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Abstract—Motor imagery-based brain computer interfacing (MI-BCI) as a neuro-rehabilitation tool aims at 

facilitating motor improvement using mental practice. However, the effectiveness of MI-BCI in producing 

clinically meaningful functional outcome is debated. Aside from computational shortcomings, a main limiting 

obstacle seems to be the substantial representational dissimilarity between movement imagination (MI) and 

movement execution (ME) on the level of engaged neural networks. This dissimilarity renders inducing 

functionally effective and long lasting changes in motor behavior through MI challenging. Moreover, the 

quality and intensity of imagination is highly prone to change on a trial-to-trial basis, based on the subject’s 

state of mind and mental fatigue. This leads to an inconsistent profile of neural activity throughout training, 

limiting learning in a Hebbian sense. To address these issues, we propose a neuroconnectivity-based paradigm, 

as a systematic priming technique to be utilized pre-BCI training. In the proposed paradigm, ME-idle 

representational dissimilarity network (RDN) features are used to detect MI in real-time. This means that to 

drive the virtual environment, an ME-like activation pattern has to be learned and generated in the brain 

through MI. This contrasts with conventional BCIs which consider a successful MI, one that results in higher 

than a threshold change in the power of sensorimotor rhythms. Our results show that four out of five 

participants achieved a consistent session-to-session enhancement in their net MI-ME network-level similarity 

(mean change rate of 6.16% ± 4.64 per session). We suggest that the proposed paradigm, if utilized as a 

priming technique pre-BCI training, can potentially enhance the neural and functional effectiveness. This can 

be achieved through 1- shifting MI towards engaging ME-related networks to a higher extent, and 2- inducing 

consistency in MI quality by using the ME-related networks as the ground-truth and thus enhancing the 

robustness of the activity pattern in the brain. This would in turn lend to the clinical acceptability of BCI as a 

neurorehabilitation tool.  

 

1. Introduction 

The goal of movement imagination-based brain-computer interfacing (MI-BCI) as a neurorehabilitation 

tool is to use mental practice as a proxy to guide neuro-plastic reorganization in the lesioned brain 

towards relearning motor skills [1, 2]. This idea is based on the premise of shared neural correlates of 
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movement imagination (MI) and overt movement execution (ME) [3–6]. Following the execution of the 

movement, sensorimotor feedback is provided to the brain through afferent tracts [7]. The afferent 

feedback is an essential component of human motor control, both in error-based and reinforcement 

aspects of learning [8, 9]. This feedback is missing in MI, which is defined as the state of actively 

planning a movement, without execution. MI-BCI provides a pathway to close the sensorimotor loop by 

providing feedback to the user whenever an MI is detected [10, 11].  Such a technique would be most 

beneficial to individuals with severe disabilities who demonstrate little benefit from physical exercise 

[12–14]. However, despite extensive research, MI-BCI for motor neurorehabilitation is far from 

becoming a standardized clinical paradigm.  

In this study we will address two main obstacles limiting the clinical applicability of BCI. First, from a 

network point of view, different connectivity patterns have been associated to MI versus ME, casting 

doubt on the effectiveness of MI being a suitable replacement for ME in motor rehabilitation. To be more 

specific, motor planning/imagination of both left and right hand movements mainly engages the left 

posterior parietal and left motor areas [15–18]. However, manual actions are accompanied by a bilateral 

inter-hemispheric connection between the motor areas [19, 20], while the descending tracts originate from 

the primary motor cortex contralateral to the active hand [21]. This network level representational 

dissimilarity hinders the practicality of using MI as a proxy to induce motor-related plasticity in the brain.  

Most MI-BCI systems currently used for motor neurorehabilitation rely on features derived from 

individual EEG channels, especially the changes in the sensorimotor rhythms in terms of spectral band 

power (BP) [17, 22, 23]. Whenever this change exceeds a certain threshold, a successful MI is registered 

and subsequently the subject receives a feedback. Although BP features offer minimal computational 

workload as well as fair accuracy for real-time BCI, they inherently overlook the task-related interplay of 

neuronal activity in the engaged neural networks. However, the short and long-term changes in the 

engaged networks as a result of training, can be considered a proxy to assess the neuroplasticity induction 

process [24, 25]. With such a measure in hand, one can monitor the process of learning, and possibly 

modify training appropriately on a session to session basis [26–28].  

