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Abstract 1 

Combining high throughput sequencing with stable isotope probing (HTS-SIP) is a 2 

powerful method for mapping in situ metabolic processes to thousands of microbial taxa. 3 

However, accurately mapping metabolic processes to taxa is complex and challenging. Multiple 4 

HTS-SIP data analysis methods have been developed, including high-resolution stable isotope 5 

probing (HR-SIP), multi-window high-resolution stable isotope probing (MW-HR-SIP), 6 

quantitative stable isotope probing (q-SIP), and ΔBD. Currently, the computational tools to 7 

perform these analyses are either not publicly available or lack documentation, testing, and 8 

developer support. To address this shortfall, we have developed the HTSSIP R package, a 9 

toolset for conducting HTS-SIP analyses in a straightforward and easily reproducible manner. 10 

The HTSSIP package, along with full documentation and examples, is available from CRAN at 11 

https://cran.r-project.org/web/packages/HTSSIP/index.html and Github at 12 

https://github.com/nick-youngblut/HTSSIP.  13 

 14 

Introduction 15 

Stable isotope probing of nucleic acids (DNA- and RNA-SIP) is a powerful method for 16 

mapping in situ metabolic processes, such as nitrogen and carbon cycling, to microbial taxa. 17 

Historically the sensitivity of nucleic acid SIP has been limited by the low throughput of DNA 18 

sequencing and the low taxonomic resolution of DNA fingerprinting techniques [1,2]. Recently, 19 

DNA- and RNA-SIP have been combined with high throughput sequencing of PCR amplicons 20 

(HTS-SIP), which allows researchers to map in situ metabolic processes to thousands of taxa 21 

resolved at a fine taxonomic resolution [3–5].  22 

While HTS-SIP is proving to be a very useful method for exploring in situ metabolic 23 

processes in complex microbial communities, the accurate analysis of HTS-SIP datasets is 24 

complex [6,7]. Multiple strategies have been developed for analyzing HTS-SIP data, including 25 
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high-resolution stable isotope probing (HR-SIP) [5], multi-window high-resolution stable isotope 26 

probing (MW-HR-SIP) [7], quantitative stable isotope probing (q-SIP) [3], and ΔBD [5]. The 27 

goals of these methods differ, with HR-SIP and MW-HR-SIP designed to accurately identify taxa 28 

that have incorporated isotopically labeled substrate (i.e. ‘incorporators’), while the main goal of 29 

q-SIP and ΔBD is to quantify the amount of isotopic enrichment for each taxon (i.e. atom % 30 

excess). While all methods use amplicon sequences (e.g. 16S rRNA or fungal ITS sequences) 31 

from multiple fractions of each isopycnic gradient, HR-SIP, MW-HR-SIP, and ΔBD solely use 32 

sequence data while q-SIP additionally requires qPCR derived estimations of gene copy 33 

number from each gradient fraction. Recently, Youngblut and Buckley developed a HTS-SIP 34 

simulation model and showed that MW-HR-SIP is more accurate for identifying incorporators 35 

than HR-SIP and q-SIP, while q-SIP is generally more precise than ΔBD for quantifying isotopic 36 

enrichment [7]. 37 

The code for performing each of these HTS-SIP analyses is limited in availability, 38 

documentation, and developer support; all of which severely limit the ease of use and 39 

reproducibility of HTS-SIP analyses. To address this deficiency, we developed the HTSSIP R 40 

package, which includes the following features: 41 

● Functions for conducting HR-SIP, MW-HR-SIP, q-SIP, and ΔBD to analyze data from 42 

DNA-SIP and RNA-SIP experiments 43 

● Functions for performing HTS-SIP dataset simulation, as described [7] 44 

● Functions for exploratory analysis of simulated HTS-SIP data, useful for predicting how 45 

different experimental designs can alter experimental outcomes 46 

● Functions for exploratory analysis of real HTS-SIP data, useful for conducting post-hoc 47 

analyses 48 

● Ability to run analyses with parallel processing 49 

● Extensive documentation and tutorials (see the HTSSIP vignettes) 50 

 51 
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Package description 52 

Input data 53 

Dataset input is handled by the Phyloseq R package, a feature-rich package for general 54 

microbiome data analysis that can be used to import many common microbiome data formats 55 

