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RNA sequencing in cancer cells is a powerful technique to detect chromosomal 
rearrangements, allowing for de novo  discovery of actively expressed fusion genes. 
Here we focus on the problem of detecting gene fusions from raw sequencing data, 
assembling the reads to define fusion transcripts and their associated breakpoints, 
and quantifying their abundances. Building on the pseudoalignment idea that 
simplifies and accelerates transcript quantification, we introduce a novel approach to 
fusion detection based on inspecting paired reads that cannot be pseudoaligned due 
to conflicting matches. The method and software, called pizzly, filters false positives, 
assembles new transcripts from the fusion reads, and reports candidate fusions. With 
pizzly, fusion detection from raw RNA-Seq reads can be performed in a matter of 
minutes, making the program suitable for the analysis of large cancer gene 
expression databases and for clinical use. pizzly is available at 
https://github.com/pmelsted/pizzly 
 

Accelerated acquisition of heterogeneous, somatic mutations across cells within a tumor 
or pre-tumorous tissue is a widespread occurrence in most cancer types1. Resultant 
mutations are sufficient to induce tumorigenesis and drive tumor progression and metastasis 
through activation of proto-oncogenes and deactivation of tumor suppressor genes. The 
accumulation of mutations can be induced through the malfunction of several biological 
pathways, involving several corresponding mutation classes2. One common and particularly 
deleterious class of mutation is chromosomal rearrangement. Chromosomal rearrangements 
typically occur when two or more double-strand breaks are incorrectly repaired through 
rearrangement, deletion, or duplication. Large-scale changes to gene expression from such 
rearrangements are associated with a number of disorders3. When the rearrangement 
breakpoints are at gene regulatory and/or coding regions, the disruption can result in a 
deregulated or a chimeric fusion gene (Figure 1). Gene fusions are associated with many types 
of cancer and play a major role in tumorigenesis4,5,6,7,8,9.  

 

	
  
Figure 1: Fusion genes resulting from chromosomal rearrangements. 
If the chromosomal rearrangement is made at coding and/or regulatory regions, a deregulated or chimeric gene 
can occur. Lightening bolt indicates chromosomal breakpoint. 
 

Currently, most fusion detection methods rely upon RNA sequencing10 (RNA-Seq) 
because it is cost-effective, covers all transcribed regions of the genome, and is highly 
interpretable. Several computational tools to detect fusions from RNA-Seq reads have been 
developed, and these typically operate via three steps: First, they detect “spliced” reads 
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where the first part of a (possibly paired-end) read maps to one gene and the second part 
maps to another gene. Second, reads are aggregated into candidate fusion junctions through 
realignment-based grouping. Finally, candidate fusions are filtered based on a number of 
heuristics11. 

In practice, identification of gene fusions via RNA-Seq is difficult and error-prone. 
While over 20,000 gene fusions have been identified in the three major neoplasia subtypes, 
fewer than a 1,000 of them have been confirmed as recurrent3. Factors contributing to the 
inflated number of positive fusions include incorrect read mapping, transplicing, and 
template switching. Incorrect mapping is often a result of fusion detection tools attempting 
to map fusions from transcripts arising from repetitive regions of the genome such as 
germline segmental duplications. Transplicing can induce read-through events, where 
transcription continues across genomically adjacent genes to be transcribed into one RNA 
transcript. Template switching events also contribute to the count of false positive gene 
fusions as the RNA polymerase jumps from one DNA template to another during 
transcription12. These produce low but detectable baseline levels of fusion genes in wild-type 
as well as cancerous cells, but are usually not of interest in cancer sequencing efforts as they 
are not causally involved in tumorigenesis, cancer progression, or metastasis13.  

To filter out false positives, fusion detection tools employ a set of heuristics based 
upon the contributing biological factors just described, as well as a number of ad hoc filters. 
The result is that existing fusion detection tools each contain some mixture of the following 
disadvantages: they may be computationally demanding, display poor sensitivity/specificity, 
be difficult to install, questionable heuristics may bias predictions, they may not resolve 
breakpoints, and may fail to quantify fusions. 

