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Posterior parietal cortex (PPC) has been involved 

in controlling body movement and navigation, 

and in making decisions based on vision. To eval-

uate these views, we measured PPC activity while 

mice performed a visual decision task by virtual 

navigation. We discovered that PPC neurons are 

selective for specific combinations of the animal's 

position in the environment and of its heading an-

gle. This selectivity closely predicted the activity 

of PPC cells, including their apparent selectivity 

for the mouse’s decision and the arrangement of 

their firing patterns in sequences, both of which 

simply reflected the influence on PPC of the ani-

mal’s navigation trajectory. Alternative models 

based on visual or motor variables were not as 

successful. We conclude that when mice use vi-

sion to make spatial choices, parietal cortex en-

codes navigational attributes such as position and 

heading rather than decisions. 

Introduction 

Posterior parietal cortex (PPC) is recognized as a 

key nexus of sensorimotor integration  (Milner and 

Goodale, 2006), yet there are discordant views as 

to its function.  

Classical studies in primates related PPC activity to 

the control of body movement (Andersen and 

Buneo, 2002; Andersen and Cui, 2009; Andersen 

and Mountcastle, 1983; Bisley and Goldberg, 2010; 

Cohen and Andersen, 2002; Park et al., 2014). For 

instance, some neurons in monkey PPC are influ-

enced by movements of eyes, head, limbs, and 

body (Cohen and Andersen, 2002), by the intention 

to execute such movements (Andersen and Buneo, 

2002), or by the attention devoted to the resulting 

position (Bisley and Goldberg, 2010). 

A complementary set of studies performed in ro-

dents suggested an important role of PPC in spatial 

navigation (McNaughton et al., 1994; Nitz, 2006, 

2012; Save and Poucet, 2000, 2009; Whitlock et al., 

2012; Wilber et al., 2014). Rat PPC encodes combi-

nations of spatial location and body movement 

(McNaughton et al., 1994; Nitz, 2006, 2012; 

Whitlock et al., 2012; Wilber et al., 2014). Inactivat-

ing it, moreover, can impair navigation (Save and 

Poucet, 2000, 2009).  

Another body of experiments, performed both in 

primates and in rodents, indicated a role of  PPC in 

decision making, especially for decisions based on 

vision (Andersen and Cui, 2009; Erlich et al., 2015; 

Goard et al., 2016; Gold and Shadlen, 2007; Katz et 

al., 2016; Latimer et al., 2015; Licata et al., 2017; 

Platt and Glimcher, 1999; Raposo et al., 2014; 

Sugrue et al., 2004). Studies in rodents found deci-

sion signals to be widespread in PPC populations, 

where they are mixed with other signals (Goard et 

al., 2016; Raposo et al., 2014). One study, in partic-

ular, found decision signals to be remarkably com-

mon: each PPC neuron fires only for a particular de-

cision and only at a particular moment in a stereo-

typed sequence (Harvey et al., 2012). 

In principle, all these views could be correct. How-

ever, this is hard to establish from existing studies. 

In reality, moreover, the relevant factors are hard 

to separate. For instance, decisions often result in 

navigation, and navigation involves a myriad deci-

sions. Similarly, in any condition other than com-

plete darkness, head movement influences vision, 
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and vision in turn guides head and body move-

ments. 

To investigate how spatial function, body move-

ment, and decision-making are reflected in PPC ac-

tivity, we took advantage of the capabilities al-

lowed by virtual reality. We trained mice in a task 

that engages both visual decision-making and nav-

igation through an environment. During this task, 

we recorded from populations of PPC neurons and 

asked whether their activity encodes navigation, 

decision-making, or both. 

As described below, the results came out strongly 

in favor of one view: we found that parietal neu-

rons carry powerful spatial signals, but found no 

evidence that on top of those signals there are any 

signals related to decision. Indeed, taking into ac-

count the spatial preferences of the neurons and 

the trajectories taken by the mouse, we could pre-

dict the precise pattern of activation of individual 

neurons. 

In particular, our observations closely replicated 

the apparent selectivity of PPC activity on choice, 

including the arrangement of PPC neurons in se-

quences of activation (Harvey et al., 2012). How-

ever, we could explain these observations parsimo-

niously by the effect on PPC neurons of two simple 

navigational parameters: position in the environ-

ment and heading. These two parameters pre-

dicted the activity of PPC neurons, better than de-

scriptions based on body movement, on visual pro-

cessing, or on decision. These results bridge hith-

erto separate views of parietal cortical function, 

and point to a synthesis of these views. 

Results 

To evaluate these views, we measured, modeled, 

and decoded the activity of large populations of 

PPC neurons while mice reported perceptual deci-

sions by navigating in virtual reality (Figure 1a-c). 