Moreover, unlike active movement which is easily controllable, the quality as well as intensity of MI can 

vary on a trial-to-trial basis [29, 30]. Active movement training thus results in a consistent and robust 

exercise paradigm, with predictable outcome in certain muscle groups. MI however, is an endogenous 

mental task. Although one can be instructed to imagine movement in a certain way, e.g. kinesthetically, 

the exact way in which the instructions translate into action is highly subjective and difficult to measure 

[31].  
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Movement imagination thus results in an inconsistent and dispersed profile of neural activity, throughout 

the training period, which negatively affects the net functional benefits of training. Moreover, the 

immense variability in MI might partly explain the large heterogeneity in the ability of both healthy and 

clinical populations in controlling α-or β-range BP MI-BCIs [32, 33]. This calls for a much needed 

“ground-truth map” to be used as the gold-standard reference of comparison for MI validation. The most 

logical choice for such a reference would be the brain activity during ME. 

To address the above-mentioned issues, a fundamental revision of the BP-based MI detection frameworks 

typically used in MI-BCI is critical. One theoretically suitable substitute for BP seem to be the measures 

of neural network connectivity. The idea mainly originates from the fact that the brain is undoubtedly an 

interconnected network, with distinct patterns of inter-regional information flow for different tasks (see 

the review by [34]). Neural network connectivity can be looked at on two main levels; anatomical 

(structural) level and statistical (functional and effective) level [35]. The changes in the structural level 

usually happen on a slow time scale (hours or days) and therefore are not suitable for BCI whereas 

statistical connectivity changes on a millisecond timescale [36, 37].  

1.1. Network-based BCI 

Functional and effective connectivity are two main data-driven approaches to look into statistical 

dependencies in multichannel recordings. Functional connectivity provides information on the correlation 

or mutual dependency between recording channels, whereas effective connectivity looks into the partial 

predictive power of the activity in one region over other regions [34]. Functional and effective 

connectivity have both been applied to BCI algorithms.  Daly and colleagues [38] aimed at separating 

single cued executed and imagined finger taps versus resting state to control a BCI system, using 19-

channel EEG data and measures of functional connectivity. They used Hidden Markov models to model 

the temporal dynamics of the mean clustering coefficients at each frequency bin. They achieved a subject 

mean accuracy of 70.9% for executed and 67.3% for imagined movements, suggesting the reliability of 

functional correlations in EEG, as a measure for decoding ME and MI. 

Liu et al [39] used a nonlinear Granger Causality (GC) measure of functional connectivity and a statistical 

threshold in the context of a BCI system. Different intended arm reaching movements (left, right and 

forward) were decoded using 128 EEG surface electrodes.  The authors showed that directional 

information flow patterns were distinct for each intended arm movement direction. This study suggests 

that statistical connectivity can be used as a differentiating measure for movement intention even when 

the same end effector is used.  
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Billinger et. al. [40] applied independent components analysis (ICA) to 45-channel EEG data to separate 

imagined movement from resting state. They did so before estimating measures of effective connectivity 

from single-trial vector autoregressive (VAR) models. They reported that effective connectivity measures 

extracted from independent components can achieve accuracy similar to band-power features, however 

they did not use their proposed technique in a real-time MI-BCI setting. Additionally, using ICA to 

eliminate inter-channel dependencies is in contrast with the concept of effective connectivity which looks 

for cause and effect relations (delayed dependencies) between recordings. 

Heger et. al. [41] proposed a feature extraction method for BCI applications by combining connectivity 

measures as feature level filters for power spectral density (PSD) features, and evaluated the performance 

of this method in a finger tapping 65-channel EEG dataset and a 118-channel motor imagery dataset.  The 

authors were able to improve classification accuracy compared to spectral band power, confirming the 

applicability of statistical connectivity measures to real-time BCI. 

However, there are two challenging factors that have not been systematically investigated: one 

computational and one conceptual. On the computational side, connectivity extraction from EEG signals 

usually requires high spatial density recordings (20 or more channels). Thus the algorithmic workload of a 

connectivity-based BCI system can be quite high, rendering the system slow. On the other hand, if the 

number of recordings is insufficient, the system might face lack of information and become unstable. On 

the conceptual side, reinforcing the neural networks contributing to MI, without taking into account MI-

ME representational differences, will not necessarily help improve the functional outcome of BCI 

training.  

To address both of the above-mentioned challenges, we propose and test a priming technique to be used 

pre-BCI training, which itself consists of BCI training. We perused two main goals in designing the BCI 

paradigm. First we wished to ascertain the feasibility of implementing a network-based BCI feature that 

offers low computational workload, provides robust accuracy, demands low channel density recording 

and is completely self-paced (not cued), meaning participants are given the full benefit of using their own 

intent. Second we aimed at investigating the effectiveness of using such BCI training in changing the 

quality of MI to engage ME-related networks to a higher extent and moreover, increase the MI robustness 

by enhancing MI-ME representational similarity.  