Here, we introduce an improved method for gene fusion discovery utilizing the 
publicly-available software kallisto15 which is based on pseudoalignment, along with a 
downstream processing tool, pizzly, that (1) filters false positives using biologically-relevant 
heuristics, (2) assembles transcripts at breakpoint resolution, and (3) quantifies fusion 
abundances. This method is computationally efficient allowing for laptop-based analysis, and 
enables consistent investigation of large cancer gene expression databases to probe for 
tumor-specific and cancer-type agnostic recurrent fusions. 

Methods 
 
Fusion junctions are detected using a two-stage method. The first stage is implemented in 
kallisto and detects individual reads or read pairs, whose constituent parts pseudoalign to a 
reference transcriptome but that in combination fail to pseudoalign. pizzly takes the output 
of the potential fusion junctions found by kallisto and performs a detailed analysis of the 
associated reads by aligning them across the putative junctions. Additionally, pizzly is 
annotation aware, i.e. it uses information about the genomic coordinates and gene identities 
of each isoform to identify possible false positives arising from repetitive sequences across 
the genome. 

kal l i s to  Fusion Stage  
 
The kallisto program was enhanced to include an option to search for reads that could 
support fusion junctions. kallisto uses a k-mer based index for the reference transcriptome 
when computing a pseudoalignment for reads. For each k-mer, the index records the set of 
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transcripts containing this k-mer, which is its equivalence class (EC). For a normal read 
arising from a single transcript, all matching k-mers that are supported by at least that 
transcript and the intersection of the ECs for the read will be non-empty and contain the 
true transcript. For reads or read pairs that span a fusion junction, the ECs from each side of 
the junction will have an empty intersection and thus be discarded from further 
consideration by kallisto. When run in fusion finding mode, kallisto identifies read pairs 
whose intersection of ECs is empty, yet for which some of the k-mers matched. Such reads 
are reported as fusion output when either one of the following holds: (1) each read has a 
non-empty EC intersection separately, but combined the intsersection is empty (this is 
consistent with Figure 2 “paired fusion reads,” where the reads come from opposite sides of 
the fusion junction) or (2) one of the reads can be split into two parts such that the first part 
of the read has a non-empty EC intersection and the remainder of the read, along with the 
other read from the pair, has a non-empty EC intersection (this is consistent with Figure 2 
“split fusion reads,” where one of the reads spans the fusion junction). When a potential 
split of the reads has been identified, kallisto checks all matching k-mers and requires that 
the union of ECs on either side is empty. This is to lower the number of false positives due 
to reads from unannotated transcripts that resemble fusions between related transcripts. All 
read pairs matching these criteria are saved along with supporting information about the 
matching transcripts. 
 

 
Figure 2: Reads meeting specific criteria are passed to pizzly.  
A fusion gene resulting from chromosomal rearrangement, is transcribed into a fusion transcript. Standard 
kallisto does not pseudoalign reads spanning the fusion junction to the transcriptome. In the fusion-modified 
kallisto, reads meeting specific criteria are reported as candidate fusions for use with pizzly. 
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pizzly  Fusion Stage  
 
Unlike kallisto, which is genome annotation agnostic, pizzly performs a more detailed 
analysis of the reads to determine fusion breakpoints by taking the annotation of the 
transcriptome into account. pizzly accepts the annotation in GTF format, which records the 
genomic locations of exons as well as functional annotation of genes (e.g. whether they are 
protein coding). 
 The input to pizzly is the set of read pairs that kallisto flagged as potentially spanning 
fusion junctions. In the first step of pizzly, each read is evaluated independently and reads 
that are classified as false positives are rejected. pizzly uses several criteria to reduce the 
number of false positives. First, reads that map to transcripts in multiple genomic locations 
are discarded. Next, since kallisto is unaware of which transcripts belong to which genes, its 
output can contain false positives resulting from two distinct transcripts associated with the 
same gene. These are typically from isoforms that were not present in the reference 
transcriptome and are discarded. The output of kallisto also contains false positives where 
read pairs originate from a single transcript with mismatches (SNP, etc.) to the reference, but 
kallisto assigned it to two distinct but similar genes. Rather than relying on annotation of 
gene families to filter these cases, they are filtered using approximate sequence alignments. 
Matching k-mers from one end are considered and approximate matches to the transcripts 
of the other end are then examined (Figure 3). Instead of aligning each k-mer to the entire 
transcriptome with allowance for mismatches, only potential candidates kallisto identified for 
the other end are considered. If any such approximate match is found for either one of the 
ends, the read pair is discarded. 
 