Head-fixed mice performed a visual two-alterna-

tive forced-choice (2AFC) contrast-detection task 

by walking on an air-suspended ball (Dombeck et 

al., 2010) (Figure 1a, Suppl. Movie 1). Mice trav-

ersed a virtual corridor where one of the side walls 

contained a vertical grating, and indicated that side 

by turning into the left or right arms of the T-maze 

(Figure 1b). Grating contrast and side varied ran-

domly across trials. A water reward was delivered 

on successful trials, and a brief white noise sound 

on unsuccessful trials. Mice learned this task to 

high proficiency, and their performance exhibited 

a lawful dependence on contrast (Figure 1c).  

The decisions of the animal were typically evident 

before the mouse reached the end of the T-maze, 

as the mice turned towards the intended side be-

fore reaching the end of the corridor (Figure 1d-h). 

To describe the navigation paths, we considered 

two variables: position along the corridor (z) and 

heading angle (θ). In these coordinates, the paths 

that ended in left and right choices progressively 

deviated from each other: the animal started head-

ing towards the chosen side before reaching the 

end of the corridor. This dependence of heading 

angle θ on decision was particularly clear for easier 

trials, i.e. trials with higher contrast (Figure 1d-f). 

The final choice could thus be predicted from the 

heading angle with increasing accuracy as the 

mouse reached the end of the corridor (Figure 

1g,h). 

We measured PPC population activity in this task 

using 2-photon calcium imaging (Figure 1i,j). To 

identify the borders of visual cortical areas we ob-

tained retinotopic maps using widefield imaging 

(Figure 1i), and identified PPC as a region anterior 

to the V1 region, along a contour of pixels that rep-

resent a retinotopic azimuth of 60-80 degrees. The 

average stereotaxic coordinates of this region were 

close to the coordinates used in previous studies (-

2.0 mm AP, 1.7 mm ML, Harvey et al., 2012), as 

shown in Suppl. Figure 1. We then targeted 2-pho-

ton imaging to PPC while the mouse was perform-

ing the task (Figure 1j). We then applied Suite2p, 

an image-processing pipeline that provides image 

registration, cell detection, and neuropil correc-

tion, to obtain calcium traces from well-isolated 

neurons (Pachitariu et al., 2016). 
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In agreement with previous observations in a 

memory-based task (Harvey et al., 2012), all the 

recorded PPC cells could be divided into two 

groups forming distinct, choice-dependent se-

quences of activation (Figure 1k-n). One group of 

cells responded primarily during trials that ended 

in a leftward choice (Figure 1k,l), and the other dur-

ing trials that ended in a rightward choice (Figure 

1m,n). Moreover, cells could be ordered based on 

their firing during the performance of the task, so 

that the responses of each group of cells could be 

arranged in a sequence of activations (Harvey et 

al., 2012). While cells that responded during the in-

itial part of the task tended to fire in both trials that 

ended with left and right choices, the rest of the 

cells unambiguously fired only in one or the other 

of those trials. 

This apparent dependence on choice, however, 

could be explained by a dependence of PPC firing 

on the animal’s position and heading (Figure 2). For 

example, consider a PPC neuron that typically fired 

in the late part of trials, and almost exclusively 

when the trials ended in a rightward choice (Figure 

2a,b). If we plot the density of this neuron’s cal-

cium activity as a function of position z and heading 

θ, we find that the firing defined a clear response 

field (Figure 2e). This “position-heading field” was 

sufficient to accurately predict the calcium activity 

of the cell as a function of time (Figure 2f,g), cap-

turing not only the overall preference for trajecto-

ries that ended in rightward choices (Figure 2c), but 

also detailed differences in responses in individual 

trials (Figure 2d). Indeed, the model correctly pre-

dicted that the cell would occasionally respond 

during trials ended in leftward choices (for positive 

contrasts, traces above the black bar in Figure 

2b,c).  

The high quality of these predictions was common 

in the PPC population (Figure 2h-k). The correlation 

between model predictions and calcium traces was 

0.44 ± 0.16 (median ± m.a.d., n = 1,922 cells). High 

correlation was not associated with a particular 

preference for position or heading: cells whose re-

sponses were accurately predicted could have a va-

riety of position-heading fields (Figure 2h-j). For all 

these cells, the model performed well in describing 

the trial-by-trial variations in activity (Suppl. Figure 

2). 

Position-heading fields were sufficient to explain 

the arrangement of PPC responses in choice-de-

pendent sequences. Just as we had done for the 

example cell (Figure 2c), for each PPC neuron we 

predicted responses for all trials and averaged 

these predictions depending on whether the trials 

ended in rightward choices or leftward choices 

(Figure 3a). The resulting predictions describe or-

derly, choice-dependent sequences of activation, 

which replicate the essential features of those seen 

in the data (Figure 1k-n). Choice-dependent se-

quences of activation thus seem to emerge be-

cause of a combination of two factors: the fact that 

mice take different trajectories in trials that end 

with leftward vs. rightward choices (Figure 1d-f), 

and the fact that different PPC cells prefer different 

combinations of position and heading (Figure 2h-j).  