[8]. HTSSIP includes convenience functions to easily and flexibly designate the experimental 56 

design of the SIP experiment for downstream HTS-SIP analyses (Figure 1).  57 

 58 

Figure 1. A diagram depicting the possible analyses available in the HTSSIP R package. The R functions to conduct 59 

each workflow step are italicized, and the figure references refer to example data produced by these workflow steps.  60 

HTS-SIP dataset exploratory analyses 61 

A common first step in analyzing nucleic acid SIP data is to quantify the total nucleic acid 62 

concentration or gene copy number (estimate by qPCR) across density gradients in order to 63 

determine the buoyant density (BD) “shift” of nucleic acids in isotopically labeled treatments 64 

versus unlabeled controls [9,10]. The general expectation is that a “shift” of nucleic acid BD from 65 

“light” towards “heavy” densities is indicative of isotope incorporation. However, in a well 66 

designed SIP experiment, the ratio of exogenous to indigenous substrate should be small, and 67 

this can produce an imperceptible BD shift [4]. In addition, an extensive shift may indicate 68 

excessive cross-feeding [11]. HTS-SIP methods can detect taxa that have incorporated low 69 

levels of isotope, or occur at frequencies that are so low that they do not cause a shift in the 70 

overall BD of community nucleic acids [5]. As a result, analysis of the BD distribution of total 71 

nucleic acids within density gradients is of little utility in assessing the results of nucleic acid SIP 72 

experiments performed on complex communities.  73 

As a simpler alternative, which leverages the power of high-throughput sequencing 74 

techniques, BD “shifts” can be inferred solely from sequence data [4,5]. Given that incorporators 75 
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will be more abundant in “heavy” gradient fractions of the labeled treatment versus the 76 

unlabeled control, a BD shift can be inferred by assessing the beta-diversity between treatment 77 

and control gradient fractions. This approach is more sensitive for detecting community-level 78 

isotope incorporation than the approach of quantifying total nucleic acid concentration across 79 

the density gradient [7]. HTSSIP implements two methods for using beta-diversity to assess 80 

isotope incorporation at the community-level: an ordination approach and an approach that 81 

expresses beta-diversity between corresponding treatment and control fractions as a function of 82 

their BD (Figure 1).  83 

The ordination approach simply involves pairwise calculations of a beta-diversity metric 84 

between all gradient fractions from isotopically labeled treatments and corresponding unlabeled 85 

controls, followed by visualizing the distance matrix with either principal coordinates analysis 86 

(PCoA) or non-metric multidimensional scaling (NMDS). An increase in beta-diversity between 87 

corresponding gradient fractions of labeled samples and controls is expected if isotope 88 

incorporation causes a change in the BD of OTUs (Figure 2A & 2B). 89 

 90 

Figure 2. Examples of the ordination and BD-shift analyses for assessing community-level incorporation. Plots A and 91 

B are non-metric multidimensional scaling (NMDS) ordinations of beta-diversity (16S rRNA OTUs; 97% sequence 92 

identity; weighted Unifrac) calculated between gradient fractions from a HTS-DNA-SIP experiment conducted with 93 

agricultural soil. Plot A compares fractions from replicate unlabeled control gradients, with different symbols (circles 94 

and triangles) used to distinguish different replicates, and with symbol diameter scaled in relation to fraction buoyant 95 

density as indicated in the accompanying scale. Plot B compares fractions from labeled treatments (“13C-Cel” for 96 
13C-cellulose  or “13C-Xyl” for 13C-xylose) versus their corresponding unlabeled controls (“12C-Con”) at 3 or 14 days 97 

after substrate addition (“D03” and “D14”, respectively). The NMDS stress values ranged from 0.06 to 0.07. An 98 

increase in beta-diversity is expected between labeled and unlabeled “heavy” fractions in response to isotope 99 

incorporation. Plots C and D depict the same data as in Plots A and B, but the beta-diversity comparisons between 100 

labeled treatment and unlabeled control are indicated only for fractions that correspond in BD. To account for partial 101 

overlap between labeled and unlabeled fractions, the weighted mean beta-diversity value is calculated based on 102 

percent overlap in BD ranges. "BD shift windows" indicate regions defined by ≥3 consecutive fractions with 103 
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significantly high beta-diversity resulting from isotope incorporation, with significance defined by permuting OTU 104 

abundances and recalculating beta-diversity values (100 bootstrap replicates; P < 0.05). The dataset used is a subset 105 

from the dataset from Youngblut and Buckley [7].  106 

 107 

While the ordination approach provides a useful overview of community-wide isotope 108 

incorporation, the extent of incorporation is difficult to compare among multiple treatments (e.g. 109 