 
Figure 3: A check for alignment to partner transcript ensures correct fusion. 
The k-mers from the first part of the candidate fusion, the blue “read 1”, are aligned with mismatch allowance 
to all compatible transcripts from the second part of the candidate fusion. If a match is found, this false 
positive is discarded. The same is repeated for the other end of the candidate fusion.  
 
 Third, the entire read is required to align to the transcripts identified by kallisto. If 
each read aligns to representative transcript sequences, the read pair is labeled “paired” 
(Figure 2). In cases where either read cannot be aligned to the potential transcript, an 
attempt is made to compute a split-read alignment (Figure 4). In order to limit the potential 
for false positive splits, the search space is restricted to only include split sequences that fit 
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within a specified insert length (Figure 5). Furthermore, the split breakpoint cannot be to 
close to the end of the read.  Reads that can be split-aligned are labeled as “split.” 
 

 
Figure 4: A read can be split-aligned between the two fusion transcripts. 
Split-read alignments provide breakpoint sequence resolution. 

 
Figure 5: Split alignment search. 
The search space for split alignments is limited to the matching part of the compatible transcript up to the 
fragment insert length. 
 
 Finally, when all the reads have been filtered, the resultant information is aggregated 
on a gene-to-gene fusion level. The potential transcript junctions are filtered based on the 
number of reads supporting the junction. Additionally for split reads, the distance of the 
breakpoint to exon boundaries is required to be less than 10 bp on both sides. For junctions 
only supported by pairs, the distance to the nearest internal exon boundaries is required to 
be consistent with the specified insert length. After filtering pizzly reports the number of 
paired and split reads supporting the fusion junction. Additionally, pizzly reports each 
potential transcript junction, the number of read pairs supporting the transcript-level fusion 
as well as sequence of the fused transcripts and the individual reads supporting the junction.  
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Results 
 
We applied our method to multiple datasets to assess the precision/recall and running time 
of pizzly for fusion detection. To benchmark our performance, we compared our results to 
existing fusion software packages, using the same datasets to evaluate the performance of 
each program.  

Datasets  
 
We assessed performance on four types of data that together represent a range of challenges 
in gene fusion detection.  
 
Positive Control 
 Two positive synthetic datasets of different read lengths were used, both consisting 
of reads from the same 50 fusion transcript sequences:  
 
a) A positive dataset containing 57,209 75nt paired-end synthetic reads corresponding to 50 
fusion transcripts, with 4,300 reads directly covering the fusion junctions. This dataset was 
created by the FusionMap developers16 and used in a previous fusion tool evaluation11. 
 
b) A positive dataset containing 200,000 100nt paired-end synthetic reads corresponding to 
the same 50 fusion transcripts, simulated using the RSEM read simulator17. 
 
Negative Control  
 A negative dataset containing 30 million 100nt paired-end synthetic reads simulated 
using RSEM read simulator using as background expression sample SRR066679 originating 
from H1 human embryonic stem cells18. 
 
Real Data with Validation 
 Fusion detection may perform well on simulated datasets and yet behave 
differently when presented with real data generated via RNA-Seq. We used real data to 
assess performance under standard experimental conditions. 
 An mRNA-Seq dataset, SRR1659964, consisting of 93,867,189 100nt paired-end 
reads and containing sequence from nine synthetic fusion transcript RNA constructs. This 
dataset was generated by Tembe et al.19 by pooling the nine fusion constructs at eqimolar 
concentration and adding -6.17 log10pMol to a 1ug aliquot of total RNA, preparing an 
Illumina TruSeq stranded mRNA library, and sequencing on an Illumina HiSeq 2500. 
 

