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Abstract	1 
Cognitive	processes	do	not	occur	by	pure	 insertion	and	 instead	depend	on	the	full	complement	of	co-2 
occurring	mental	processes,	including	perceptual	and	motor	functions.	As	such,	there	is	limited	ecological	3 
validity	to	human	neuroimaging	experiments	that	use	highly	controlled	tasks	to	isolate	mental	processes	4 
of	interest.	However,	a	growing	literature	shows	how	dynamic,	interactive	tasks	have	allowed	researchers	5 
to	study	cognition	as	it	more	naturally	occurs.	Collective	analysis	across	such	neuroimaging	experiments	6 
may	answer	broader	questions	regarding	how	naturalistic	cognition	is	biologically	distributed	throughout	7 
the	brain.	We	applied	an	unbiased,	data-driven,	meta-analytic	approach	that	uses	k-means	clustering	to	8 
identify	 core	 brain	 networks	 engaged	 across	 the	 naturalistic	 functional	 neuroimaging	 literature.	9 
Functional	 decoding	 allowed	 us	 to,	 then,	 delineate	 how	 information	 is	 distributed	 between	 these	10 
networks	 throughout	 the	 execution	 of	 dynamical	 cognition	 in	 realistic	 settings.	 This	 analysis	 revealed	11 
seven	 recurrent	 patterns	 of	 brain	 activation,	 representing	 sensory,	 domain-specific,	 and	 attentional	12 
neural	 networks	 that	 support	 the	 cognitive	 demands	 of	 naturalistic	 paradigms.	 Though	 gaps	 in	 the	13 
literature	remain,	these	results	suggest	that	naturalistic	fMRI	paradigms	recruit	a	common	set	of	networks	14 
that	that	allow	both	separate	processing	of	different	streams	of	information	and	integration	of	relevant	15 
information	to	enable	flexible	cognition	and	complex	behavior.		 	16 
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Introduction	1 

Across	 the	 life	 sciences,	 researchers	 often	 seek	 a	 balance	 between	 ecological	 validity	 and	 careful	2 

laboratory	control	when	making	experimental	design	decisions.	This	entails	weighing	the	value	of	creating	3 

realistic	stimuli	representative	of	real-world,	interactive	experiences	versus	artificial,	reductionist	stimuli	4 

facilitating	precise	assessment	of	‘isolated’	mental	process	of	interest	via	cognitive	subtraction.	Cognitive	5 

subtraction	 assumes	 that	 a	 single	 added	 cognitive	 process	 does	 not	 alter	 the	 other,	 co-occurring	6 

processes,	 both	 neutrally	 and	 cognitively.	 As	 such,	 task-based	 fMRI	 has	 traditionally	 utilized	 precisely	7 

controlled	tasks	to	study	the	neurobiological	substrates	of	cognition.	However,	cognition	does	not	occur	8 

by	 pure	 insertion;	 the	 functioning	 of	 any	 cognitive	 process	 is	 not	wholly	 independent	 from	other	 co-9 

occurring	 processes	 (Friston	 et	 al.,	 1996).	 Instead,	 cognition	 is	 highly	 interactive,	 encompassing	10 

measurable	changes	 in	neural	activity	 that	are	dependent	on	the	 full	amalgamation	of	 relevant	social,	11 

cognitive,	perceptual,	and	motor	processes.	Thus,	 it	 is	perhaps	unreasonable	to	expect	findings	from	a	12 

highly	restricted	assessment	of	a	psychological	construct	in	the	scanner	to	fully	generalize	to	real-world	13 

behaviors	and	settings.		14 

With	advances	in	technology	and	a	desire	to	study	cognition	with	greater	ecological	validity,	increasing	15 

numbers	 of	 studies	 are	 utilizing	 realistic,	 interactive,	 and	 rich	 stimuli	 in	 more	 ecologically	 valid	16 

experimental	designs	that	fit	within	the	scanner’s	confines	(Hasson	&	Honey,	2012;	Maguire,	2012;	Wang	17 

et	al.,	2016).	Specifically,	the	use	of	video	games,	film	clips,	and	virtual	reality,	among	others,	has	brought	18 

a	new	dimension	to	cognitive	neuroimaging	experiments	permitting	researchers	to	study	brain	activity	as	19 

participants	engage	in	tasks	that	more	closely	represent	real-life	demands	on	attention	and	multimodal	20 

sensory	integration.	Appreciation	of	such	attention	and	integration	processes	necessitates	more	complex	21 

stimuli	than	simple	static	images	presented	on	a	screen.	Everyday	activities,	such	as	navigation	or	social	22 

observation,	 involve	 the	 integration	 of	 processes	 associated	 with	 object	 recognition,	 speech	23 

comprehension,	motor	 control,	 and	 spatial	 orienting,	which	 all	 require	 the	 interpretation	 of	 dynamic	24 
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signals	often	from	more	than	one	sensory	modality	(e.g.	audiovisual	film	watching	or	visuotactile	image	1 

tracing)	 and	 necessitate	 different	 attentional	 demands	 compared	 to	 the	 simplistic	 stimuli	 used	 in	2 

traditional	 fMRI	 experiments	 (Giard	 &	 Peronnet,	 1999;	 McGurk	 &	 MacDonald,	 1976;	 Sailer,	 Eggert,	3 

Ditterich,	&	Straube,	2000;	Spence,	2010).	Despite	offering	advantages,	the	growing	body	of	naturalistic	4 

fMRI	research	has	yet	to	be	quantitatively	assessed,	and	little	is	known	of	how	the	neural	bases	of	these	5 

tasks	support	complex	information	processing	and	behavioral	demands.	6 

Here,	we	applied	an	unbiased,	data-driven,	meta-analytic	approach	to	quantitatively	explore	and	classify	7 

knowledge	 embedded	 in	 the	naturalistic	 fMRI	 literature.	Using	 an	 approach	developed	by	 Laird	 et	 al.	8 

(2015),	 we	 capitalized	 on	 the	 wealth	 of	 published	 naturalistic	 paradigms	 and	 investigated	 recurrent	9 

patterns	of	brain	activation	reported	across	a	wide	variety	of	tasks	and	behaviors	of	interest.	This	method	10 

is	based	on	the	premise	that	functionally	similar	tasks	engage	spatially	similar	patterns	of	brain	activity	11 

and	 that,	 by	 clustering	 activation	 patterns	 from	 experimental	 contrasts,	 similar	 sets	 of	 experimental	12 

paradigms	can	be	identified.	We	extracted	relevant	information	about	the	stimuli	and	task	demands	of	13 

these	paradigms	and	assessed	motifs	in	the	arrangement	of	this	information,	with	respect	the	data-driven	14 

clustering	 analysis,	 to	 determine	 which	 paradigm	 aspects	 elicited	 activation	 patterns	 that	 subserve	15 

common	 and	 dissociable	 cognitive	 processes.	 Although	 naturalistic	 paradigms	 vary	 greatly	 and	 are	16 

designed	to	probe	a	wide	range	of	psychological	constructs	and	behaviors,	we	hypothesized	that	complex,	17 

multisensory	processing	are	associated	with	a	set	of	core	neural	networks	engaged	by	similar	content	18 

domains	 and	 task	 demands.	 The	 objectives	 of	 this	 study	 were	 to	 first	 elucidate	 core	 brain	 networks	19 

engaged	 across	 naturalistic	 fMRI	 paradigms	 and,	 then	 to	 characterize	 how	 information	 processing	 is	20 

potentially	distributed	between	these	networks	to	facilitate	complex	behaviors	in	realistic	settings.			21 

Materials	and	Methods	22 

Naturalistic	fMRI	Paradigms	23 
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Here,	 “naturalistic”	 paradigms	 were	 operationally	 defined	 as	 tasks	 employing	 any	 stimulus	 which	1 

demanded	real-time	integration	of	dynamic	streams	of	information.	As	real-world	behavior	contextually	2 

involves	all	sensory	modalities,	we	included	naturalistic	tasks	in	which	such	stimuli	were	presented	via	the	3 

visual,	auditory,	or	tactile	modalities	or	any	combination	thereof.	Visual	naturalistic	tasks	require	either	a	4 

real-time	interaction	with	visual	stimuli,	in	the	case	of	video	games	and	virtual	reality,	or	the	continuous	5 

integration	of	real-time	information,	such	as	during	film	viewing.	Auditory	tasks,	including	the	perception	6 

of	music	and	spoken	stories,	similarly	require	the	continuous	integration	of,	and	often	interaction	with,	7 

real-time	 information.	 Our	 operational	 definition	 also	 included	 tactile	 naturalistic	 paradigms,	 which	8 

involve	 the	 manipulation	 and	 recognition	 of	 physical	 objects.	 During	 these	 tactile	 tasks,	 participants	9 

gather	 and	 integrate	 sensory	 information	 to	 create	 a	 mental	 representation	 of	 the	 object	 and,	 if	10 

necessary,	form	an	appropriate	behavioral	response.	Lastly,	we	note	the	inclusion	of	multisensory	tasks.	11 

As	in	life,	many	naturalistic	experiments	simultaneously	present	auditory,	visual,	and	tactile	information,	12 

and	such	tasks	demand	the	real-time	integration	of	information	from	multiple	sensory	modalities.		13 