One way in which PPC cells could predict choice, 

therefore, is simply through their preferred head-

ing: cells with preferred leftward heading are more 

likely to fire when the animal heads leftward, i.e. 

when the animal will ultimately choose the left 

arm. This is precisely what we observed: cells that 

responded preferentially in trials ending in left-

ward choices almost invariably preferred negative 

(leftward) heading values, and the same was true 

for rightward choices and positive (rightward) 

heading values (Figure 3b).  

The success of the position-heading model raises 

the question of whether in this task PPC neurons 

actually carry any decision signals beyond those al-

ready embodied in the animal’s trajectory. To test 

this, we contrasted the success of the position-

heading model with a sequence of alternatives 

which explicitly included the animal’s decisions, 

and evaluated their ability to predict cell firing us-

ing 10-fold cross-validation, where 90% of the data 
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is used for training and 10% cross-validation (Fig-

ure 3c-e). In the first alternative model, responses 

depend on position along the track (z) and a binary 

decision variable (d), but not heading direction (θ). 

This position-decision model is implicit in the 

graphs that describe choice-selective sequences of 

activation (Harvey et al., 2012) (Figure 1k). On a 

cell-by-cell basis, the position-decision model did 

markedly worse than the position-heading model 

(Figure 3c). Cross-validation ensures that this result 

is not due to different numbers of parameters 

(there are multiple possible headings, vs. only two 

possible decisions). The second alternative model 

extends the position-heading model to also include 

knowledge of the mouse decisions. This model per-

formed worse: predictions based on position and 

heading alone tended to be more accurate (Figure 

3d). The additional parameter is penalized by 

cross-validation, indicating that it is unnecessary. 

The importance of heading in predicting responses 

is further confirmed by comparing predictions of 

the two alternative models: the model that in-

cludes heading is invariably more accurate than the 

model that does not (Figure 3e). We therefore con-

clude that the mouse’s heading direction is a better 

predictor of PPC responses than the mouse’s deci-

sion, and that once heading direction is known, the 

mouse’s decision provides no additional predicta-

bility of PPC firing. 

The PPC neurons recorded within each session dif-

fered in their position-heading fields, and as a pop-

ulation they tended to tile the whole z-θ space (Fig-

ure 4a). We therefore asked if PPC population ac-

tivity was sufficient to decode the mouse’s trajec-

tory through virtual space. A simple Bayesian de-

coder (Oram et al., 1998; Zhang et al., 1998) (Suppl. 

Figure 3) successfully predicted the position of the 

animal in z-θ as a function of time (Figure 4b) and 

throughout the trajectory (Figure 4c; Suppl. Movie 

2). In predicting the final choice, decoding the pop-

ulation was just as good as observing the animal’s 

actual heading: both showed a similar dependence 

on position z (Figure 4d) and stimulus contrast (Fig-

ure 4e). 

Taken together, these results suggest that the ac-

tivity of PPC neurons in our task largely reflects two 

spatial attributes: position and heading. A possible 

caveat in this conclusion, however, is that in our ex-

periment those spatial attributes may covary with 

visual and motor factors. Position and heading de-

termined the visual scene, and the visual scene 

could in turn drive the activity of PPC neurons, es-

pecially given that mouse PPC overlaps at least par-

tially with regions of higher visual cortex (Wang 

and Burkhalter, 2007; Zhuang et al., 2017). Like-

wise, position in z-θ space is itself determined by 

the animal’s movement on the ball and therefore 

by the time courses of motor factors such as linear 

and angular velocity, which may in turn determine 

PPC activity (McNaughton et al., 1994; Nitz, 2006; 

Whitlock, 2014; Whitlock et al., 2012).  

To assess the role of visual factors, we ran a control 

experiment in open loop, where the animal pas-

sively viewed a replay of visual scenes presented in 

previous task trials. In this open-loop condition 

only a minority of PPC neurons maintained their 

preferences for position and heading, and even in 

those neurons the responses were much weaker 

(Suppl. Figure 4a). Moreover, for the majority of 

PPC cells, the activity in the open-loop condition 

was not predictable from the preferences for posi-

tion and heading estimated during the task. This is 

perhaps remarkable, given that parietal areas of 

the mouse cortex (Kirkcaldie, 2012) are generally 

considered to overlap with visual areas such as RL, 

A, and AM, which contain retinotopic visual repre-

sentations (Garrett et al., 2014; Wang and 

Burkhalter, 2007). By comparison, for neurons in 

primary visual cortex there was better agreement 

between responses seen in open-loop and during 

the task (Suppl. Figure 4b). 

To assess the role of motor factors, similarly, we 

evaluated a model where PPC activity depends on 

the mouse’s movement, measured by the ball’s an-

gular and linear velocities. These quantities are re-

lated to the derivatives of position z and heading θ, 

but they are not identical because they are in 
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mouse-centered coordinates and are uncon-

strained by the boundaries of the virtual corridor. 