Tools  for  Benchmarking 
 
There are several fusion detection software packages available. We chose to focus our 
comparison on software that met the following criteria: (1) used in the field (based upon 
citation number or newness), (2) high performance as evaluated in earlier benchmarking 
papers11,20, and (3) ability to run the software, which is not always a trivial task. The tools 
meeting these criteria are described in Table 1 below. 
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Table 1 Fusion detection tools compared to pizzly for benchmarking 
tool version parameters reference used 

MapSplice 2.2.1 default ensemble hg38 
EricScript 0.0.5 default E.S. formatted hg38 
FusionCatcher 0.99.6a --skip-banned-fusions, -

-skip-known-fusions 
F.C. formatted hg38 

JAFFA 1.07 default: hybrid on 75bp, 
direct on 100 

UCSC hg38, provided by 
JAFFA 

PRADA 1.2 suggested -junL 80% of 
read length 

PRADA formatted hg37 

STAR-Fusion 0.8.0 default S.F. formatted GRCh38v23 
 

Resul ts  
 
Tools were run using four cores where possible. MapSplice was run on an Amazon Elastic 
Compute Cloud instance Ubuntu machine type c4.4xl (16cpu, 30GiB memory). PRADA was 
run with the suggested length of constructed junctions (-junL) of 80% of read length, which 
for the 75nt dataset was 60 and for the 100nt dataset was 80. FusionCatcher has hardcoded 
known true and false positive fusions into the program. While hardcoding known fusions 
may be helpful in a clinical setting, in exploratory analysis, such as is performed in research, 
this is a limiting restriction that may bias results and reduces the utility of the program. We 
have therefore bypassed the hardcoded setting in this comparison. JAFFA has three run 
modes: Assembly, Hybrid, and Direct, which are suggested for different read lengths. For 
short reads JAFFA assembles the reads to search for fusions in assembled contigs. For 
longer reads, JAFFA suggests no assembly. We followed the suggested modes for read 
lengths of 75nt and 100nt.  
 The results of the tests are summarized in Tables 2-5. PRADA failed to run on all 
100nt datasets, finding fusions only for the 75bp dataset. EricScript predicted true fusions 
decently, but had difficulty filtering out false positives. This would limit its utility in 
exploratory analyses. JAFFA performed well with clean, simulated datasets but dropped in 
performance when presented with real datasets, picking up many false positives and missing 
true fusions. STAR-Fusion performed fairly well, with a fair sensitivity and fair specificity 
across data types. All of the comparison programs required a long time to run, ranging on 
the larger spike-in dataset from over 26 hours for MapSplice to 1 hour 18 minutes for the 
fastest, STAR-Fusion. 
 pizzly showed high sensitivity across all datasets and high specificity in the simulated 
datasets. pizzly runs much faster than any of the other programs, taking just 8.5 minutes on 
the large spike-in dataset. Since kallisto-pizzly runs in such a short amount of time, pizzly 
offers the possibility for iteratively refining filtering strategies based on analyses of pizzly 
output and biologically relevant heuristics. This could be applied in the future to further 
improve pizzly’s specificity. 
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Table 2 75nt positive control 
pizzly detects the most fusions, . The starred “false positives” reported by pizzly were filtered out in future 
pizzly iterations using our updated method discussed below. Timing is based on using 4 cores where possible. 

tool true positive false positive sensitivity % clock time 
MapSplice 42 1 84 2m1s 
EricScript 39 0 78 9m34s 
FusionCatcher 31 0 62 5m33s 
JAFFA 43 0 86 3m56s 
PRADA 32 0 64 4m5s 
STAR-Fusion 45 1 90 6m59s 
pizzly 45 2* 90 1m8s 

 
 
Table 3 100nt positive control 

tool true positive false positive sensitivity % 
MapSplice 39 1 78 
EricScript 41 1 82 
FusionCatcher 41 0 82 
JAFFA 47 0 94 
PRADA 0 0 0 
STAR-Fusion 41 0 82 
pizzly 46 2* 92 

 
 
 
 
 
Table 4 100nt negative control 
All tools but EricScript perform well, picking up only minor numbers of false positives. 

tool false positive 
MapSplice 3 
EricScript 82 
FusionCatcher 2 
JAFFA 1 
PRADA 1 
STAR-Fusion 0 
pizzly 3 
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Table 5 Spike-in real dataset containing nine true synthetic fusions  
Since this is a real dataset, “false positives” has been replaced with “other” to allow for possible real fusions. In 
the study, only one other fusion was confirmed in the background RNA sample. Timing is based on using 4 
cores where possible. 
 