Literature	Search,	Filtering,	and	Annotation	14 

An	extensive	literature	search	was	performed	to	amass	a	corpus	of	naturalistic	fMRI	studies	that	were	15 

published	since	the	emergence	of	fMRI	in	1992.	To	identify	published	naturalistic	fMRI	studies,	PubMed	16 

searches	were	 carried	out	 by	 focusing	on	 stimulus	 types	 common	 to	naturalistic	 research	 (e.g.,	 video	17 

games,	 film,	 virtual	 reality).	 The	 first	 search	 string	 included:	 ((“naturalistic”[Title/Abstract]	 OR	 “real-18 

world”[Title/Abstract]	 OR	 "ecologically	 valid"[Title/Abstract]	 OR	 "true-to-life"[Title/Abstract]	 OR	19 

"realistic"[Title/Abstract]	 OR	 "video	 game"[Title/Abstract]	 OR	 “film”[Title/Abstract]	 OR	20 

“movie”[Title/Abstract]	 OR	 "virtual	 reality"[Title/Abstract])	 AND	 ("fMRI"[Title/Abstract]	 OR	 "functional	21 

magnetic	resonance	imaging"[Title/Abstract])	AND	(“Humans”[MeSH])).	This	search	yielded	679	studies	22 

(January	 2016),	 some	 of	 which	 utilized	 stimulus	 types	 that	 we	 had	 not	 included	 in	 our	 initial	 query,	23 

including	music,	speech,	and	tactile	objects.	To	identify	any	studies	using	these	tasks	that	may	not	have	24 
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been	returned	by		initial	query,	a	second	search	was	performed	using	the	string	[("music"[Title/Abstract]	1 

OR	 "speech"[Title/Abstract]	 OR	 "spoken"[Title/Abstract]	 OR	 "tactile	 object"[Title/Abstract])	 AND	2 

(“naturalistic”[Title/Abstract]	 OR	 “real-world”[Title/Abstract]	 OR	 "ecologically	 valid"[Title/Abstract]	 OR	3 

"true-to-life"[Title/Abstract]	 OR	 "realistic"[Title/Abstract])	 AND	 ("fMRI"[Title/Abstract]	 OR	 "functional	4 

magnetic	resonance	imaging"[Title/Abstract])	AND	"Humans"[MeSH]].	This	secondary	search	returned	48	5 

studies,	some	of	which	were	included	in	the	results	of	the	first	search.	The	two	sets	of	search	results	were	6 

pooled,	reviewed,	and	filtered	to	identify	studies	utilizing	naturalistic	paradigms	as	defined	above,	yielding	7 

a	total	of	230	candidate	studies	deemed	potentially	suitable	for	meta-analysis.		8 

Each	of	 the	remaining	230	candidate	studies	were	then	reviewed	according	to	 the	 following	exclusion	9 

criteria.	Non-naturalistic	tasks	were	excluded	in	which	static,	timed	blocks	of	stimuli	were	presented	with	10 

a	well-defined	window	for	participant	response.	We	excluded	studies	that	assessed	training	or	learning	11 

across	multiple	trials	or	across	some	period	of	practice	(e.g.,	pre	vs.	post	contrasts),	as	our	focus	was	on	12 

neural	 underpinnings	 of	 the	 tasks	 themselves	 and	 not	 training-induced	 changes	 thereof.	 Studies	 of	13 

participants	under	the	age	of	18	or	of	participants	with	any	history	of	neurological	or	psychiatric	diagnosis	14 

were	 excluded.	 After	 this	 study-level	 screening,	 we	 then	 inspected	 each	 reported	 contrast	 from	 the	15 

studies.	Experimental	 contrasts	 from	analyses	 that	used	an	a	priori	 region(s)	of	 interest	 to	 investigate	16 

activation	 or	 functional	 connectivity	 were	 omitted	 permitting	 identification	 of	 whole-brain	 neural	17 

networks.	 We	 also	 excluded	 contrasts	 modeling	 ANOVA	 interaction-specific	 activations,	 due	 to	 the	18 

inherent	complexity	of	such	effects.	Finally,	any	studies/contrasts	that	did	not	report	the	brain	activation	19 

locations	in	a	three-dimensional	coordinate	space	were	discarded.		20 

During	inspection	of	each	contrast,	one	study	associate	(KLB)	manually	annotated	each	experiment	with	21 

a	set	of	metadata	terms	that	described	the	experimental	design	with	respect	to	stimulus	type	utilized,	22 

sensory	modality	engaged,	and	the	task	nature.	These	terms	described	the	salient	aspects	of	the	stimuli	23 

and	behaviors	associated	with	each	of	the	naturalistic	paradigms,	annotating	the	tasks	themselves	and	24 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 19, 2017. ; https://doi.org/10.1101/165951doi: bioRxiv preprint 

https://doi.org/10.1101/165951
http://creativecommons.org/licenses/by-nc/4.0/


	

	 Bottenhorn	et	al.	–	Page	6	

not	the	intended	psychological	construct	interrogated	by	the	original	report.	These	manual	annotations	1 

were	then	independently	reviewed	and	confirmed	by	a	second	study	associate	(JSF)	to	assure	consistency	2 

and	accuracy.	Any	disagreements	or	inconsistencies	between	KLB	and	JSF	were	resolved	following	a	final	3 

conversation	between	the	two	associates.	4 

Experimental	Design	and	Statistical	Analysis		5 

Modeled	Activation	Maps	6 

Following	 the	 identification	 of	 relevant	 papers	 and	 experiments/contrasts,	 reported	 brain	 activation	7 

coordinates	 were	 extracted.	 All	 Talairach	 atlas-based	 coordinates	 (Talairach	 &	 Tournoux,	 1988)	 were	8 

converted	to	Montreal	Neurological	Institute	(MNI)	space	(Collins,	Neelin,	Peters,	&	Evans,	1994;	Evans	et	9 

al.,	 1993)	 using	 the	 tal2icbm	 transformation	 (Lancaster	 et	 al.,	 2007;	 Laird	 et	 al.,	 2010).	 Probabilistic	10 

modeled	 activation	 (MA)	 maps	 were	 created	 from	 the	 foci	 reported	 in	 each	 individual	 contrast	 by	11 

modeling	a	spherical	Gaussian	blur	around	each	foci,	representative	of	the	uncertainty	 induced	by	the	12 

inherent	variability	from	individual	differences	and	between-lab	differences	and	weighted	by	the	number	13 

of	subjects	included	in	the	experiment	(Eickhoff	et	al.,	2009).	These	MA	maps	were	concatenated	into	an	14 

array	of	n	experiments	by	p	voxels,	which	was	then	analyzed	for	pairwise	correlations	that	reflected	the	15 

degree	of	spatial	similarity	between	the	MA	maps	from	each	of	the	n	experiment	and	those	of	every	other	16 

experiment.	The	resultant	n	X	n	correlation	matrix	represented	the	similarity	of	spatial	topography	of	MA	17 

maps	between	every	possible	pair	of	experiments.	18 

K-Means	Clustering	Analysis	19 

Individual	naturalistic	experiments	(n	MA	maps)	were	then	classified	into	K	groups	based	on	their	spatial	20 

topography	similarities.	The	k-means	clustering	procedure	was	performed	in	Matlab	(Mathworks,	R2013b	21 

for	 Linux),	 which	 grouped	 experiments	 by	 pairwise	 similarity,	 calculating	 correlation	 distance	 by	 one	22 

minus	the	correlation	between	MA	maps	(from	the	aforementioned	correlation	matrix)	and	finding	the	23 
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“best”	grouping	by	minimizing	the	sum	of	correlation	distances	within	each	cluster.	This	approach	begins	1 

by	choosing	K	arbitrary	maps	as	representative	centroids	for	each	of	K	clusters	and	assigning	experiments	2 

to	each	 cluster	based	on	 the	 closest	 (most	 similar)	 centroid.	 This	process	 continued	 iteratively	until	 a	3 

stable	solution	was	reached.		4 

Solutions	were	investigated	for	a	range	of	K	=	2	–	10	clusters.	Once	the	clustering	analysis	was	complete	5 

for	all	K,	we	compared	each	solution	to	the	neighboring	solutions	and	assessed	for	improvement	across	6 

parcellation	schemes	using	 four	metrics	describing	cluster	 separation	and	stability	 (Bzdok	et	al.,	2015;	7 

Eickhoff,	Laird,	Fox,	Bzdok,	&	Hensel,	2016).	This	allowed	us	to	objectively	select	the	number	of	clusters	8 

that	most	optimally	 divided	 the	data	 set.	 The	 first	metric,	average	 cluster	 silhouette	 across	 clustering	9 

solutions,	 assessed	 the	 separation	 between	 clusters	 and	 described	 whether	 clusters	 were	 distinct	 or	10 

overlapping.	A	higher	silhouette	value	indicates	that	greater	separation	is	ideal	and	that	each	experiment	11 

fits	well	 into	 its	 cluster,	with	 lower	misclassification	 likelihood	of	 fringe	 experiments	 into	 neighboring	12 

clusters.	Stability	is	indicated	by	minimal	change	in	silhouette	from	one	solution	(K)	to	the	next	(K	+	1).	13 