13C-cellulose versus 13C-xylose). The second approach implemented in HTSSIP visualizes DNA 110 

BD shifts by calculating pairwise beta-diversity of corresponding gradient fractions between 111 

treatment and control gradients. To deal with partially overlapping gradient fractions between 112 

gradients, the weighted mean beta-diversity is calculated from all treatment gradient fractions 113 

that overlap each control gradient fraction, with weights defined as the percent overlap in the BD 114 

range of each fraction (Figure 2C & 2D). A permutation test is used to identify BD ranges of high 115 

beta-diversity resulting from BD shifts (“BD shift windows”). The permutation test involves 116 

constructing bootstrap confidence intervals (CI) of beta-diversity by permuting OTU abundances 117 

among labeled treatments (i.e. a null model where OTUs in treatment are randomly dispersed 118 

relative to the control). A note in interpreting these data is that isotope incorporation will cause 119 

DNA to shift out of “light” gradient fractions and into “heavy” gradient fractions. Hence, in the 120 

presence of isotope incorporation, high beta-diversity can be observed in both “heavy” and 121 

“light” gradient fractions. Alternatively, in the absence of isotope incorporation, beta-diversity will 122 

remain low across all gradient fractions.  123 

Identifying incorporators 124 

HR-SIP, MW-HR-SIP, and q-SIP can all be used to identify incorporators. To illustrate 125 

the application of HR-SIP, MW-HR-SIP, and q-SIP in the HTSSIP R package, we simulated a 126 

simplified HTS-SIP dataset consisting of 10 OTUs (Figure 3A). Our purpose here is merely to 127 

illustrate functions of the HTSSIP R package; comprehensive assessment of the accuracy of 128 
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these techniques is available elsewhere [7]. Briefly, HR-SIP identifies incorporators by utilizing 129 

DESeq2 to identify OTUs that have high differential relative abundance in “heavy” fractions of 130 

labeled treatment versus unlabeled control [12]. MW-HR-SIP takes the same relative 131 

abundance based approach as HR-SIP but uses multiple overlapping “heavy” BD windows 132 

(while correcting for multiple hypotheses). In contrast, q-SIP uses qPCR data to transform OTU 133 

relative abundance distributions into pseudo-absolute abundance distributions (Figure 3A), and 134 

then BD shifts are determined from these transformed distributions by calculating the difference 135 

in center of mass for each OTU in treatment versus control gradients. Atom fraction excess can 136 

thus be calculated for specific isotopes (e.g. 13C or 15N) based on the calculations described in 137 

the work of Hungate and colleagues [3]. In order to identify incorporators, a permutation test is 138 

used to construct bootstrap confidence intervals of atom fraction excess. Sensitivity in 139 

identifying incorporators can depend on the methods used (Figure 3B; and see [7]). SIP 140 

experiments can be simulated using the SIPSim toolset [7], and these data analyzed using the 141 

HTS-SIP R package. Such in silico evaluation is valuable for predicting possible experimental 142 

outcomes and the expected analytical accuracy of SIP experiments based on details of 143 

experimental design prior to conducting experiments. 144 

HTSSIP implements HR-SIP based on the code provided in the work of Pepe-Ranney 145 

and colleagues [5]. MW-HR-SIP is implemented in HTSSIP based on the R code provided in the 146 

SIPSim HTS-SIP dataset simulation toolset [7]. The HTSSIP implementation of q-SIP is based 147 

on the method’s description in the work of Hungate and colleagues [3]. Implementations of each 148 

method include the option for parallel processing of each algorithm. Parallelization is 149 

implemented through the plyr R package [13], which allows for various parallel backends to be 150 

used such as doSNOW and doParallel.  151 
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Quantifying isotopic enrichment 152 