The model based on motor factors performed 

markedly worse than the model based on position 

and heading in virtual reality (Suppl. Figure 5).  

Discussion 

The literature on posterior parietal cortex (PPC) 

supports two distinct views of this region’s func-

tion. One view sees it involved in body movement 

and navigation. The other sees PPC as involved in 

making decisions, especially those based on vision. 

Different studies assessed these views one at a 

time, but typically stopped short of acknowledging 

the other view, let alone pitching the two views 

against the other. 

To evaluate and potentially combine these views, 

we used a virtual reality task where animals use vi-

sion to decide and navigate. Our results resonate 

with the view that rodent PPC encodes combina-

tions of spatial attributes (McNaughton et al., 

1994; Nitz, 2006, 2012; Save and Poucet, 2000, 

2009; Whitlock et al., 2012; Wilber et al., 2014). 

Specifically, we found that the activity of PPC neu-

rons can be accurately predicted based on two ex-

tremely simple spatial measures: position of the 

animal along the corridor, and heading direction. 

Using only these quantities we could predict PPC 

activity highly accurately, during a complex task in-

volving body movement, vision, decision, and nav-

igation. These predictions are superior to those 

based purely on vision or on body movement, and 

were not improved by taking into account the ani-

mal’s decision. 

Our results are fully consistent with the observa-

tion that PPC cells can be divided into groups form-

ing distinct sequences of activations depending on 

upcoming choice (Harvey et al., 2012). However, in 

our data, this division into choice-dependent se-

quences, and indeed the sequences themselves, 

could be explained by the effect on PPC of two 

measurable factors: the physical trajectories taken 

by the mouse in different trials, and the prefer-

ences of different cells for different combinations 

of position and heading. The selectivity of PPC cells 

for heading and position fully explained their ap-

parent selectivity for the mouse’s decision.  

Our results therefore appear to support a different 

view of PPC function to that proposed by Harvey et 

al (2012). We can see two possible explanations for 

this discrepancy. The first is a difference between 

the tasks: for example in our task, unlike Harvey et 

al’s, the spatial cues indicating appropriate deci-

sion were visible until the end of the corridor. This 

might have caused the animals to employ different 

neural strategies, resulting in genuinely different 

types of PPC coding between the tasks. 

A second possible explanation, however, is that the 

same combination of spatial factors can also ex-

plain the results of  Harvey et al. (2012). Indeed, 

the mice in that study did exhibit differences in 

heading direction that correlated with the final de-

cision, but the trials showing such differences were 

sequentially excluded from analysis until the differ-

ence in mean heading no longer reached statistical 

significance. After discarding these trials, the mean 

heading angle did not differ significantly between 

left- and right-choice trials by construction, but a 

correlation of mean lateral displacement and 

choice persisted. It would therefore be interesting 

to test whether spatial variables can explain the ap-

parent decision-selectivity seen in Harvey et al’s 

PPC recordings, for example using the methods 

employed here.  

In conclusion, we found that the activity of neurons 

in posterior parietal cortex during a simple task in-

volving movement, vision, decision, and naviga-

tion, can be accurately predicted based on the se-

lectivity of the neurons for two spatial variables: 

the position of the mouse along the corridor, and 

its heading direction. Taking into consideration this 

selectivity, and the mouse behavior, explains the 

apparent formation of decision-dependent activity 

sequences in this task. In other words, when mice 
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use vision to guide navigation, parietal cortex en-

codes navigational attributes such as position and 

heading rather than visual signals or abstract deci-

sions. 
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Methods 

All experimental procedures were conducted ac-

cording to the UK Animals Scientific Procedures Act 

(1986). Experiments were performed at University 

College London, under personal and project li-

censes released by the Home Office following ap-

propriate ethics review. We report here on experi-

ments performed in 5 mice (two C57bl/6 mice and 

three Camk2a-tTA;Ai93(TITL-GCaMP6f);Emx1-

IRES-Cre mice), of both sexes. Wild-type mice were 

acquired from The Jackson Laboratory 

(www.jax.org/strain/000664). Triple transgenic 

mice were bred by crossing Camk2a-tTA 

(www.jax.org/strain/007004), Ai93(TITL-GCaMP6f) 

(www.jax.org/strain/024103), and Emx1-IRES-Cre 

(www.jax.org/strain/005628).  