Second,	we	considered	the	consistency	of	experiment	assignment	by	comparing	the	ratio	of	the	minimum	14 

number	of	experiments	consistently	assigned	to	a	cluster	relative	to	the	mean	number	of	experiments	15 

consistently	 assigned	 to	 that	 cluster.	 In	 this	 case,	 only	 ratios	 above	 0.5,	 in	which	 at	 least	 half	 of	 the	16 

experiments	were	considered	viable	solutions.	Third,	the	variation	of	information	was	quantified,	which	17 

compared	the	entropy	of	clusters	with	the	mutual	information	shared	between	them	for	each	solution	K	18 

and	its	K	–	1	and	K	+	1	neighbors.	A	significant	decrease	in	variation	of	information	from	K	–	1	to	K	and	19 

increase	from	K	to	K	+	1	indicated	a	decrease	in	overlap	between	solutions	and,	thus,	stability	of	solution	20 

K.	Finally,	we	computed	a	hierarchy	index	for	each	solution,	which	assessed	how	clusters	split	from	the	K	21 

–	1	to	K	solution	to	form	the	additional	cluster.	A	lower	hierarchy	index	indicated	that	clusters	present	in	22 

K	stemmed	from	fewer	of	the	clusters	present	in	K	–	1,	another	indication	of	stability	 in	groupings.	An	23 

optimal	 clustering	 solution	 is	 one	 that	 demonstrated	 minimal	 overlap	 between	 clusters	 (i.e.,	 high	24 
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silhouette	value),	while	exhibiting	relative	stability	 in	comparison	with	the	previous	and	next	solutions	1 

(i.e.,	 consistency	 >	 0.5,	 a	 local	 minimum	 in	 variation	 of	 information,	 and	 lower	 hierarchy	 index	 than	2 

previous).	3 

Meta-Analytic	Groupings	4 

From	the	identified	optimal	clustering	solution,	we	probed	the	underlying	neural	topography	associated	5 

with	each	of	the	K	groups	of	experiments	(Laird	et	al.,	2015).	To	this	end,	the	ALE	meta-analysis	algorithm	6 

(Turkeltaub	et	al.,	2002;	Laird	et	al.,	2005)	was	applied	to	generate	a	map	of	convergent	activation	for	7 

each	grouping	of	experiments	with	 similar	 topography.	The	ALE	algorithm	 includes	a	weighting	of	 the	8 

number	of	subjects	when	computing	these	maps	of	convergent	activation	and	accounts	for	uncertainty	9 

associated	 with	 individual,	 template,	 and	 registration	 differences	 between	 and	 across	 experiments	10 

(Eickhoff	et	al.,	2009;	Turkeltaub	et	al.,	2012).	The	union	of	these	probability	distributions	was	used	to	11 

calculate	ALE	scores,	a	quantitative	assessment	of	convergence	between	brain	activation	across	different	12 

experiments,	which	was	 compared	against	1000	permutations	of	 a	null	distribution	of	 random	spatial	13 

arrangements	 (Eickhoff,	 Bzdok,	 Laird,	 Kurth,	 &	 Fox,	 2012).	 These	 ALE	 values	 for	 each	 meta-analytic	14 

grouping	of	experiments	were	thresholded	at	P	<	0.01	(cluster-level	corrected	for	family-wise	error)	with	15 

a	 voxel-level,	 cluster-forming	 threshold	of	P	 <	 0.001	 (Eickhoff,	Nichols,	 et	 al.,	 2016;	Woo,	Krishnan,	&	16 

Wager,	2014).	The	resultant	ALE	maps	thus	reflected	the	convergent	activation	patterns	within	each	of	17 

the	K	clusters.	The	experimental	K	clusters	are	hereafter	referred	to	as	meta-analytic	groupings	(MAGs),	18 

representing	meta-analytic	groups	of	experiments	demonstrating	similar	activation	patterns.	19 

Functional	Decoding	20 

Once	we	elucidated	convergent	activation	patterns	within	MAGs,	we	 sought	 to	gain	 insight	 into	what	21 

aspects	 of	 the	 naturalistic	 paradigms	were	most	 frequently	 associated	with	 each	MAG	 via	 functional	22 

decoding.	Functional	decoding	is	a	quantitative,	data-driven	method	by	which	researchers	can	infer	which	23 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 19, 2017. ; https://doi.org/10.1101/165951doi: bioRxiv preprint 

https://doi.org/10.1101/165951
http://creativecommons.org/licenses/by-nc/4.0/


	

	 Bottenhorn	et	al.	–	Page	9	

mental	 processes	 are	 related	 to	 activation	 in	 a	 specific	 brain	 region	 (or	 set	 of	 brain	 regions)	 across	1 

published	fMRI	studies.	We	chose	to	use	two	complementary	functional	decoding	approaches,	one	based	2 

on	 our	 study-specific,	 subjective	 manual	 annotations	 mentioned	 above,	 and	 another	 based	 on	 the	3 

objective,	 automated	 annotations	 provided	 by	 the	 Neurosynth	 database	 for	 over	 11,000	 functional	4 

neuroimaging	 studies	 (Yarkoni	 et	 al.,	 2011;	 Neurosynth.org).	 First,	 the	 manually	 annotated	 terms	5 

associated	with	each	experiment	were	grouped	 into	the	MAGs	 identified	above	and	were	assessed	by	6 

frequency	of	occurrence	in	each	MAG.	The	distribution	of	stimulus	modality,	stimulus	type,	and	salient	7 

terms	across	MAGs	allowed	us	to	evaluate	the	relationship	between	activation	patterns	and	the	aspects	8 

of	naturalistic	paradigms	that	elicited	them.	Second,	we	included	an	automated,	data-driven	annotation	9 

method	using	Neurosynth,	which	includes	automatically	extracted	terms	that	occur	at	a	high	frequency	10 

in	 the	 abstract	 of	 each	 archived	 study.	 To	 functionally	 decode	 our	 MAGs,	 we	 compared	 the	 MAGs’	11 

activation	 patterns	 with	 those	 reported	 across	 published	 neuroimaging	 papers	 in	 the	 Neurosynth	12 

database.	To	this	end,	we	uploaded	each	ALE	map	to	NeuroVault,	a	web-based	repository	for	3D	statistical	13 

neuroimaging	maps	that	directly	interfaces	with	Neurosynth	(Gorgolewski	et	al.,	2015;	NeuroVault.org).	14 

NeuroVault	 enables	 “functional	 decoding”	 by	 correlating	 unthresholded	 uploaded	 maps	 with	 term-15 

specific	meta-analytic	maps	extracted	from	Neurosynth’s	database	of	published	functional	neuroimaging	16 

studies.	 The	Neurosynth	 functional	 decoding	 results	were	 exported	 as	 a	 set	 of	 terms	 and	 correlation	17 

values	 representing	 how	 well	 the	 spatial	 distribution	 of	 activation	 associated	 with	 each	 term	 in	 the	18 

database	matched	the	activation	pattern	of	the	uploaded	map.		19 

Both	sets	of	terms	(i.e.,	obtained	via	manual	and	automated	approaches)	were	evaluated	to	assess	the	20 

specific	aspects	of	naturalistic	paradigms	associated	with	each	MAG.	The	Neurosynth	terms	representing	21 

broad	behavioral	aspects	across	fMRI	studies	that	elicit	similar	brain	activation	profiles	provides	both	an	22 

unbiased	description	of	the	experiments	engaging	each	MAG,	as	well	as	a	comparison	of	our	corpus	of	23 

studies	 with	 the	 broader	 literature.	 On	 the	 other	 hand,	 manual	 annotation	 provides	 more	 concise,	24 
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accurate	 description	 of	 the	 paradigms,	 though	 it	 is	 predisposed	 to	 the	 subjective	 bias	 of	 human	1 

annotation.	The	results	of	this	two-pronged	functional	decoding	approach	were	designed	to	describe	the	2 

processes	that	engage	brain	networks	similar	to	each	MAG	and	how	these	processes	may	be	similar	or	3 

different	 in	naturalistic	 fMRI	 studies	compared	 to	 the	broader	 functional	neuroimaging	 literature.	The	4 

distribution	of	stimulus	modalities	and	types	across	MAGs	was	assessed,	 too.	Together,	 the	 functional	5 

decoding	 results	 and	 distributions	 of	 different	 stimuli	 were	 interpreted	 to	 provide	 insight	 into	 how	6 

information	processing	is	functionally	segregated	across	cooperating	neural	systems	during	naturalistic	7 

tasks.	8 

Results	9 

Of	the	230	papers	meeting	inclusion,	120	were	omitted	based	on	further	exclusion	criteria,	leaving	110	10 

studies	that	reported	coordinates	of	brain	activation	from	naturalistic	fMRI	tasks	among	healthy	adults.	11 

The	final	data	set	included	activation	foci	from	376	experimental	contrasts	(N	=	1,817	subjects)	derived	12 

from	tasks	using	a	variety	of	stimulus	types	and	sensory	modalities.	Across	our	corpus	of	naturalistic	fMRI	13 

experiments,	approximately	55%	assessed	a	single	stimulus	modality,	 including	40%	visual	stimuli,	13%	14 

auditory,	and	1%	tactile.		15 

Stimulus	Modality	 Number	of	
Experiments	

Auditory	 50	(13%)	

Audiovisual	 154	(41%)	

Visual	 150	(40%)	

Visual	+	tactile	(pain)	 9	(2%)	

Visual	+	tactile	 5	(1%)	