 

To this end, the connectivity-based paradigm utilizes ME-idle representational dissimilarity network 

(ME-idle RDN) characteristics as features to detect MI in real-time. This means that to drive the virtual 

reality interface, an ME-like activation pattern has to be generated through MI in the brain. This is unlike 
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conventional BCI which defines a successful MI, one that results in a change in the BP of the 

sensorimotor rhythm exceeding a threshold[42]. Incremental levels of difficulty are considered in the 

design of the training paradigm, i.e. as training progresses, the MI-ME representational similarity network 

(RSN) has to become stronger to be able to drive the environment. We hypothesize that the proposed 

paradigm will result in a shift in MI, towards engaging ME-related networks of the same movement to a 

higher extent.  

 

2. Methods 

2.1. Subjects 

Five right-handed healthy subjects were recruited (mean age = 38.4 years, SD = 16.5, range 26–55, 4 

female). The participants had no habitual drug or alcohol consumption, cognitive or psychiatric 

impairments, neurological disorders, metal implants or pregnancy. Subjects were compensated for their 

participation and gave their written, informed consent beforehand. The study protocol was approved by 

the University of Ottawa Health Sciences and Science research ethics board and the Bruyère research 

ethics board. 

2.2. EEG recording 

In all experiments, EEG was recorded from 32 Channels (AFz, AF3, AF4, F3, F1, Fz, F2, F4, FC5, FC3, 

FC1, FCZ, FC2, FC4, FC6, C5, C3, C1, Cz, C2, C4, C6, CP5, CP3, CP1, CPz, CP2, CP4, CP6, P3, Pz, 

P4) grounded to Fpz. All measurements were performed at a sampling rate of 1000Hz, using a Brain 

Products Amplifier, and it was made sure that the electrode-skin impedance was kept below 5KΩ in all 

electrodes. The data were transmitted online to Matlab via a secure IP connection for real-time analysis. 

All programs used in this study for online and offline processing were custom coded by the first author 

either in Python or Matlab. 

2.3. Assessment of kinesthetic and visual imagery 

For the assessment of motor imagery vividness we used the short version of the Kinesthetic and Visual 

Imagery Questionnaire (KVIQ-10). KVIQ-10 uses a five-point scale to rate the clarity of image (V 

subscale) and the intensity of sensations (K subscale) during imagination of five small movements of 

individual limbs. An examiner first explained the differences between kinesthetic and visual imagery, as 

well as every movement on the list to each subject. Subjects were then required to rate their imagery 

using the operational definition of each category (e.g., 5 = an “image as clear as seeing” for visual, or 

“feeling as clear as doing” for kinesthetic). All subjects were instructed to use their non-dominant hand 
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(left hand) for the KVIQ imagery tasks. Subjects scoring 3 or lower in any of the tasks were excluded 

from the study.  

2.4. Connectivity analysis 

Measures of effective connectivity were used for feature-extraction from the EEG data to drive the BCI as 

well as offline network analysis. Effective connectivity provides a measure of interaction between remote 

brain regions using the predictive power of the activity in one region to explain the activity of other 

regions [43]. Multiple measures of effective connectivity have been introduced and applied to neural data 

such as Granger causality (GC) and its multiple extensions [39, 44], partial directed coherence (PDC)[45], 

transfer entropy [46] and directed transfer function (DTF) [47].  

Most effective connectivity measures are extracted from the vector autoregressive (VAR) models 

coefficients. MVAR describe how time series in a multichannel data depend on past values of each other. 

As such, VAR models relate to the concept of causality, meaning that their structure mirrors the temporal 

order of driver and effect relations among the time series also referred to as direction of information flow. 

Assuming the time series is stationary, an MVAR model of order p can be written as shown in (1). 

𝑋 𝑡 = 𝐴 𝑖 𝑋 𝑡 − 𝑖 + 𝐸 𝑡
)

*+,
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= 𝐴 𝑖
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⋮

𝐸0 𝑡

)

*+,
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	𝐴 𝑖 =
𝑎,,(𝑖) ⋯ 𝑎,0(𝑖)
⋮ ⋱ ⋮

𝑎0,(𝑖) ⋯ 𝑎00(𝑖)
																																																		(1)   

   

where X(t)=[X1(t) X2(t) … XN(t)]T represents an N-channel dataset, A(i) is the N×N matrix of 

autoregressive coefficients and E(t) is the vector of residuals or prediction error. In the frequency domain, 

(1) can be written as shown in (2) to (4). 