Surgery 

For the initial surgery the animal was anesthetized 

with isoflurane (Merial) at 5% for induction, and 

0.75-1.5% during the surgery. Carprofen (5 mg/kg 

weight, Rimadyl, Pfizer) was administered SC for 

systemic analgesia, and dexamethasone (0.5 

mg/kg weight, Colvasone, Norbrook) was adminis-

tered as an anti-inflammatory agent to prevent 

brain swelling. The scalp was shaved and disin-

fected, and local analgesia (Lidocaine, 5% oint-

ment, TEVA UK; or intradermal injection, 6mg/kg, 

Hameln Pharmaceuticals Ltd) was applied prior to 

the incision. The eyes were covered with eye-pro-

tective gel (Viscotears, Alcon; or Chloramphenicol, 

Martindale Pharmaceuticals Ltd). The animal was 

positioned in a stereotaxic frame (Lidocaine oint-

ment was applied to the ear bars), the skin cover-

ing and surrounding the area of interest was re-

moved, and the skull was cleaned of connective tis-

sue. A custom headplate was positioned above the 

area of interest and attached to the bone with Su-

perbond C&B (Sun Medical). Then, a round craniot-

omy (3-4 mm diameter) was made using fine-

tipped diamond drill and/or a biopsy punch (Kai 

Medical). A cranial window was inserted into the 

craniotomy and fixed with Vetbond (3M) and Su-

perbond C&B. The cranial window consisted of two 

superimposed round coverslips (WPI, #1 thickness) 

– one matching the inner diameter of the craniot-

omy (3-4 mm), and the other one providing me-

chanical support sitting on the skull (typically 5 mm 

diameter). The two coverslips were glued together 

beforehand using a Norland optical UV curing ad-

hesive (NOA61, ThorLabs Inc.). After the surgery 

the animal was allowed to recover for three days 

before any behavioral or physiological measure-

ments. 

In case of C57Bl/6J mice, we injected the virus 

AAV2/1.Syn.GCaMP6f.WPRE.SV40 at a final con-

centration of 2.3e12 GC/ml before closing the cra-

niotomy with the cranial window. 100 nl of the vi-

rus was injected 300 µm below the brain surface at 

each of two locations targeting PPC (AP = -2mm, 

ML = 1.7mm) and V1 (AP = -3.5mm, ML = 2.5mm). 

The virus was injected at a rate of 2.3 nl every 6 s 

(Nanoject II, Drummond). The injection pipette was 

kept in place for about 10 min after the end of the 

injection to allow full absorption of the virus solu-

tion in the tissue. 

Widefield Imaging 

To obtain maps of retinotopy we performed wide-

field imaging: fluorescence imaging on transgenic 

mice (GCaMP6f-TTA-Emx1-Cre), and intrinsic imag-

ing on wildtype (C57bl6) mice, together with meth-

ods described previously (Garrett et al., 2014; 

Pisauro et al., 2013). 

Water control 

To motivate the mice to perform the behavioral 

task we controlled their water intake. Mice ob-

tained a drop of water (typically 4 μl) for every cor-

rect choice. If the amount of water obtained during 

the task was inferior to a minimum daily dose (at 

least 40 ml/kg/day), the mice received the missing 

water through an appropriately weighted amount 

of Hydrogel. On rest days (typically Saturday 

and/or Sunday) the mice received all their water 

through Hydrogel.  
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Virtual reality set up 

The mouse was head fixed with a custom made 

headplate and the holder that does not obstruct 

the visual field of view. The mouse was free to run 

on an air-suspended Styrofoam ball (20 cm in diam-

eter), the rotation of the ball was measured by two 

optical computer mice (Dombeck et al., 2010) and 

then used in the custom virtual reality engine im-

plemented in Matlab utilizing OpenGL capabilities 

of Psychophysics Toolbox (Brainard, 1997; Pelli, 

1997) to control the visual scene. The rotation 

component of the ball responsible for the mouse 

turning the virtual reality environment was pre-

sented on three computer monitors (Iiyama Pro-

Lite E1980SD, 1280x1024 pixels, 60 Hz) positioned 

in a U-shaped configuration around the mouse 

spanning 270 degrees of the visual field horizon-

tally and 75 degrees vertically. We used a multiplex 

video card (Matrox TripleHead2Go Digital Edition) 

to present the visual stimulus on three monitors in 

a synchronized manner. The light intensity re-

sponse of the green and the blue channels of the 

monitors was linearized, while the red component 

had been switched off to reduce light contamina-

tion in the fluorescence channel. In addition, to 

compensate for the light intensity drop-off at sharp 

viewing angles we attached three Fresnel lenses 

(f=22cm, BHPA220-2-6, Wuxi Bohai Optics Appa-

ratus Electronic Co., Ltd, Wuxi, Jiangsu, China) in 

front of the monitors. 

Behavior 

In the virtual reality environment, a vertical grating 

appeared on the left or right wall of the corridor. 

