees that coding 
variants and variants 
linked to cis-regulatory 
mutations are discovered. 

Other (arguably less important) 
types of variation are not profiled 
(e.g., distant enhancers). 

RNA-seq 
[50,51] 

Sequences RNA.  Same as exome 
sequencing. 

Genotyping quality of a gene 
depends on expression level. Allele-
specific expression affects accuracy 
of heterozygote calls. 

Pool-seq 
[52,53] 

Sequences pooled 
DNA from multiple 
individuals from 
each population. 

Dense whole-genome 
coverage with confident 
determination of allele 
frequencies in populations. 
 

No possibility for individual–based 
analysis (such as STRUCTURE) or 
validation based on genotype-
phenotype association across 
individuals. Must be confident in a 
priori population designations. 

Low-
coverage 
whole-
genome 
sequencing 
(WGS) 
[54] 

Sequences 
individual genomes 
at ~1-4x coverage. 

Dense whole genome 
coverage at individual 
level. 

Per-site genotypes are unreliable 
because of missing data; must use 
uncertainty-aware analysis such as 
ANGSD. 

Ultra-low 
coverage 
WGS with 
imputation 
[22] 

Sequences 
individual genomes 
at <2x coverage, 
imputes missing 
genotypes and 
corrects false 
homozygote calls 

Dense whole genome 
coverage at individual 
level, phased data enables 
haplotype-based analysis  

Rare alleles (minor allele 
frequency<0.05) are missed. 
Requires large sample sizes 
(depending on LD, hundreds or 
thousands of individuals). Accuracy 
of imputation must be 
experimentally validated for every 
new OMO. 
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Table 2. Gene expression analyses not relying on accurate gene annotations 550 
Analysis What does it do Software Applications 

Principal coordinate 
analysis based on 
Manhattan 
distances (sum of 
all log-fold changes 
across genes) 

Characterizes overall transcriptome 
differences across experimental groups. 
Measures fraction of variation 
attributable to each experimental factor. 

R: package 
ape, function 
pcoa [55] 
package vegan, 
function 
adonis [56] 

[57,58] 

Differential 
analysis of principal 
components 
(DAPC) 

Quantifies transcriptome differences 
between samples with respect to 
specified multivariate axis. Good for 
quantifying overall gene expression 
plasticity. 

R: package 
adegenet [59] 

[29] 

Weighted gene co-
expression network 
analysis (WGCNA) 

Identifies co-regulated groups of genes, 
which are linked to experimental factors 
and traits post hoc. Method of choice 
for complex experimental designs (>20 
samples) with many quantitative traits 
measured.  

R: package 
WGCNA [60] 

[29,61,62] 

Rank-based 
functional 
summaries of KOG 
(euKaryotic 
Orthologous 
Groups) classes  

Reveals broad functional trends in gene 
expression. Particularly useful for 
OMOs since it tolerates sparse and 
inaccurate annotations.  Its main use is 
for statistical comparison of highly 
diverse datasets, even from different 
species.  

R: package 
KOGMWU 
[11]. 
 

[11,58] 
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Table 3. Methods for interrogating DNA methylation 553 
Method Features Pros Cons 

Whole-
Genome 
Bisulfite 
Sequencing 
(WGBS) 
[63] 

Sequences complete 
genome after bisulfite 
conversion  

Complete 
characterization of 
5me-cythosine 
methylation at single-
base resolution 

High coverage is required to obtain 
quantitative data. In non-vertebrate 
OMOs, much sequencing effort is 
wasted since most of genome is not 
methylated. 

RRBS-seq 
[64] 

Bisulfite sequencing 
of genome fragments 
adjacent to all 
(methylated and un-
methylated) CCGG 
sites 

Saves costs 
dramatically 
compared to WGBS.  

Only a fraction of all CpG sites is 
interrogated. Complicated library 
preparation protocol. Sequencing 
effort is wasted on non-methylated 
sites. 

MBD-seq 
[65], 
meDIP [66] 

Pull-down and 
sequencing of 
methylated DNA. 

Optimizes 
sequencing effort by 
focusing on 
methylated DNA. 

Complicated library preparation 
protocol. Resolution equals the 
length of pulled-down fragments 
(~300-500b). Pull-down procedure is 
not absolutely efficient, many reads 
still correspond to un-methylated 
genome regions. 

methylRAD 
[67] 

Direct sequencing of 
genomic fragments 
adjacent only to the 
methylated CCGG 
and CCWGG sites. 

Very simple library 
prep protocol. Highly 
cost-efficient due to 
focus on methylated 
sites only.  

Only a fraction of all CpG sites is 
interrogated. New method, requires 
further benchmarking. 
 

PacBio 
[68,69] 

Direct detection of 
modified DNA bases 
during normal SMRT 
sequencing, based on 
polymerase lags. 

Robust detection of 
4-methylcytosine, 8-
oxoguanine, and N6-
methyladenine. 
Single-base 
resolution. 

Same as WGBS. 5-methylcytosine, 
the most common methylation mark 
in animals, is not reliably detected.  

ONT [70] Direct detection of 
modified DNA bases 
during normal 
nanopore sequencing, 
based on conductivity 
changes. 

Detects all marks, 
including 5-
methylcytosine. 
Single-base 
resolution. 

Same as WGBS. 
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 556 
Table 4. Assembly pipelines for PacBio and ONT reads 557 
Pipeline Required 

coverage 
Features Pros Cons 

Canu 
+Quiver* 
[71] 

>30x Correct and trims 
reads before 
assembly.  

Best accuracy at base, 
indel and assembly 
level. 

Very computationally 
demanding for large genomes. 
Generates incomplete 
assemblies at low coverage. 

Falcon + 
Quiver* 
[72] 

>50x Similar to Canu. Standard for PacBio. Very computationally 
demanding for large genomes. 
High reliance on reads >20kb. 
Highly incomplete assemblies 
at low coverage. 

minimap 
+ 
miniasm 
+ racon 
[73,74]  

<30x Raw reads are 
assembled, 
correction is done 
post-assembly 

Very fast even for 
large genomes. 
Works with lower 
coverage, shorter 
reads than Canu and 
Falcon. 

The resulting accuracy is 
lower than with Canu + 
Quiver. 

pilon [75] NA (error 
correction 
method) 

Performs 
additional 
correction post-
assembly. 

Boosts accuracy for 
any assembly. 

Requires high-quality Illumina 
reads. 

*Quiver is a consensus polishing software that is now replaced by Arrow to handle PacBio 558 
Sequel data (https://github.com/PacificBiosciences/GenomicConsensus ). Racon [74] can be used 559 
instead of Quiver/Arrow [43]. 560 
 561 
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