𝐴 𝑓 𝑋 𝑓 = 𝐸 𝑓 																																																																										(2) 

𝐴 𝑓 = 𝐴 𝑗 𝑒<*=>?@
)

@+A

																																																															 3  

𝑋 𝑓 = 𝐴<, 𝑓 𝐸 𝑓 = 𝐻 𝑓 𝐸 𝑓 																																												(4) 
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where A(0)= -I (unity matrix). Then the cross spectral density is obtained as shown in (5). 

𝑆 𝑓 = 𝐻 𝑓 Φ𝐻∗ 𝑓 																																																																			(5) 

where F is the covariance matrix of the error vector E(t). Using the above equations we can derive 

information flow extent and direction, between time series using various measures. In this study DTF was 

used for network generation because of its robustness with respect to systematic variation of signal to 

noise ratio, length of the recording data [48], optimal choice of the MVAR model order and sampling 

frequency [49].  DTF is calculated as follows: 

𝐷𝑇𝐹*→@= 𝑓 =
𝐻*@ 𝑓

=

	 𝐻*M 𝑓 =	0
M+,

																																																			 6  

where 0 ≤ 𝐷𝑇𝐹*→@ 𝑓 ≤ 1	and 𝐷𝑇𝐹*→@= 𝑓0
@+, = 1	for all 1≤j≤N. DTF measures connectivity by 

focusing on the net information outflow from channel i to channel j, normalized by the influence of 

channel i on all other channels.  

Given that EEG data is highly non-stationary, the methodology used for autoregressive coefficient 

estimation, as well as data window size is crucial to the validity of results obtained by measures like DTF. 

In addition, EEG also suffers from multicollinearity [50], i.e. the existence of near-linear relationships 

among channels mainly because of noise and volume conduction of the head. During regression 

calculations, this relationship can create inaccurate estimates of the regression coefficients, inflate the 

standard errors of the regression coefficients, and degrade the predictability of the model. 

To address this issue, we first filtered the signal with a spline interpolation spatial Laplacian filter to 

minimize instantaneous correlations between channels [51]. In addition we employed Ridge Regression 

(RR) for model parameter estimation, a technique for analyzing multiple regression multidimensional 

data with multicollinearity [52]. When multicollinearity occurs, least squares estimates are unbiased, but 

their variances are large so they may be far from the true value. By adding a degree of bias to the 

regression estimates, ridge regression reduces the standard errors.  

2.5. Study design  

The study consisted of three phases: (1) screening session, (2) subject-dependent number of BCI training 

sessions and (3) one retention session, 10 days after the last training session (Figure 1). 

2.5.1. Screening session 

Subjects were asked to fill out the KVIQ-10, as well as the Edinburgh handedness inventory. EEG 

screening was then performed with the subject seated comfortably on a chair in a shielded, dimly lit room 
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in front of a display set at a 1-meter distance. A virtual reality hand avatar, developed in-house using 

VRML was used as the visual cue. The virtual hand opened and closed with the repetition cycle of 2 

seconds (1 sec to open and 1 sec to close, Figure 2). An auditory GO/STOP cue was used to cue 

participants to imagine movement (GO cue) or rest (STOP cue).  When the GO cue was played, the avatar 

hand opened and closed for 8 seconds. The movement stopped with the STOP cue, and the avatar 

remained in resting position for 8 seconds, until the next GO.  

Subjects were asked to look at the visual cue on the display (Figure 2) accompanied with the auditory cue, 

and imagine the kinesthetic feeling of the same movement as the avatar in their own non-dominant hand. 

Each block lasted for 7 minutes. Three 7-minute blocks of alternating MI/idle trials, interleaved with 2 to 

3-minute resting intervals were recorded with the same protocol. Subjects were then asked to complete 

two additional 7-minute blocks of alternating ME/idle trials, where they had to actively open and close 

their hand at the same pace as the avatar movement. The screening session took about 50 minutes.  

Generating the representational similarity/dissimilarity networks  

Screening session EEG data were used to generate two 30-link networks.  First, the ME-idle 

representational dissimilarity network (RDN) was generated and subsequently used to drive the BCI. 