The sequence of contrast values was randomly 

drawn from a uniform distribution, with negative 

values indicating positions on the left wall, and 

positive values positions on the right wall. How-

ever, to prevent the animal from developing be-

havioral bias, trials ending in a wrong choice were 

repeated until finished correctly, and the next trial 

in the sequence was again a random trial. Correct 

trials were indicated by a brief beep (0.1 s, 6.6 kHz) 

tone, while error trials were indicated by a brief 

(0.2 s) white noise sound. During the inter-trial in-

terval (~2 s) the screen was gray. Trials not finished 

within 45 s were timed out and a longer (3 s) white-

noise sound was played to the animal. Mice typi-

cally performed between 200 and 400 trials per 

session (session duration 45-60 minutes). The be-

havioral session was aborted when either the ani-

mal stopped performing, or stopped drinking the 

water reward. 

Open loop 

Open loop trials were run immediately after the ac-

tual behavioral session (‘closed loop’) recording 

the same cells. The water spout was removed, and 

the visual stimulus was constructed by chopping 

the ‘closed loop’ visual stimuli into 0.5 s segments 

and presenting them to the animal in randomized 

order. To reduce the flickering effect of the visual 

stimulus, each 0.5 s segment was modified by si-

nusoidally modulating the contrast at the fre-

quency of 2 Hz, making the transition between the 

two sequential smooth. During the ‘open loop’ ex-

periments the animal was free to run on the ball, 

however this was not affecting the visual stimuli 

presented. Typically, during these measurements 

the animals chose to alternate bouts of running 

with periods of rest. 

Two-photon Imaging 

Two-photon imaging was performed using a stand-

ard resonant B-Scope microscope (ThorLabs Inc.) 

equipped with Nikon 16x, 0.8 NA objective, and 

controlled by ScanImage 4.2 (Pologruto et al., 

2003). Frame rate was set to ~30Hz, with the field 

of view of ~500x500 µm (512x512 pixels). This 

frame rate was further shared between 3-5 imag-

ing planes spanning the depth of L2/3 using a piezo 

focusing device (P-725.4CA PIFOC, Physik Instru-

mente) resulting in a 6-10 Hz effective sampling 

rate per cell. Laser power was depth-adjusted and 

synchronized with piezo position using an electro-

optical modulator (M350-80LA, Conoptics Inc.). 

The imaging objective and the piezo device were 

light shielded using a custom-made metal cone, a 

tube, and black cloth to prevent contamination of 
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the fluorescent signal caused by the monitors’ 

light. Excitation light at 970 nm was delivered by an 

Ultra II femtosecond laser (Coherent, UK) 

Data preprocessing 

Preprocessing of the two-photon data routinely in-

cluded registration, segmentation, and neuropil 

correction. The whole cell detection pipeline is ex-

plained in Pachitariu et al. (2016). In addition, for 

the analysis of open-loop experiments we also ap-

plied a deconvolution algorithm to extract spikes 

from the continuous calcium data (Vogelstein et 

al., 2010). To calculate ΔF/F , the baseline fluores-

cence ��  was taken as a 20th percentile of the over-

all level of fluorescence of a cell.  

Estimation of z-θθθθ maps 

To estimate the position-heading field of each neu-

ron we used a local likelihood approach (Loader, 

1999). First, we used the data to estimate the oc-

cupancy map ����(�, 	) and the accumulated flu-

orescence signal map ���
(�, 	). Then, we filtered 

both maps with a Gaussian filter, and we calculated 

the resulting position-heading map as:  

�(�, 	) = ���
���� (�, 	) + � ⋅ �����
��������(�, 	) + �  

Where �����  is the mean fluorescence of the cell, 

and � is a small number used for regularization, to 

prevent large estimation errors in location where 

little or no data is available in z-θ space. 

The size of the Gaussian filter ���, �� � was opti-

mally chosen for each cell through a 10-fold cross-

validation procedure. In this procedure, for each 

set of values ���, ���  90% percent of the trials 

were chosen to estimate ��(�, 	) . Then, perfor-

mance of the model ��(�, 	) was measured on the 

remaining 10% of the trials. The procedure was re-

peated 10 times for different 90/10% partitioning 

of the data. The set of values ��� , �� �, which re-

sulted in the best overall performance of the model 

was chosen as the optimal and further used in con-

sequent analyses for that neuron. 

Analysis of the open-loop data 

Calcium dynamics measured with GCaMP6f is slow 

with decay times as long as a few hundreds of mil-

liseconds (Chen et al., 2013). With the visual stimuli 

being 0.5s long and presented in randomized order 

this issue will cross-contaminate responses to se-

quential stimuli. For the analysis of the replay ex-

periment, where this issue is critical, we have used 

inferred firing rate (Vogelstein et al., 2010) and not 

ΔF/F. To compare activity between the two condi-

tions at the corresponding 0.5 s segments, we have 

used a correlation coefficient between the inferred 

firing rates (binned at 0.5 s) as a measure of simi-

larity.  

Decoding of population responses 

To predict the distribution of locations in z-θ space 

visited by the animal during the session ( !(�, 	)) 

we used the position-heading maps ("�(�, 	) esti-

mated separately for each cell #), and employed a 

Bayesian approach.  