Tactile	 4	(1%)	

Table	1.	Distribution	of	stimulus	modalities	across	the	naturalistic	corpus.	Paradigms	engaged	auditory,	16 
visual,	and	tactile	sensory	modalities,	both	separately	and	in	combination.	17 
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Conversely,	45%	of	experiments	utilized	multisensory	stimuli,	 including	41%	that	employed	audiovisual	1 

stimuli,	2%	in	which	a	visual	stimulus	was	paired	with	painful,	tactile	stimuli,	and	1%	pairing	visual	and	2 

non-painful	tactile	stimuli	(Table	1).	Of	the	visual	experiments,	69%	involved	a	motor	response,	as	did	25%	3 

of	 the	 audiovisual	 experiments,	 ranging	 from	a	button	press	 to	 joystick	 and	object	manipulation.	 The	4 

stimulus	 types	most	 frequently	used	across	 the	 included	experiments	were	 films	 (45%),	 virtual	 reality	5 

(32%),	speech	(9%),	and	music	(6%)	(Table	2).		6 

Stimulus	Type	 Number	of	
Experiments	

Film	 169	(45%)	

Virtual	Reality	 121	(32%)	

Speech	 32	(9%)	

Music	 21	(6%)	

Video	Game	 13	(4%)	

3D	image	 6	(2%)	

Tactile	 6	(2%)	

Picture	 4	(1%)	

Sounds	 1	(<1%)	

Table	 2.	 Distribution	 of	 stimulus	 types	 across	 the	 naturalistic	 corpus.	Within	 each	 stimulus	modality,	7 
multiple	types	of	experimental	stimuli	were	included	across	the	data	set.	8 
	9 

K-Means	Clustering	Solutions	10 

MA	maps	were	created	for	each	contrast,	and	then	clustered	to	 identify	groups	with	similar	activation	11 

topographies.	 For	 completeness,	 the	 k-means	 clustering	 solutions	 for	 K	 =	 2	 –	 10	 clusters	 were	12 

quantitatively	evaluated	across	four	metrics	to	identify	an	optimal	solution	(Figure	1).	When	considering	13 

the	average	silhouette	metric	(Fig.	1A),	values	generally	increased	as	K	increased	and	the	smallest	increase	14 

was	observed	between	K	=	7	to	K	=	8,	indicating	little	additional	separation	between	clusters	gained	by	15 

moving	from	7	to	8	clusters.	With	respect	to	the	consistency	of	assigned	experiments	metric	 (Fig.	1B),	16 
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each	 of	 the	 solutions	 K	 =	 2	 –	 10	 met	 the	 stability	 requirement	 whereby	 the	 minimum	 number	 of	1 

experiments	included	in	any	iteration	of	the	solution	was	at	least	50%	of	the	mean	number	of	experiments	2 

included	across	iterations.	The	variation	of	information	metric	(Fig.	1C),	suggested	the	stability	of	both	5-	3 

and	7-cluster	solutions	as	parameter	value	decreases	were	observed	when	moving	from	K	=	4	to	K	=	5	and	4 

from	K	=	6	to	K	=	7,	which	also	combined	with	parameter	increases	when	moving	from	K	=	5	to	K	=	6	and	5 

K	=	7	to	K	=	8.	The	hierarchy	index	metric	(Fig.1D)	further	corroborated	a	5-	and	7-cluster	solution	where	6 

local	minima	were	observed	for	these	two	solutions.	While	both	the	5-	and	7-cluster	solutions	appeared	7 

stable	(Fig.	1C,	1D)	and	consisted	of	groupings	with	a	satisfactory	amount	of	separation	(Fig	1A),	based	on	8 

the	smaller	increase	in	average	cluster	silhouette	from	K	=	7	to	K	=	8	(Fig.	1A),	we	proceeded	with	the	K	=	9 

7	solution	in	subsequent	analyses.		10 

	11 

Figure	1.	Metrics	computed	for	K	=	2	–	10	clustering	solutions.	(A)	The	average	cluster	silhouette	for	each	12 
solution	 K	 from	 2	 to	 10	 clusters.	 (B)	 Consistency	 in	 experiments	 assignment	 to	 clusters,	 plotting	 the	13 
minimum	consistently	assigned	clusters	next	to	the	mean	of	consistently	assigned	clusters.	(C)	The	change	14 
in	variation	of	information,	a	distance	metric,	from	the	K	–	1	to	K	and	from	K	to	K	+	1.	(D)	The	hierarchy	15 
index	for	each	of	K	clustering	solutions,	which	provides	information	about	how	clusters	in	the	K	solution	16 
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stemmed	from	clusters	in	the	K	–	1	solution.	1 

In	this	K	=	7	solution,	four	experiments	were	not	grouped	into	any	cluster,	due	to	the	dissimilarity	of	their	2 

functional	 activation	 patterns	 with	 those	 across	 the	 rest	 of	 the	 data	 set,	 yielding	 a	 total	 set	 of	 372	3 

experiments	across	seven	clusters.	4 

Meta-Analytic	Groupings	5 

The	 optimal	 clustering	 solution	 yielded	 seven	meta-analytic	 groupings	 (MAGs)	 of	 experiments	 in	 our	6 

corpus,	suggesting	similarities	in	brain	activation	across	this	sample	of	the	naturalistic	literature	coalesce	7 

into	 seven	 distinct	 patterns.	 The	 number	 of	 experiments	 that	 were	 clustered	 into	 each	 MAG	 were	8 

uniformly	distributed	and	ranged	from	41	to	77	experiments	(mean	=	53.14;	SD=	12.46;	Table	3).	ALE	maps	9 

of	 the	 seven	MAGs	were	generated	and	demonstrated	 little	overlap	 in	activation	patterns,	 suggesting	10 

distinct	patterns	of	recurrent	activation	across	our	set	of	naturalistic	experiments	(Figure	2,	Supplemental	11 

Table	1).	Whereas	some	of	the	MAGs	exhibited	focal	patterns	of	convergent	activation,	restricted	to	a	12 

single	 or	 neighboring	 gyri	 (e.g.,	MAG	1	 and	 6),	 others	 presented	with	 distributed	 convergence	 across	13 

multiple	 lobes	 (e.g.,	MAG	2	 and	 5).	Most	 of	 the	 resulting	MAGs	were	 restricted	 to	 cortical	 activation	14 

patterns,	although	MAGs	2	and	3	exhibited	convergent	activation	in	subcortical	and	brainstem	regions.		15 

MAG	1	included	convergent	activation	in	the	bilateral	posterior	temporal	areas,	including	portions	of	the	16 

inferior,	middle,	and	superior	temporal	gyri,	extending	into	the	inferior	parietal	lobule	on	the	right	and	17 

into	the	middle	occipital	gyrus	on	the	left,	as	well	as	in	the	left	supramarginal	gyrus	and	right	precentral	18 

and	middle	frontal	gyri.	MAG	2	exhibited	convergence	in	left	inferior	frontal	gyrus,	left	precentral	gyrus,	19 

anterior	and	posterior	aspects	of	the	middle	temporal	gyrus,	precuneus,	thalamus,	and	caudate	nucleus,	20 

in	 addition	 to	 both	 the	 left	 and	 right	 superior	 frontal	 gyri.	MAG	3	 demonstrated	 a	 largely	 symmetric	21 

convergence	 pattern	 across	 multiple	 subcortical	 structures	 including	 bilateral	 amygdalae,	 thalamus,	22 

parahippocampal	gyrus,	and	periaqueductal	gray,	with	cortical	clusters	observed	in	the	left	inferior	frontal	23 
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sulcus	and	inferior	frontal	gyrus.	MAG	4	included	clusters	of	convergence	in	right	supramarginal	gyrus	and	1 

right	midcingulate	cortex	as	well	as	in	in	the	left	lingual	gyrus,	right	anterior	middle	occipital	gyrus,	right	2 

precuneus,	and	bilateral	inferior	frontal	gyri.	MAG	5	exhibited	convergent	activation	in	bilateral	medial	3 

temporal	lobe	and	hippocampal	regions,	bilateral	precuneus,	retrospenial	posterior	cingulate	cortex,	and	4 

occipital	 regions	 including	 the	 lingual	 gyrus,	 right	 calcarine	 sulcus,	 and	 cuneus.	 MAG	 6	 showed	5 

convergence	in	the	bilateral	superior	temporal	gyri	and	sulci	and	the	left	temporo-occipital	junction.	MAG	6 

7	demonstrated	convergence	in	the	bilateral	superior	frontal	gyri,	intraparietal	sulci,	and	inferior	parietal	7 

lobules	as	well	as	convergence	in	higher-order	visual	processing	areas	in	the	middle	occipital	and	lingual	8 

gyri.	9 

	10 

Figure	 2.	 Convergent	 activation	 patterns	 of	MAGs	 from	 the	 naturalistic	 corpus.	 ALE	meta-analysis	 of	11 
experiments	in	each	MAG	yielded	seven	patterns	of	convergent	activation.	12 
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Stimulus	Distribution	Across	MAGs	1 