Hereafter, this network will be called the Network of Interest (NoI). The second network generated was 

the MI-ME representational similarity network (RSN) for screening. To generate these networks, EEG 

data corresponding to ME, MI and idle states in each 8-sec trial were segmented into single-second long 

non-overlapping windows (N windows per block for each state). The connectivity matrices were then 

calculated for each data window (N matrices of dimensions 32 × 32 per state). Element 𝑐*@	(𝑖 ≠ 𝑗) in each 

connectivity matrix, represents the partial predictive power of channel i over channel j.  

In order to generate the NoI, a generalized linear model (GLM) was fitted to the off-diagonal elements of 

the connectivity matrices in an R-fold leave-one-block-out cross-validated fashion (R the total number of 

blocks). Considering the large number of connections and the limited amount of data in hand, within-

subject cross-validation is critical to ensure that the model is not over-fit, and has satisfactory 

generalization to unseen data. To this end, in each fold, all except one block were considered the training 

set, and the left-out block was considered the testing set. For each block, the mean connectivity pattern, 

was calculated by averaging each off-diagonal element over the N windows for each of the two states of 

ME and idle (322 – 32 = 992 off-diagonal elements, 𝑐*@	(𝑖 ≠ 𝑗)). This resulted in a 992×1 vector of 

average connectivity pattern per state, per block. The GLM was then fitted as follows:   

	𝐶T = 𝑀𝛽T 	+ 	𝜀T	,												𝑟	 = 1, 2, … , 𝑅									(7),                        
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where 	𝐶T	is the vector obtained from concatenating the two 992 × 1 vectors (1984 × 1) of mean 

connectivity patterns for the two states, averaged across R-1 blocks, having left out block r. 𝑀 is the 1984 

× 993 design matrix, with each column containing an intercept column as well as a single column for 

every connection, containing 1 for ME and -1 for idle for the corresponding connection and zeros for the 

rest of the connections. 𝛽T and 𝜎T are the 992 × 1 vectors of regression coefficients and errors for the rth 

fold of the cross-validation respectively. The average contrast pattern was acquired by averaging the 

regression coefficients over all the cross-validation folds; 𝛽 = 	 𝛽T]
T+, . In the resulting average 𝛽 vector, 

each regression coefficient 𝛽^	(𝑙	 ∈ 1: 992) would represent the cross-validated difference or the contrast 

between the means of its corresponding connections between the two conditions. The links of the NoI 

were considered the 30 highest ranked 𝑐*@	(𝑖 ≠ 𝑗) in terms of the absolute value of the corresponding 𝛽^. 

Moreover, since the absolute value of the contrast is considered to generate the NoI, the resulting network 

reflects changes both in terms of integration (strengthening of a link) and/or segregation (weakening of a 

link) from one state to the other. The same calculation was carried out in all frequency bins of size 3 to 10 

Hz, in the range of 7-40Hz. The optimal frequency bin was considered one that maximized mean absolute 

contrast over the whole NoI network in that band, i.e. 𝑚𝑎𝑥 ,
dA

𝛽e 					dA
e+, 		𝑓 , where f represents the 

frequency band in question.  

The data collected during the screening session was also used to generate the MI-ME RSN. This network 

was generated in the exact same cross-validated fashion as the ME-idle RDN i.e. the NoI. Only this time 

around we are interested in the similarity between the two states of ME. Therefore, the MI-ME RSN was 

generated by sorting the connections in terms of their corresponding 𝛽𝑠 in ascending order. By the same 

token, the frequency band of interest was considered 𝑚𝑖𝑛 ,
dA

𝛽e 					dA
e+, 		𝑓 .  

The MI-ME net similarity in the MI-ME RSN was utilized as a screening tool to monitor the session-to-

session effect of training in shifting MI towards ME. MI-ME net similarity was defined as shown in (11) 

𝑁𝑒𝑡	𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦	% ≡ 100×
1
30

𝑐e

dA

e+,

,							0 < 𝑐e < 1												 11  

where 𝑐e represents the 𝑛th link in the RSN.  

2.5.2. BCI Training sessions 

Each BCI training session took approximately 75 minutes and consisted of two phases; calibration and 

training, and post training MI and ME cued blocks. 
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Calibration 

Sub-network library construction: This step of the calibration process is performed off-session to shorten 

calibration. Based on our pilot experiments, depending on the “similarity level” of MI and ME, 

controlling the 30 links of the NoI (i.e. the ME-idle RDN) can be difficult. Therefore, we introduced the 

concept of “incremental levels of difficulty” to the training paradigm. This entailed breaking the 30-link-

NoI into a number of smaller sub-networks (sub-NoIs), and gradually increasing the difficulty, by 

expanding the training network one sub-NoI at a time. The number of links in the sub-NoIs was set to six 

through our pilot experiments, i.e. five 6-link sub-NoIs (Figure 3, b-f).  