 
 
 
 
 
 
 

 
Discussion 
 
Our results show that pizzly is highly accurate in a range of benchmarks, positive and 
negative controls. The program is also fast, making it possible to reproducibly and 
consistently annotate fusions in large cancer datasets. Furthermore, the speed of pizzly 
enables exploration of different filters, augmented transcriptomes to be tested and can assure 
robustness of results with tests using a range of filter parameters. There is also room for 
improvement of pizzly as the biology of fusions is better understood.  
 
For example, in the 75nt positive control, pizzly reported two false positives (starred in 
Table 2). Upon further investigation, we found that these false fusions originated from genes 
which overlap in the genome. In the first case pizzly predicts the “true” fusion PLEKHO2-
KIF4A and the “false” fusion AC069368.3-KIF4A, however AC069368.3 is made up of the 
exons of PLEKHO2 and the neighboring ANKDD1A gene and except for an alternative 
start site the sequences of these predicted fusions are identical. In the second case pizzly 
predicts the “true” fusion BSG-COX6A1 and the “false” fusion BSG-AL021546.6 and 
identifies sixteen possible transcript sequences arising from the eight BSG transcripts and 
the two other transcripts. The original transcript estimates from kallisto predicted that only 
two of the BSG transcripts are present in the sample and only COX6A1 and not 
AL021546.6 (Table 6). Given the breakpoint sequences of these sixteen possible fusion 
transcripts, we built a new kallisto index with the added potential fusions and re-quantified 
the original reads with kallisto using the updated index (Table 7).  
 
Table 6 Original kallisto read counts for suspected fusion transcripts 

transcript estimated reads 
COX6A1 3002 
AL021546.6 0 
BSG-202 2218 
BSG-204 4 

 
By adding a second kallisto step after fusion transcript assembly, we were able to increase 
detection of fusion transcripts while reducing false positives. In addition, this extra kallisto 
step allowed us to estimate transcript fusion abundance. While all other fusion detection 

tool true (9) other clock time 
MapSplice 7 2 26h 37m 
EricScript 9 575 10h 17m 
FusionCatcher 9 11 5h 37m 
JAFFA 7 458 20 17m 
PRADA 0 0 19h 7m 
STAR-Fusion 8 5 1h 18m 
pizzly 9 624 8.5m 
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programs report transcript abundance only on the level of read counts, we were able to 
output the more meaningful and accurate transcript per million (TPM) report for detected 
fusions. To test the accuracy of TPM estimation for fusion transcripts, we applied the 
kallisto-pizzly-kallisto method to the spike-in dataset that contains fusion transcripts 
aliquoted at a known concentration. True fusion transcript abundance was calculated as 
follows: starting with 1ug of RNA, with mRNA being 1-5% of the total and each transcript 
being on average 2,500nt, the concentration of background RNA is approximately 1.17pmol 
and mRNA approximately 0.058pmol. The spike-in was aliquoted at -6.17 log10pmol. Under 
the assumption that the mRNA is between 1-5% of the total RNA, the total spike-in 
concentration should be 11-60 TPM divided across the nine synthetic fusions. kallisto’s 
estimated fusion abundances add up to 31.6TPM, which is within the expected range (Table 
8). Thus kallisto should be valuable not only for identifying fusions, but for associating their 
expression with cancer phenotypes and outcomes. 
 
Table 7 kallisto is able to correctly assign reads to fusions at the transcript level 

transcript estimated reads 
COX6A1 0 
AL021546.6 0 
BSG-202 0 
BSG-204 0 
BSG-204 - AL021546.6 0 
BSG-204 - COX6A1 0 
BSG-202 - AL021546.6 5 
BSG-202 - COX6A1 6139 

 
Table 8 kallisto reported TPM for the nine synthetic fusion transcripts 

fusion TPM 
EWSR1-ATF1  2.09 
TMPRSS2-ETV1  8.10 
EWSR1-FLI1  1.45 
NTRK3-ETV6  5.12 
CD74-ROS1 5.37 
HOOK3-RET 3.74 
EML4-ALK 1.31 
AKAP9-BRAF 3.04 
BRD4-NUT 1.35 
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