Each	stimulus	modality	was	represented	 in	multiple	MAGs,	but	modalities	were	not	evenly	distributed	2 

across	MAGs	(Figure	3A).	Experiments	utilizing	audiovisual	tasks	were	somewhat	uniformly	distributed	3 

across	the	MAGs,	with	a	slightly	higher	proportion	of	audiovisual	tasks	in	MAGs	1,	3,	and	6.	In	contrast,	4 

more	than	half	of	the	experiments	using	auditory	tasks	were	grouped	into	MAGs	2	and	6.	Notably,	more	5 

experiments	based	on	auditory	and	audiovisual	stimuli	were	clustered	into	MAG	6	than	any	other	MAG.	6 

Experiments	in	which	participants	experienced	physical	pain	were	not	present	in	MAGs	1,	6,	and	7,	but	7 

distributed	nearly	evenly	among	MAGs	2	through	5,	with	a	slightly	higher	portion	in	MAG	3.	Experiments	8 

that	used	tactile	stimuli	were	grouped	into	MAG	7	twice	as	often	as	any	other	MAG	(MAGs1-3).	Visual	9 

experiments	 were	 more	 evenly	 distributed	 across	 clusters,	 though	 there	 was	 a	 markedly	 smaller	10 

proportion	in	MAG	6	than	any	other	MAG.	The	complete	distribution	of	stimulus	modalities	across	MAGs	11 

is	provided	in	Supplemental	Table	2.		12 

As	with	stimulus	modality,	most	stimulus	types	showed	unequal,	but	not	necessarily	selective,	distribution	13 

across	MAGs	 (Figure	 3B).	 Film-based	 experiments	 and	 virtual	 reality	 tasks	were	 uniformly	 distributed	14 

across	MAGs;	and	tasks	utilizing	spoken	stimuli	were	more	frequently	grouped	into	MAGs	2	and	6.	Again,	15 

auditory	stimuli	were	highly	associated	with	MAG	6,	as	~50%	of	music	experiments	and	~20%	of	speech	16 

experiments	were	clustered	into	MAG	6.	Experiments	that	required	subjects	to	play	video	games	were	17 

most	often	grouped	into	MAGs	2,	3,	and	7.	Experimental	contrasts	which	included	a	condition	in	which	18 

participants	received	tactile	stimulation,	were	most	prevalent	in	MAGs	3	and	7.	A	detailed	distribution	of	19 

stimulus	types	across	MAGs	is	shown	in	Supplemental	Table	3.	20 

	21 
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1 

	2 

Figure	3.	Distribution	of	stimulus	modalities	and	types	across	MAGs.	(A)	The	presence	of	each	sensory	3 
modality	across	the	corpus	that	is	associated	with	each	MAG.	(B)	The	proportion	of	each	stimulus	type	4 
present	within	the	corpus	that	is	associated	with	each	MAG.	These	percentages	represent	the	proportion	5 
modality	or	stimulus	type	present	in	each	MAG,	compared	to	the	total	count	of	that	modality	or	stimulus	6 
type	across	all	MAGs.	7 

Functional	Decoding		8 

Two	 approaches	 for	 functionally	 decoding	 each	 MAG,	 manual	 and	 automated	 annotations,	 were	9 

performed	to	develop	a	functional	interpretation	of	each	MAGs’	association	with	aspects	of	naturalistic	10 

paradigms.		11 

Manual	Annotations	12 

Our	 manual	 annotations	 utilized	 a	 list	 of	 26	 corpus-specific	 metadata	 terms,	 which	 captured	 salient	13 

features	of	the	naturalistic	design,	rather	than	the	psychological	constructs	assumed	to	be	involved.	Table	14 

4	 displays	 the	 frequency	 distribution	 of	 these	 terms	 (Column	 =	 “Total”),	 highlighting	 which	 terms	15 

described	 the	 largest	 number	 of	 experiments	 in	 our	 corpus	 (e.g.,	 “navigation”,	 “visual	 features”,	16 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 19, 2017. ; https://doi.org/10.1101/165951doi: bioRxiv preprint 

https://doi.org/10.1101/165951
http://creativecommons.org/licenses/by-nc/4.0/


	

	 Bottenhorn	et	al.	–	Page	17	

“emotional	film”,	“attention”),	as	well	as	those	that	accounted	for	a	minimal	number	of	experiments	in	1 

our	corpus	(e.g.,	“violence”,	“tactile”,	“pain”).	These	values	indicate	the	percent	of	experiments	labeled	2 

with	 each	 term,	 or	 the	 base-rate	 of	 each	 term	 throughout	 the	 data	 set,	 keeping	 in	 mind	 that	 each	3 

experiment	was	 labeled	with	only	one	or	 two	terms.	Once	the	experiments	were	clustered	 into	seven	4 

MAGs,	we	evaluated	the	relative	contributions	of	each	term	per	MAG,	controlling	for	base-rate	by	dividing	5 

each	 term’s	 per-MAG	 count	 by	 that	 term’s	 total	 count	 across	 the	 corpus	 (Table	 4).	 These	 outcomes	6 

provide	 the	 association	 of	 each	 term	 with	 each	 MAG	 (Table	 4).	 Some	 of	 the	 terms	 in	 the	 manual	7 

annotation	analysis	corresponded	to	stimulus	types	in	Figure	3B	(e.g.,	per-MAG	distribution	for	“music”	8 

and	“video	game”).	However,	many	of	the	manually	derived	terms	highlighted	experimental	aspects	that	9 

reflect	the	unique	and	salient	features	of	the	naturalistic	corpus	(e.g.,	“anthropomorphic”,	“violence”)	and	10 

are	not	 included	in	standard	neuroimaging	paradigm	ontologies	such	as	BrainMap	(Fox	et	al.,	2005)	or	11 

CogPO	(Turner	&	Laird,	2012).	12 

Automated	Neurosynth	Annotations	13 

To	complement	the	manual	annotation	analysis,	we	used	Neurosynth’s	automated	annotations,	which	14 

describes	 experiments	 that	 engage	 each	 MAG	 based	 on	 published	 neuroimaging	 data,	 allowing	15 

comparison	of	our	corpus	with	the	broader	literature.	MAG	results	were	decoded	in	Neurosynth,	yielding	16 

correlation	 values	 indicating	 the	 similarity	 of	 the	 input	 map	 (i.e.,	 each	 MAG’s	 ALE	 map)	 and	 maps	17 

associated	with	each	term	from	the	Neurosynth	database.	To	facilitate	interpretation,	the	top	ten	terms	18 

with	the	highest	correlation	values	for	each	MAG	are	presented	(Table	5).	Terms	that	were	near-duplicates	19 

of	terms	already	included	in	the	list	were	removed,	such	as	“emotion”	and	“emotions”	if	“emotional”	was	20 

higher	on	the	list.	Non-content	terms	(e.g.	“abstract”,	“reliable”)	and	terms	that	described	brain	regions,	21 

such	as	“insula”	or	“mt”,	were	also	excluded22 
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Table	4.	Manual	functional	decoding	results	across	meta-analytic	groupings.	The	relative	contributions	of	each	manually-derived	metadata	term	15 
(e.g.,	term	frequencies)	were	computed	for	all	MAGs,	controlling	for	the	base-rate	by	dividing	each	term’s	per-MAG	count	by	that	term’s	total	16 
count	across	the	corpus.	Base-rates	are	provided	as	the	total	count	for	each	term.	17 