Identifying the optimal combination of sub-NoIs entailed generating all possible 6-link sub-NoIs and 

ranking them in terms of MI-detection performance. Considering the enormous number of sub-NoIs 

(given by the binomial coefficient dA
n = 593775), the on-session calibration would become excessively 

long. To avoid this, a library, narrowed down to a subset of 50 sub-NoIs, was constructed at the end of 

each session and utilized for calibration during the subsequent session. To this end, a 3-minute block 

consisting of alternating MI-idle trial as well as a 3-minute block of alternating ME-idle trials were 

recorded at the end of each session (Figure 1). 

At the beginning of each BCI training session, the NoI was updated using the newly recorded ME data. 

An individual Mahalanobis minimum distance (MD) classifier was then trained per each possible 6-link 

sub-NoI. The training features for the classifiers consisted of the DTF values associated with the 6 links of 

the corresponding sub-NoI, calculated from 1-sec long windows of data while performing ME. Each 

classifier was then applied to the data from the MI trials for imagery detection. Subsequently, the NoIs 

were ranked based on their accuracies. The top 50 sub-NoIs with the highest ranks were selected as 

members of the sub-NoI library, contingent upon every link of the NoI being present in at least 8 sub-

NoIs. This library was then utilized for calibration at the beginning of the next session.  

The 5-minute calibration, at the beginning of each BCI session, consisted of a 3-minute block of 

alternating cued MI-idle trials and a 2-minute classifier update. The on-session recorded MI data, coupled 

with the sub-NoI library from the previous session were utilized to determine the optimal subset of sub-

NoIs for each session’s training. To this end, the 50 sub-NoIs in the library were first ranked based on the 

MI-detection accuracy, using an MD classifier per network. Then, five sub-NoIs with the highest MI-

detection accuracy that also satisfied inclusion of all the links of the NoI, were considered the winning 

sub-NoIs. These networks were then recruited for training with increasing levels of difficulty.  
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Training  

Each participant performed six 5-minute blocks of the BCI game, interleaved with a minimum of 2-

minute rest blocks. Training on the first BCI session started with the “easiest” sub-NoI, i.e. the sub-NoI 

ranked with the highest accuracy. The difficulty of controlling the interface would increase by adding one 

sub-NoI at a time gradually building up to the “hardest” level i.e. the 30-link NoI. The criteria to progress 

to the next level was the subject-perceived accuracy of 75% on self-report and the actual accuracy of 

80%. This approach ensured that the subject perceived sufficient control over the system at each level and 

felt comfort (Figure 1).  

At the beginning of each training session, the level of difficulty was set at one below the last level the 

subject successfully completed in the previous session.  If a subject did not progress during a session, 

training in the subsequent session started from the easiest level. The maximum number of BCI training 

sessions was set to 7 a priori. However, the training could end with less sessions upon achieving an 

accuracy of 75% on self-report and an actual accuracy of 80% on the “hardest” level (30-link NoI).  

The VR interface, developed in-house using VRML, consisted of a rubber ball attached to a pipe. A 

balloon was placed on the tip of the pipe. The subject was asked to imagine repeatedly squeezing on the 

rubber ball with their non-dominant hand to blow air into the balloon. Every time an MI was detected, the 

balloon would get bigger. Once a balloon was filled, it would detach from the pipe and be replaced with a 

balloon of a different color (Figure 4). The MI performance during BCI training was self-paced meaning 

that the participants performed MI in arbitrary intervals, interleaved with idle. Participants were instructed 

to keep MI intervals between 4 -10 seconds, and to say “GO” and “STOP” upon starting and stopping 

imagining respectively.  

Network update trials 

A 3-minute block of alternating MI-idle trials as well as a 3-minute block of alternating ME-idle trials 

were recorded at the end of each session. These trials were used to update the NoI and construct the sub-

NoI library (see Calibration). Moreover, the same data were used to update the MI-ME RSN, used for 

screening the effect of training, throughout the paradigm.  The new ME data were not recorded at the 

beginning of the session in order to rule out the possibility of the subject having fresh kinesthetic memory 

of the movement.  

2.5.3. Retention session 

For every participant, a retention session was scheduled between 10-12 days after their last training 

session. The data from the ME trials, recorded during the final training session were used for calibration 

(see Calibration).  The participant was asked to control the interface starting from the highest level 
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achieved during training. If the accuracy was equal to or more than 75% on self-report and 80% actual 

accuracy, the changes were considered fully retained. If the subject did not demonstrate this level of 

accuracy, they were asked to control the interface at consecutively lower levels until either the criteria 

were met or there were no additional levels. At the end of the retention session, two 7-minute blocks of  

cued screening trials (alternating MI-idle and alternating ME-idle trials) were recorded. 