Below we show that in this approach, the posterior 

probability distribution for the animal’s position in 

z-θ space at time $ is: 

%&' &($(�, 	) = − * +"�(�, 	) − !� ($),-
2��-�+ %&' !(�, 	) + /&0($ 

where !� ($) is the response of cell # at time $, and ��-  is the overall variance of the response of cell # 

throughout the session. 

To see this, assume that the response (Δ�/� , or 

even simply F) of cell i at each location (�, 	) is a 

Gaussian random variable: 

3� (�, 	)~ 5+"�(�, 	), ��(�, 	), 

where "�(�, 	) is the expected fluorescence of the 

cell at position (�, 	), i.e. its position-heading field, 

and �� (�, 	) is the variability of fluorescence at this 

location. Let’s make the additional assumption that ��(�, 	) = �� , i.e. it depends on the cell i but not on 

location in (�, 	). 
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Given these assumptions, the probability of this 

random variable to equal the value !�  at time t is: 

 !+3� (�, 	) = !�($),
= 1

√28 ⋅ ��
⋅ exp <− +"�(�, 	) − !�($),-

2��- = 

and the likelihood of a measured population re-

sponse is: 

>(�, 	) = ?  !+3� (�, 	) = !�($),
�

= ? 1
√28 ⋅ ���

⋅ exp <− +"�(�, 	) − !�($),-
2��- = 

Taking the logarithm yields: 

%&'>(�, 	) = − * +"�(�, 	) − !� ($),-
2��-�

− * log(��)
�

− * log+√28,
�

 

If we want to incorporate the position prior (occu-

pancy map) to get the posterior probability distri-

bution: 

 &($(�, 	) = >(�, 	) ⋅  !(�, 	) 

%&' &($(�, 	) = %&'>(�, 	) + %&' !(�, 	)
= − * +"�(�, 	) − !�($),-

2��-�
− * log(��)

�
− * log+√28, + %&' !(�, 	)

�
 

Dropping the constants leaves only position-de-

pendent variables, to obtain the expression at the 

beginning of this section. 
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Figures 

 

Figure 1. Imaging PPC activity during a task probing vision, decision, and navigation. a. Schematic view of the experimental 

setup from behind the mouse. The monitors are positioned at 90 degrees relative to each other, spanning 270 degrees 

of the horizontal field of view of the mouse. b. Schematic view of the virtual environment. The mouse receives a drop of 

water reward once it gets into the correct arm of the T-maze. A brief white noise sound is played if the choice is wrong. 

c: Example single session psychometric curve. Negative values of contrast indicate stimuli on the left wall, positive values 

indicate stimuli on the right wall. Error bars indicate 95% confidence intervals. d-f: Examples of trajectories in position-

heading coordinates within a single training session. For easier trials (gratings with higher contrast), the trajectories 

tended to diverge sooner, while for the zero-contrast trials (d) the trajectories diverged only towards the end of the 

corridor. g. Predicting the final choice of the animal by observing its heading at different stages of the task (error bars 

represent s.e.m.). Predictability (i.e. the probability of a correct prediction) becomes larger as the animal progresses 

through the maze. h. Psychometric functions produced by heading-based prediction of the animal’s choice. From being 

almost flat in the beginning of the maze, the curves evolve as the animal progresses through the task (levels of gray 

correspond to position z as in g). i. Retinotopic map acquired using widefield imaging of a GCaMP6f transgenic mouse. 

This map is used in combination with stereotaxic coordinates to identify brain areas. j. A mean fluorescence image of a 

single plane after image registration. Active cells, as detected from the two-photon imaging data, are overlaid over the 

mean image. Different cells are marked with a different hue. k-n. Choice-specific sequences of activity. Cells in PPC were 

selective to the trial outcome, and were also only active during a specific position in the T-Maze.  
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Figure 2. Predicting the responses of PPC neurons based on position and heading. a. Average response of an 

example neuron over trials that ended in rightward or leftward choice. b. Pseudocolor representation of the 

cell’s activity during all individual trials in the session. Each panel corresponds to a single contrast, with all 

trials of this contrast arranged in rows. Trials ending in rightward vs. leftward choices are separated by a black 

bar. The traces are aligned to the beginning and the end of each trial. c,d. Same as in a, b, but calculated from 

the cell activity predicted by the position-heading model in e. e. Position-heading field of this example neuron. 