Term	
	 Frequency	per	MAG	

Total	 MAG	1	 MAG	2	 MAG	3	 MAG	4	 MAG	5	 MAG	6	 MAG	7	
Anthropomorphic	 21	 (6%)	 6	 (25%)	 0	 (0%)	 1	 (4%)	 7	 (29%)	 3	 (13%)	 1	 (17%)	 3	 (13%)	
Attention	 50	 (14%)	 17	 (30%)	 4	 (7%)	 1	 (2%)	 2	 (4%)	 8	 (12%)	 11	 (32%)	 8	 (14%)	
Auditory	features	 17	 (5%)	 3	 (16%)	 0	 (0%)	 0	 (0%)	 1	 (5%)	 2	 (11%)	 11	 (68%)	 0	 (0%)	
Congruence	 2	 (6%)	 3	 (12%)	 4	 (15%)	 0	 (0%)	 1	 (4%)	 4	 (15%)	 3	 (27%)	 7	 (27%)	
Emotional	film	 59	 (16%)	 14	 (23%)	 3	 (5%)	 15	 (25%)	 6	 (10%)	 4	 (5%)	 11	 (23%)	 6	 (10%)	
Encoding	 24	 (6%)	 3	 (10%)	 4	 (14%)	 1	 (3%)	 2	 (7%)	 5	 (17%)	 1	 (21%)	 8	 (28%)	
Erotic	 15	 (4%)	 2	 (12%)	 1	 (6%)	 3	 (18%)	 4	 (24%)	 2	 (12%)	 0	 (12%)	 3	 (18%)	
Faces	 21	 (6%)	 7	 (30%)	 0	 (0%)	 2	 (9%)	 1	 (4%)	 2	 (9%)	 7	 (39%)	 2	 (9%)	
Imagination	 23	 (6%)	 3	 (12%)	 5	 (19%)	 1	 (4%)	 5	 (19%)	 3	 (12%)	 1	 (15%)	 5	 (19%)	
Inference	 11	 (3%)	 0	 (0%)	 6	 (50%)	 1	 (8%)	 2	 (17%)	 1	 (8%)	 0	 (8%)	 1	 (8%)	
Language	 47	 (13%)	 4	 (7%)	 10	 (19%)	 2	 (4%)	 2	 (4%)	 7	 (13%)	 12	 (35%)	 10	 (19%)	
Movement	 14	 (4%)	 1	 (6%)	 0	 (0%)	 1	 (6%)	 5	 (31%)	 2	 (13%)	 1	 (19%)	 4	 (25%)	
Music	 21	 (6%)	 1	 (5%)	 4	 (19%)	 2	 (10%)	 0	 (0%)	 0	 (0%)	 11	 (52%)	 3	 (14%)	
Narrative	 30	 (8%)	 3	 (9%)	 3	 (9%)	 2	 (6%)	 2	 (6%)	 5	 (14%)	 10	 (43%)	 5	 (14%)	
Navigation	 81	 (22%)	 5	 (5%)	 8	 (8%)	 11	 (10%)	 12	 (11%)	 24	 23%)	 2	 (3%)	 19	 (18%)	
Negative	valence	 24	 (6%)	 4	 (17%)	 1	 (4%)	 8	 (33%)	 2	 (8%)	 0	 (0%)	 4	 (17%)	 5	 (21%)	
Pain	 9	 (2%)	 0	 (0%)	 2	 (18%)	 3	 (27%)	 2	 (18%)	 2	 (18%)	 0	 (18%)	 0	 (0%)	
Positive	valence	 11	 (3%)	 3	 (23%)	 1	 (8%)	 2	 (15%)	 0	 (0%)	 2	 (15%)	 1	 (23%)	 2	 (15%)	
Recognition	 12	 (3%)	 1	 (8%)	 3	 (23%)	 1	 (8%)	 2	 (15%)	 1	 (8%)	 1	 (15%)	 3	 (23%)	
Retrieval	 23	 (6%)	 1	 (4%)	 6	 (23%)	 4	 (15%)	 5	 (19%)	 3	 (12%)	 1	 (15%)	 3	 (12%)	
Social	 26	 (7%)	 3	 (10%)	 6	 (21%)	 4	 (14%)	 5	 (17%)	 3	 (10%)	 1	 (14%)	 4	 (14%)	
Tactile	 9	 (2%)	 1	 (11%)	 2	 (22%)	 2	 (22%)	 0	 (0%)	 0	 (0%)	 0	 (0%)	 4	 (44%)	
Video	game	 15	 (4%)	 0	 (0%)	 3	 (17%)	 3	 (17%)	 1	 (6%)	 3	 (17%)	 0	 (17%)	 5	 (28%)	
Violence	 8	 (2%)	 0	 (0%)	 3	 (33%)	 3	 (33%)	 0	 (0%)	 1	 (11%)	 0	 (11%)	 1	 (11%)	
Visual	features	 65	 (17%)	 18	 (24%)	 4	 (5%)	 2	 (3%)	 2	 (3%)	 10	 (14%)	 7	 (22%)	 22	 (29%)	
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Functional	Interpretation	of	MAGs	1 

The	 combined	 knowledge	 gained	 from	 the	MAGs	 topography,	 as	well	 as	 the	manual	 and	 automated	2 

metadata	decoding	analyses	provided	insight	into	the	functional	interpretation	of	the	clustering	results.	3 

Overall,	the	terms	yielded	by	Neurosynth	decoding	generally	agreed	with	the	manual	annotation	terms	in	4 

characterizing	the	MAGs.	Below	is	a	summary	of	the	seven	MAGs;	note	that	reported	labels	do	not	refer	5 

to	the	definitive	function	of	these	regions,	but	rather	indicate	how	each	MAG	reflects	differential	network	6 

contributions	during	naturalistic	fMRI	paradigms.		7 

Manual	annotations	indicated	that	MAG	1	experiments	involved	attention	and	the	processing	of	dynamic	8 
visual	features,	in	addition	to	visually-presented	anthropomorphic	forms	and	faces.	Most	of	the	stimuli	in	9 
these	experiments	were	 films	 (Fig	3B),	especially	affective	 films.	Neurosynth	 results	 largely	 converged	10 
with	these	manual	annotations,	as	terms	including	“videos”,	“body”,	“observation”,	and	“visual	motion”	11 
(Table	 5)	 were	 associated	 with	 activations	 in	 MAG	 1	 regions.	 These	 annotations,	 together	 with	 the	12 
presence	 of	 convergent	 activation	 across	 regions	 commonly	 associated	 with	 higher-level	 visual	13 
processing,	 suggest	 that	MAG	1	was	 associated	with	 the	Observation	of	 Body	and	Biological	Motion	14 
(Figure	2.1).		15 
Manual	 annotations	 indicated	 that	 MAG	 2	 experiments	 involved	 language	 processing	 and	16 
comprehension,	 retrieval,	encoding,	 inference,	and	 judgements	about	congruence.	This	MAG	 included	17 
relatively	large	proportions	of	the	experiments	using	speech,	video	games,	and	tactile	stimulation	(Fig	3B).	18 
Neurosynth	 results	 supported	 the	manual	 annotations’	 indication	 that	 this	MAG	was	 associated	with	19 
language	processing	and	comprehension,	as	terms	such	as	“sentence”,	“comprehension”,	“semantic”,	and	20 
“mentalizing”	(Table	5)	were	returned.	These	annotations	and	the	presence	of	convergent	activation	in	21 
predominately	 left	 lateralized	 regions	 typically	 associated	 with	 higher-order	 cognition	 and	 language	22 
suggest	that	MAG	2	related	to	Language	Processing	(Figure	2.2).	23 
Manual	annotations	indicated	that	MAG	3	experiments	involved	human	interactions	or	affective	displays,	24 
including	emotional	films	with	a	negative	valence.	Films	were	the	predominantly	used	stimuli	across	these	25 
experiments,	 while	 video	 games,	 virtual	 reality,	 and	 painful	 stimuli	 made	 up	 a	 smaller	 proportion	 of	26 
paradigms	(Fig	3B).	Neurosynth	results	corroborated	these	manual	annotation	interpretations	regarding	27 
affective	and	social	processing,	with	terms	such	as	“emotional”,	“faces”,	“fearful”,	and	“valence”	(Table	28 
5).	Together,	these	annotations	and	a	convergent	activation	pattern	involving	bilateral	amygdalae	suggest	29 
that	MAG	3	was	associated	with	Emotional	Processing	(Figure	2.3).	30 
Manual	annotations	indicated	that	more	than	half	of	the	experiments	in	MAG	4	required	participants	to	31 
respond	to	stimuli	with	an	executed	or	imagined	motor	movement.	Over	90%	of	the	paradigms	utilized	32 
by	experiments	in	this	MAG	were	based	on	films	and	virtual	reality	(Extended	Data	Figure	3-2),	the	former	33 
of	which	displayed	human	social	and	erotic	interactions,	emotional	displays,	and	anthropomorphic	figures	34 
(Table	 4).	 Neurosynth	 results	 were	 notably	 absent	 of	 social	 terms,	 but	 corroborated	 the	 manual	35 
annotation	interpretation	of	motor	execution,	as	terms	associated	with	activation	in	these	regions	include	36 
“execution”,	“visual	motion”,	and	“action”	(Table	5).	These	results,	together	with	convergent	activation	37 
in,	suggest	that	MAG	4	was	linked	with	Motor	Planning	(Figure	2.4).	38 
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	1 
Table	5.	Automated	functional	decoding	results	from	Neurosynth.	The	top	ten	Neurosynth	(NS)	terms	are	provided	for	each	MAG,	along	with	the	2 
corresponding	Pearson’s	correlation	coefficient	(“corr”)	that	indicates	the	strength	of	similarity	between	Neurosynth	maps	and	each	MAG3 

MAG	1	 MAG	2	 MAG	3	 MAG	4	 MAG	5	 MAG	6	 MAG	7	

NS	term	 corr.	 NS	term	 corr.	 NS	term	 corr.	 NS	term	 corr.	 NS	term	 corr.	 NS	term	 corr.	 NS	term	 corr.	