 

3. Results 

Table 1 shows a summary of outcome measures for all subjects. The optimal frequency band for NoI 

generation was within the beta range almost for all subjects (group mean of 16.66 ± 3.51 Hz). Figure 5 

shows the MI-ME net similarity from screening session, throughout training and on the retention session. 

As expected, the results show a considerable inter-subject variability in MI-ME net similarity before and 

after training (group mean of 32.55% ± 22.90% on the screening session and 55.92% ± 20.90% on the 

retention session).  

This inter-subject variability is also present with regards to changing rate of MI-ME net similarity as a 

result of training (group mean 6.16 ± 4.46). However, except for one, subjects were able to drive the BCI 

showing a session-to-session increase in their MI-ME net similarity (Figure 5), met the training stopping 

criteria before 7 sessions (group mean of 3.6 ± 2.1 sessions) and passed the full-retention criteria on the 

retention session, i.e. controlling the VR environment with on or above 80% accuracy on the “hardest” 

level. Out of 5 recruited participants, S2 (oldest participant: female, aged 56 years) made no progress in 

operating the BCI system and interestingly, was the only participant who showed no meaningful change 

in the MI-ME net similarity (Net similarity change rate of 0.002).  Subject 5 was the only subject who 

was able to operate the BCI system with an accuracy of 85% on the first BCI training session, and 

therefore required no further training.  

Figure 6 shows the session-by-session changing process of the MI-Idle RDN towards engaging ME 

related networks to a higher extent for S1.  Figure 6 (a.) shows the ME-idle RDN averaged across all 

sessions. Figure 6 (b., c., d., e. and f.) show MI-idle RDN on the screening session, first, second and third 

BCI training sessions as well as the retention session respectively. The shift of MI-idle RDN towards ME-

idle RDN is validated by the enhancement in the MI-ME net similarity of 47.34%, 56.01%, 54.12% 

,71.81% and 67.57% for Figure 6 (b, c, d, e and f) respectively.  

4. Discussion 
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Intense practice is required to re-learn the impaired or lost motor skills following a stroke or other brain 

injury [53]. MI is a mental motor practice that activates the sensorimotor related networks [54] and 

therefore can serve as an alternative training pathway for patients with higher levels of disability [55]. 

The first studies investigating the effectiveness of such approaches in post-stroke motor recovery are 

promising [22, 56–59]. However, the significance of functional changes specific to these interventions is 

still a matter of debate.  

Moreover, when compared to robot-assisted physical therapy in matching doses, BCI interventions fall 

short in terms of producing functional outcome [22]. There are two main arguments keeping BCI from 

progressing beyond its current limits as a motor rehabilitation tool that shape the motivation of this study. 

First, although MI and ME have been shown to engage partially similar neural networks [60], there are 

fundamental representational dissimilarities between the two states, especially in the primary motor areas 

[61]. 

The second argument is the high amount of intra-subject variability in the MI quality [62]. When one is 

instructed to overtly execute a movement, the quality and consistency of the movement e.g. kinetics, 

kinematics, can be closely monitored and measured throughout the trials, and modifying instructions can 

be given as needed. This in turn results in a focused and targeted pattern of activity in the brain as well as 

the engaged muscle groups, making the outcome of training predictable. MI however, is a purely mental 

task and therefore highly subjective, making the control for task “correctness“ and consistency 

challenging. This leads to discrepancy in the task-related brain activity across trials [63]. This constrains 

the functional outcome of BCI by affecting the robustness of the training.  

The aim of this study therefore, was to bridge the gap between the network-level representations of 

movement imagination and execution. This entails “shifting” imagination quality in such a way that 

performing MI engages ME-related networks to a higher extent. In conventional BCIs, i.e. spectral band 

power-based, the self-modulation of sensorimotor oscillations during MI is supported by providing a type 

of real-time feedback, in response to the user’s alteration of mental state [64]. In this study however, a 

successful MI was re-defined as an MI that results in an ME-like representation in the brain on from a 

network perspective. To incorporate this new definition in the BCI design, we propose a connectivity-

based real-time MI detection paradigm. The proposed paradigm utilizes the ME-idle representational 

dissimilarity network (RDN) as a map of reference for MI. Meaning that during training, the brain activity 

is constantly compared to the ME-idle RDN i.e. the network of interest (NoI). Feedback is returned to the 

subject only when MI elicits a similar pattern of activity in the brain.  
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Another novelty of the proposed paradigm, was incorporating the idea of “levels of difficulty” into the 

design of the BCI [65]. Training started with a 6-link sub-NoI, and upon progression to higher levels, the 

network was built up, one sub-network at a time, to the 30-link NoI. The idea originated from our pilot 

studies where subjects struggled to drive the 30-link NoI to start with. This design has the advantage of 

lowering subject frustration, as the mental demands of the task get distributed between 5 levels. The 

difficulty increased only when the subject felt comfortable with the current level of challenge. 