Unlike HR-SIP and MW-HR-SIP, the main goal of q-SIP and ΔBD is to quantify isotopic 153 

enrichment. To illustrate the use of HTSSIP for conducting q-SIP and ΔBD, we applied both 154 

analyses to the simplified HTS-SIP dataset described above (Figure 3C). ΔBD is implemented 155 

in HTSSIP as described in the work of Pepe-Ranney and colleagues [5]. As shown in Youngblut 156 

and Buckley [7], q-SIP and ΔBD can produce substantially different estimates of isotope 157 

incorporation.  158 

 159 

Figure 3. Examples of using the HTSSIP R package for data processing, data exploration, incorporator identification, 160 

and quantification of BD shifts (Z). The SIPSim toolset was used to simulate the relative abundances of 10 OTUs 161 

across 24 gradient fractions in an experiment that includes a single 13C-treatment  (“13C-Treat”) and a single  12C-162 

control (“12C-Con”) condition, each with 3 experimental replicates. Half of the OTUs had an atom fraction excess of 163 

30 to 100%, while the others were 0%. qPCR estimates of total community 16S rRNA copy numbers were also 164 

simulated with SIPSim, and qPCR analytical error was modeled based on error estimated from Hungate and 165 

colleagues [3]. Plot A depicts the raw abundances (“Counts”), fractional relative abundance (“Rel. Abund.”), and 166 

relative abundances transformed by simulated qPCR data (“Rel. Abund. qPCR-trans.”). For clarity, only 1 of the 3 167 

experimental replicates is shown. Plot B shows which OTUs were identified as incorporators by the statistical 168 

methods described for HR-SIP, MW-HR-SIP, or q-SIP. A Benjamini-Hochberg corrected p-value cutoff of 0.1 was 169 

used for HR-SIP and MW-HR-SIP, and 100 bootstrap replicates were used to calculate confidence intervals for q-170 

SIP, as described [3]. Plot C shows the mean BD shift of each OTU as quantified by ΔBD or q-SIP. The dashed line 171 

signifies a BD shift (Z) of 0.0 g ml-1, and the red bars show the true theoretical BD shift resulting from 13C isotope 172 

incorporation.  173 

Simulating datasets 174 

HTSSIP provides functions to simulate simple HTS-SIP datasets for use in software 175 

testing, analysis pipeline development, and gaining familiarity with software and data formats. 176 

However, the SIPSim toolset is recommended for evaluating possible SIP experimental designs 177 

and for testing the accuracy of HTS-SIP analyses, because the simulation framework for 178 
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SIPSim is based on the physics of isopycnic centrifugation, unlike the simulations possible with 179 

HTSSIP [7]. HTSSIP utilizes coenocliner, an R package designed for simulating taxon 180 

abundance across environmental gradients, to simulate taxon abundance distributions across 181 

buoyant density gradient fractions [13]. 182 

 183 

Availability 184 

The HTSSIP package and the data used in this work are available from CRAN at 185 

https://cran.r-project.org/web/packages/HTSSIP/index.html and Github at 186 

https://github.com/nick-youngblut/HTSSIP.  187 

 188 

Future work 189 

Future development of the HTSSIP package will include i) functions for mapping 190 

incorporator status to phylogenies and visualizing the results ii) direct integration with the 191 

SIPSim toolset for rapid HTS-SIP experimental design and assessment of accuracy iii) functions 192 

analyzing shotgun metagenome data derived from SIP experiments.  193 

 194 

Conclusions 195 

Given the power of HTS-SIP for mapping in situ metabolism to taxonomic identity, 196 

adoption of the technique by researchers will greatly help to resolve connections between 197 

microbial ecology and taxonomy. Currently, HTS-SIP data analysis is complex, with few existing 198 

computational tools to aid researchers. The R package HTSSIP provides a single, standardized 199 

analysis pipeline that facilitates reproducible analyses on HTS-SIP datasets and direct cross-200 
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study comparisons. Moreover, HTSSIP can be combined with the SIPSim toolset to simulate 201 

and evaluate possible DNA-SIP experimental designs.  202 
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