motion	 0.418	 sentence	 0.334	 emotional	 0.380	 painful	 0.208	 navigation	 0.29	 auditory	 0.638	 visual	 0.441	

static	 0.323	 comprehension	 0.328	 expressions	 0.375	 execution	 0.168	 virtual	 0.286	 sounds	 0.628	 motion	 0.329	

videos	 0.315	 language	 0.287	 neutral	 0.375	
motion	 0.138	

scene	 0.269	 listening	 0.595	 spatial	 0.322	

body	 0.312	 semantic	 0.271	 facial	 0.366	 hand	 0.115	 memory	 0.22	 acoustic	 0.588	 action	 0.315	

moving	 0.285	 linguistic	 0.252	 fearful	 0.355	
video	 0.105	

episodic	 0.217	 sound	 0.588	 eye	
movements	

0.284	

perception	 0.279	 verb	 0.241	 affective	 0.349	 action	 0.098	 retrieval	 0.202	 pitch	 0.582	 actions	 0.278	

visual	 0.273	 syntactic	 0.237	 happy	 0.338	 visual	
motion	 0.095	

place	 0.195	 speech	 0.559	 execution	 0.276	

observation	 0.271	 mind	 0.233	 facial	
expressions	

0.337	 eye	
movements	 0.092	

visual	 0.185	 tones	 0.526	 observation	 0.264	

visual	motion	 0.267	 theory	mind	 0.231	 fear	 0.323	 observer	 0.085	 remembering	 0.149	 music	 0.521	 hand	 0.247	

viewed	 0.259	 mentalizing	 0.219	 valence	 0.317	 noxious	 0.083	 encoding	 0.139	 spectral	 0.52	 attention	 0.245	
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	1 
Manual	annotations	indicated	that	MAG	5	heavily	represented	experiments	involving	navigation	through	2 
virtual	reality	environments,	with	both	attentional	and	memory	demands	related	to	encoding	unfamiliar	3 
virtual	landscapes	for	future	use.	A	few	of	these	experiments	required	language	processing,	as	well,	and	4 
half	of	the	experiments	that	used	3D	images	were	grouped	into	MAG	5	(indicate	table	or	fig	where	this	5 
info	comes	from).	The	manual	annotations	were	reflected	in	the	Neurosynth	results,	as	similar	patterns	6 
of	activation	have	been	associated	with	“navigation”,	“scene”,	“memory”,	and	“place”.	Additional	related	7 
terms	 added	 depth	 to	 our	 characterization,	 expanding	 on	 the	 memory	 demands	 with	 “encoding”,	8 
“episodic”,	 “remembering”,	 and	 “retrieval”	 (Table	 5).	 Overall,	 these	 experimental	 characteristics	 and	9 
convergent	activation	 in	medial	 temporal	 regions	and	along	 the	visual	processing	 stream	suggest	 that	10 
MAG	5	was	associated	with	Navigation	and	Spatial	Memory	(Figure	2.5).	11 
Manual	 annotations	 showed	 that	MAG	 6	 experiments	 primarily	 involved	 either	 film	 or	music	 stimuli	12 
(Figure	3B)	and	engaged	either	audiovisual	or	purely	auditory	processing	(Fig.	3A).	More	than	half	of	the	13 
included	experiments	that	used	music	or	spoken	narratives	as	stimuli	were	grouped	into	this	MAG	(Fig.	14 
2B),	 with	 some	 stimuli	 involving	 an	 emotional	 quality	 (Table	 4).	 Neurosynth	 corroborated	 these	15 
interpretations	 returning	 terms	 such	 as	 “auditory”,	 “sounds”,	 “listening”,	 and	 “pitch”	 associated	with	16 
activation	of	the	regions	in	this	MAG.	These	metadata	descriptions	combined	with	convergent	activation	17 
in	superior	temporal	regions	suggest	this	MAG’s	association	with	Auditory	Processing	(Figure	2.6).	18 
Manual	annotations	of	MAG	7	experiments	implicated	tasks	involving	visual	attentional	demands	and	the	19 
processing	of	visual	features,	as	participants	engaged	in	both	film-watching	and	virtual	reality	navigation	20 
(Figure	3B,	Table	4).	Some	experiments	involved	judgements	of	stimuli	congruency,	memory	encoding,	21 
and	language	processing.	Neurosynth	supported	this	characterization	returning	terms	including	“visual,”	22 
“attention”,	“eye	movements”,	and	“observation”	associated	with	activation	of	the	regions	in	this	MAG	23 
(Table	5).	These	annotations	and	convergent	activation	in	regions	resembling	the	dorsal	attention	network	24 
and	areas	of	higher	level	visual	processing	(e.g.,	superior	frontal	and	parietal	regions,	extrastriate	cortex)	25 
suggest	this	MAG’s	association	with	Visual	Attention	(Figure	2.7).	26 

Discussion	27 

To	characterize	a	core	set	of	brain	networks	engaged	in	more	ecologically	valid	neuroimaging	designs,	we	28 

employed	 a	 data-driven	 approach	 that	 meta-analytically	 grouped	 published	 naturalistic	 fMRI	 results	29 

according	 to	 their	 spatial	 topographies.	 Objective	metrics	 suggested	 that	 a	 solution	 of	K	 =	 7	 clusters	30 

provided	the	most	stable	and	disparate	grouping	of	experiments	across	the	naturalistic	fMRI	literature,	31 

and	ALE	meta-analysis	delineated	convergent	activation	across	spatially	distinct	brain	 regions	 for	each	32 

meta-analytic	 grouping	 (MAG)	 of	 experiments.	 We	 then	 considered	 how	 such	 networks	 subdivide	33 

information	processing	by	assessing	the	characteristics	of	the	constituent	experiments	from	each	MAG.	34 

Utilizing	both	manual	and	automated	functional	decoding	approaches,	enhanced	interpretations	of	the	35 

mental	 processes	 associated	with	 specific	 constellations	 of	 brain	 regions	were	 gleaned	 such	 that	 the	36 
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outcomes	 of	 the	 two	 approaches	 generally	 agreed,	 with	 differences	 highlighting	 domain-specific	 and	1 

domain-general	processes	associated	with	naturalistic	paradigms.		2 

Distributed	Processing	for	Complex	Functions	3 

Though	the	seven	identified	MAGs	are	spatially	distinct	and	appear	to	correspond	with	dissociable	mental	4 

processes,	 most	 of	 the	 included	 naturalistic	 tasks	 recruited	more	 than	 one	MAG	 (71	 of	 110).	 This	 is	5 

consistent	with	functional	segregation	and	the	flexible	nature	of	the	naturalistic	design,	demonstrating	6 

that	 the	 manipulation	 of	 different	 contrasts	 can	 identify	 distinct	 networks	 that	 likely	 cooperate	 to	7 

successfully	 perform	 a	 complex	 task.	 Further	 indicative	 of	 coordinated	 interactions	 and	 distributed	8 

processing,	 each	 MAG	 included	 experiments	 that	 utilized	 different	 task	 modalities	 and	 task	 types.	9 

Overwhelmingly,	the	identified	MAGs	and	the	functional	characterizations	thereof	support	the	notion	that	10 

complex	behaviors	are	facilitated	by	coordinated	interactions	between	several	large-scale	sensory,	motor,	11 

attentional,	and	domain-specific	networks,	a	position	increasingly	endorsed	in	neuroimaging	endeavors	12 

(Barrett	&	Satpute,	2013;	Lindquist,	Wager,	Kober,	Bliss-Moreau,	&	Barrett,	2012;	Mišić	&	Sporns,	2016;	13 

Spreng,	 Sepulcre,	 Turner,	 Stevens,	 &	 Schacter,	 2013).	 The	 characterization	 of	 identified	 MAGs	 from	14 

aspects	 of	 the	 naturalistic	 paradigms	 that	 elicit	 them	 suggest	 an	 information	 processing	 model	 of	15 

cooperating	systems	(Figure	4)	for	sensory	input	(MAGs	1	and	6),	attentional	control	(MAG	7),	domain-16 

specific	processing	(MAGs	2,	3,	and	5),	and	motor	planning	(MAG	4),	into	and	from	which	information	is	17 

segregated	and	integrated	to	enable	complex	behaviors	(e.g.,	language,	emotion,	spatial	navigation).	18 

MAGs	1	 and	6	primarily	 represent	 the	perceptual	 processing	 streams	of	 incoming	auditory	 and	 visual	19 

information,	and	likely	cooperate	to	process	audiovisual	information.	Functional	decoding	suggests	that	20 

MAG	 1	 is	 involved	 in	 viewing	 faces	 and	 anthropomorphic	 figures,	 which	 is	 consistent	 with	 previous	21 

research	showing	that	posterior	temporal	and	temporo-occipital	regions	corresponding	with	area	V5/MT	22 

are	 associated	 with	 the	 perception	 of	 movement,	 specifically	 biological	 movement	 (Cohen	 Kadosh,	23 
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Henson,	Cohen	Kadosh,	 Johnson,	&	Dick,	2010;	Pelphrey,	Morris,	&	McCarthy,	2004;	Pelphrey,	Morris,	1 

Michelich,	 Allison,	 &	 McCarthy,	 2005;	 Puce,	 Allison,	 Bentin,	 Gore,	 &	 McCarthy,	 1998;	 Wheaton,	2 

Thompson,	Syngeniotis,	Abbott,	&	Puce,	2004).	Similarly,	MAG	6	is	associated	with	listening	to	music	and	3 

speech,	as	well	as	perceiving	pitch	and	tone,	stretching	across	primary	auditory	cortex	and	into	regions	of	4 

higher	auditory	processing	(Gray,	Carver,	&	Standring,	2009;	Türe,	Yaşargil,	Al-Mefty,	&	Yaşargil,	1999).	5 

Per	functional	decoding	of	MAG	7	of	both	manual	and	automated	annotations,	MAG	7	is	associated	with	6 

visual	attention.	This	functional	characterization	is	also	supported	by	the	corresponding	fronto-parietal	7 

activations	 that	 are	 often	 associated	 with	 attending	 to	 both	 auditory	 	 and	 visual	 stimuli	 (Braga,	 Fu,	8 