Color represents the normalized Δ�/� of the neuron. Black lines show the trajectories in z-θ space taken by 

the animal during the behavioral session. This example neuron was active towards the end of the corridor and 

while the mouse was heading to the right. f. Model prediction (red) compared to the actual calcium traces 

(cyan) in representative trials. Grating contrast of the current trial is color-coded by the dashed line below the 

traces (same color scheme as above plots in b). g. The model provides a good explanation for the different 

levels of activity of the cell in different trials, with a correlation between actual data and model prediction of 

0.8. h-j. Examples of three other cells with position-heading fields in different locations. 
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Figure 3. Position and heading are sufficient to explain the dependence of responses on choice. a. The position-heading 

model correctly predicts the sequential choice-selective activations seen in the data (compare to Figure 1k-n, where cells 

are arranged in the same order). b. The centers of the position-heading fields of all the cells, colored according to whether 

the cells fired preferentially in trials that ended in leftward (red) or rightward choices (blue). Almost invariably, the former 

group of cells preferred negative (leftward) heading angles, and the latter group of cells preferred positive (rightward) 

heading angles. c. Variance explained (cross-validated) by an alternative model based on position (z) and decision (d) 

(abscissa) vs the model based on position (z) and heading (θ) (ordinate). Each point indicates a cell measured in PPC (n = 

2,020). The position-heading model clearly makes better predictions. As elsewhere in the paper, decision was defined as 

the final choice (report) made by the animal on that trial. d. Adding decision to the position-heading model does not 

improve predictions of PPC cell responses. The cross-validated explained variance of the model that uses z, θ, and decision 

is lower than that of the position-heading (z and θ) model. e. Accordingly, removing the heading θ from the full (z,θ,d) 

model results in a model with poor performance. 
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Figure 4. Decoding animal position and choice from neural activity. a. Outlines of position-heading fields of all neurons 

imaged in a session, for 4 sessions. b. The posterior estimate of the position closely follows the actual trajectory of the 

animal. Different rows represent different trials; different columns represent different moments in the trial. Red dashed 

line represents the trajectory of the mouse in the trial, circle – the actual position of the mouse in the T-maze. c. Estimated 

trajectories in z-θ space closely follow the actual trajectories of the mouse. The red dashed line represents the actual 

mouse’s trajectory, green solid line represents estimated trajectory, superimposed on a pseudocolor representation of 

the underlying posterior probability distribution. d. Choice predictability, as estimated from the decoded trajectories at 

different stages of the task, from early in the task (faint red) to late in the task (full red). The neurometric choice predict-

ability increases as the mouse progresses through the corridor, meaning that the final choice becomes increasingly more 

predictable from the neural activity. Error bars represent s.e.m. e. Neurometric functions, estimated at different positions 

in the corridor (faint red line to full red line). The data points here are the same as in Figure 1h, however the curves are 

fit to the data points decoded from neural activity (not shown).
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Supplementary Figures 

 

Suppl. Figure 1. Location of imaged neurons relative to somatosensory and primary visual cortices. Outlines of visual, 

primary visual, somatosensory and motor cortices were derived from Allen Institute atlas, and aligned to coordinates 

relative to bregma – [0, 0]. Magenta circle represents the coordinates of PPC as identified in Harvey et al. (2012) – [-2.0 

AP, 1.7ML]. Peach-colored patch represents the FOVs of the two-photon imaging sessions. 
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Suppl. Figure 2. Single-trial responses and model predictions for 3 example cells. a. Responses (top) and model predictions 

(bottom) for the cell in Figure 2h. Format as in Figure 2b,d. b,c: same as a, for the example cells in Figure 2i-j. 

 

Suppl. Figure 3.Full trajectory decoding from a sequence of posterior distribution estimates. a. Posterior distribution es-

timated from PPC population activity at a specific time t and z= z(t). b. Probability distribution of the heading angle Pr(	) is estimated by calculating an integral of the posterior distribution from a across z. Heading angle θ is estimated as 

a center of mass of Pr(	). c. Performing the steps in a and b for each z provides a prediction of the whole trajectory of 

the mouse during the trial (green line). Red frame indicates the z=z(t) from the example frame in a and b. 
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Suppl. Figure 4. Assessing the role of visual factors a. In the open loop condition, the estimated place-heading fields of 

PPC neurons were either much weaker (example cell 1) than during the closed-loop behavior, or completely absent (ex-

ample cell 2) b. When comparing responses between open loop and closed loop, neurons in primary visual cortex showed 

more similarity in their responses between the two conditions than neurons in PPC. 

 

Suppl. Figure 5. Assessing the role of motor factors. a. The position-heading model performs better than the alternative 

motor model, as measured by cross-validated explained variance. b. The explained variance of the position-heading 

model is significantly larger than the explained variance of the motor model (p<<0.001, one-sided t-test). 

Supplementary Movies 

Suppl. Movie 1. A mouse performing a few trials of the task.  

Suppl. Movie 2. Frame-by-frame decoding of mouse position from PPC population activity. The contrast used 

in each trial is indicated by the grating on one of the sides of the z-θ map. The trajectory of the mouse in the 

whole trial is indicated by a black dashed line, and the frame-by-frame position of the mouse is indicated by a 

circle. The color-coded map is the log posterior distribution of the current position of the mouse estimated 

from population activity of PPC neurons. 
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