Seemungal,	Wise,	&	Leech,	2016;	Puschmann,	Huster,	&	Thiel,	2016),	a	necessary	process	for	successful	9 

language	 processing.	 MAGs	 1	 and	 6	 represent	 the	 perceptual	 processing	 streams	 of	 audiovisual	10 

information.		11 

	12 

Figure	 4.	 Complex	 systems	 for	 dynamical	 information	 processing.	 The	 identified	 MAGs	 present	 a	13 
framework	of	 component	 systems	 that	 interact	 to	enable	complex	 information	processing	needed	 for	14 
naturalistic	behavior,	 including	necessary	 input	and	output	systems,	as	well	as	systems	 for	attentional	15 
gating	of	irrelevant	information	and	domain-specific	processing	for	language-,	emotion-,	and	navigation-16 
related	tasks	17 
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Information	 processing	 depends	 on	 input	 from	 perceptual	 systems,	 filtered	 by	 attentional	 gating,	 by	1 

proceeds	 in	a	 functionally-segregated	manner,	 seen	 in	domain-specific	MAGs	 for	 linguistic,	emotional,	2 

and	 spatial	 processing.	When	 considering	 language	 processing,	 there	 is	 necessary	 input	 from	primary	3 

auditory	 areas	 (MAG	 6)	 and	 attentional	 selection	 (MAG	 7)	 that	 enables	 speech	 perception	 and	4 

comprehension	 (MAG	2).	More	 than	a	 third	of	 contrasts	 from	experiments	 that	utilized	 speech-based	5 

paradigms	 contributed	 to	 the	 convergent	 activation	 pattern	 of	 MAG	 2,	 which	 was	 linked	 by	 both	6 

functional	 decoding	 techniques	 to	 language-related	 processes.	 Furthermore,	 the	 regions	 of	 MAG	 2	7 

resembles	a	neural	 “language	network”	 (Friederici	&	Gierhan,	2013;	Heim,	Opitz,	Müller,	&	Friederici,	8 

2003;	Price,	2010;	Saur	et	al.,	2010),	 including	some	regions	associated	with	orofacial	articulation	 (lip,	9 

tongue,	and	jaw	movements)	and	motor	planning	(SMA,	pre-SMA)	that	allow	the	motor	components	of	10 

speech.	By	presenting	language	in	a	context	that	is	more	representative	of	how	we	process	language	in	11 

everyday	life,	such	as	through	the	use	of	spoken	fictional	narratives	(AbdulSabur	et	al.,	2014;	Wallentin	et	12 

al.,	2011;	Xu,	Kemeny,	Park,	Frattali,	&	Braun,	2005a)	or	scene	descriptions	 (Summerfield,	Hassabis,	&	13 

Maguire,	2010),	naturalistic	fMRI	paradigms	allow	researchers	to	explore	the	multiple	neural	networks	at	14 

work	 in	performing	 the	cooperating	processes	 that	 facilitate	 language	processing.	Similarly,	emotional	15 

processing	 (MAG	3)	often	necessitates	 audiovisual	 input	 (MAGs	1	 and	6)	 and	observing	human	 forms	16 

(MAGs	1,	 4).	 Emotional	 films	 recruited	 regions	 across	 these	 four	MAGs,	 suggesting	 a	 similarly	 diverse	17 

group	 of	 coordinated	 neural	 systems	 are	 engaged	 when	 observing	 affective	 displays.	 Additionally,	18 

navigation	 (Burgess,	 Maguire,	 &	 O’Keefe,	 2002;	 Kalpouzos,	 Eriksson,	 Sjölie,	 Molin,	 &	 Nyberg,	 2010;	19 

Wolbers,	Weiller,	&	Büchel,	2004)	depends	on	effective	attentional	selection	(MAG	7),	as	well	as	spatial	20 

memory	and	processing	(MAG	5).	The	functional	characterization	of	MAG	5	from	manual	and	Neurosynth	21 

decoding	highlights	its	involvement	in	navigation	and	spatial	memory,	supported	by	studies	of	rats	and	22 

humans	with	brain	lesions	that	indicate	the	importance	of	medial	temporal,	hippocampal,	and	precuneus	23 

regions	in	processing	visual	scenes	and	spatial	information	(Bird	&	Burgess,	2008;	Epstein,	2008;	Lee	et	24 
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al.,	2005;	Sailer	et	al.,	2000;	Squire,	Stark,	&	Clark,	2004;	Summerfield	et	al.,	2010;	Xu,	Kemeny,	Park,	1 

Frattali,	&	Braun,	2005b).		2 

Finally,	 interaction	 with	 dynamic	 stimuli	 of	 any	 type	 requires	 a	 system	 that	 facilitates	 integration	 of	3 

relevant	information	for	behavioral	selection	(MAG	4).	Both	manual	and	Neurosynth	decoding	indicate	a	4 

role	for	this	MAG	in	action	execution,	as	well	as	in	observing,	imagining,	and	executing	motor	movements.	5 

Across	 the	 corpus,	 experiments	 predicated	 on	 navigating	 virtual	 environments,	 viewing	 emotional	 or	6 

erotic	films,	playing	video	games,	and	listening	to	speech	all	engaged	MAG	4	and	paradigms	that	required	7 

a	 motor	 response	 disproportionately	 engaged	 MAGs	 4	 and	 7	 above	 the	 other	 MAGs.	 Regions	 that	8 

comprise	MAG	4	have	been	associated	with	the	mirror	neuron	system,	response	outcome	monitoring,	9 

and	higher-level	visual	processing,	supporting	an	integrative	system	for	motor	planning	(Apps,	Lockwood,	10 

&	Balsters,	2013;	Gazzola	&	Keysers,	2009;	Molenberghs,	Cunnington,	&	Mattingley,	2009).	11 

Limitations	12 

The	present	results	may	be	limited	by	the	k-means	clustering	method,	which	requires	that	parameters	13 

including	 distance	 metric,	 number	 of	 iterations,	 and	 number	 of	 clusters	 are	 specified	 beforehand.	14 

Experiments	in	our	corpus	were	grouped	using	the	kmeans++	algorithm	for	each	of	K	=	2	through	K	=	20	15 

solutions,	 repeated	1000	times	to	ensure	that	each	solution	minimized	the	point-to-centroid	distance,	16 

indicative	of	optimal	clustering	(Kanungo	et	al.,	2004).	Pearson’s	correlation	was	selected	as	the	distance	17 

metric,	as	recommended	by	Laird	et	al.	(2015).	The	K	=	7	solution	was	designated	as	an	optimal	candidate	18 

solution	before	assessing	the	convergent	activation	patterns	of	each	MAG,	based	on	the	aforementioned	19 

metrics,	yielding	a	data-driven	result.	Although	the	functional	decoding	based	manual	annotations	relied	20 

on	 a	 subjective	 process,	 the	 results	 were	 largely	 confirmed	 by	 comparison	 with	 the	 wider	 body	 of	21 

functional	neuroimaging	literature	facilitated	by	Neurosynth’s	automated	functional	decoding.	It	is	worth	22 

noting	that	the	naturalistic	literature	is	somewhat	limited,	with	an	emphasis	on	navigation	and	affective	23 
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processing,	and	continued	research	and	expansion	of	this	corpus	will	 facilitate	development	of	a	more	1 

comprehensive	model	of	the	neural	networks	that	support	realistic	behavior.		2 

Summary	and	Future	Work	3 

In	summary,	this	meta-analysis	of	naturalistic	fMRI	studies	that	apply	dynamic,	lifelike	tasks	to	explore	the	4 

neural	 correlates	 of	 behavior	 has	 shown	 that	 these	 paradigms	 engage	 a	 set	 of	 core	 neural	 networks,	5 

supporting	both	separate	processing	of	different	streams	of	 information	and	the	integration	of	related	6 

information	to	enable	flexible	cognition	and	complex	behavior.	We	identified	seven	patterns	of	consistent	7 

activation	that	correspond	with	neural	networks	that	are	involved	in	sensory	input,	top-down	attentional	8 

control,	domain-specific	processing,	and	motor	planning,	 representing	 the	 set	of	behavioral	processes	9 

elicited	 by	 naturalistic	 paradigms	 in	 our	 corpus.	 Across	 the	 corpus,	 tasks	 provided	mainly	 visual	 and	10 

auditory	sensory	input	which	engaged	regions	across	MAGs	1	and	6,	while	MAG	7	appeared	to	contribute	11 

to	top-down	attentional	control	to	filter	out	nonessential	information	from	those	sensory	streams.	Salient	12 

information	can	be	processed	by	the	relevant	domain-specific	networks,	shown	in	MAGs	2	(language),	3	13 

(emotion),	and	5	(navigation	and	spatial	memory),	and	the	appropriate	motor	response,	coordinated	by	14 

regions	in	MAG	4.	The	majority	of	tasks	engaged	multiple	networks	to	process	the	relevant	information	15 

from	a	stimulus	and	generate	an	appropriate	response.	A	greater	literature	of	fMRI	experiments	utilizing	16 

naturalistic	 paradigms	 would	 benefit	 the	 field	 and	 complement	 the	 existing	 literature	 of	 precisely	17 

controlled	tasks,	as	naturalistic	stimuli	more	closely	approximate	the	processing	necessary	 for	realistic	18 

behavior.	Exploring	how	multifaceted	processes	interact	and,	ultimately,	contribute	to	behavior	will	allow	19 

us	to	better	understand	the	brain	and	human	behavior	in	the	real	world.	In	the	future,	studies	of	this	sort	20 

would	 greatly	 benefit	 from	 an	 automated	 annotation	 process	 for	 an	 objective	 functional	 decoding	 of	21 

included	papers,	instead	of	subjective	manual	annotation.	22 

	 	23 
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