Additionally, this design adds an element of flow to the game, which in turn adds to the subject’s 

motivation and engagement [66, 67]. 

Our results show that four out of five subjects showed enhancement in MI-ME net similarity on a session 

to session basis as a result of training (Figure 5, Figure 6). Note that the MI-ME representational 

similarity network (RSN) was updated every session using the cued trials recorded at the end of the 

session i.e. the network update trials (Figure 1). 

 Moreover except for S2, subjects were able to reach the training stopping criteria, i.e. on or above 75% 

self-reported and 80% actual accuracy on the “hardest” level. This means that subjects were able to 

reproduce the ME-idle RDN i.e. the NoI, through imagination, at least 80 percent of the time.  

The BCI utilized Mahalanobis minimum distance classifier to detect MI, which is the same metric used to 

generate the NoI, as well as the MI-idle RDN and subsequently MI-ME RSN. Therefore, the classification 

accuracy can be considered a direct reflection of MI-ME net similarity in real-time (see (11)). This would 

mean that the net similarity in the offline MI-ME RSN after training is expected be close to 80%.  

Interestingly, all the subjects failed to reproduce the same level of MI-ME similarity, in the offline trials, 

with subject-dependent levels of deterioration (Figure 5). This can be interpreted as follows: the 

enhancement seen in the MI-ME net similarity potentially originates from two components; 1- a reward-

dependent or short-term component, which is contingent on receiving the BCI feedback, and 2- a learning 

or long-term component, as a mental shift in the very way the participant imagines movement. The later 

component on MI-ME similarity enhancement is retained independent of the feedback, which is depicted 

in Figure 5. The results suggest that with progression of training with the proposed paradigm, the reward 

dependent component translates into long-lasting qualitative changes in MI in successful subjects.  

This finding is further confirmed in the case of subject S2, i.e. the only subject not able to operate the BCI 

system (Figure 5, Table 1). S2 was the oldest participant (56 years of age), had the lowest KVIQ score 

and showed no consistency in the ability to control the virtual reality environment. Intriguingly, S2 was 

also the only participant who showed no session-to-session enhancement in MI-ME net similarity. This 

provides evidence that the enhanced similarity seen between imagination and execution is indeed an 
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outcome of training using the proposed paradigm, and not merely a result of MI repetition. Furthermore, 

this confirms the importance of feedback accuracy in the outcome of BCI training. This is despite the fact 

that in the offline analysis of the S2’s data, modulation of sensorimotor rhythm is detectable as a result of 

MI. This further validates the argument that even given that the participant is able to control a BP-based 

MI-BCI, does not ensure a functional outcome as a result of training.  

This is in line with the studies investigating the superiority of the general outcome when receiving 

feedback in response to MI in a BCI paradigm. This is important, since it is known that repetition of a 

task is sufficient to drive changes in brain activity. Therefore, MI as a stand-alone task, is being 

incorporated in exercise routines for stroke rehabilitation [68]. As such, some studies have tried to tease 

apart the BCI-induced changes from the effect of MI repetition. It has been shown that compared to MI 

alone, neurofeedback-guided MI results in enhanced laterality [69] and magnitude [70] in the 

sensorimotor rhythms in healthy subjects.  

Moreover, in stroke-affected populations, higher functional improvements have been reported in the MI-

BCI group compared to the control group that received MI training without  [59]. Similar outcomes have 

been reported when the control group received random i.e. sham feedback in response to MI [70]. These 

studies demonstrated that BCI, if employed prior to physiotherapy, might stimulate brain plasticity. In 

that sense, BCI can act as a priming mechanism to increase the response of neural networks to physical 

therapy and thus improve the motor outcome in general [58, 59, 71]. However, neither provide evidence 

regarding the behavioral specificity of BCI training, reporting a benefit in combined hand and arm [58] or 

general upper limb [59] Fugl-Meyer assessment score. Additionally, they report no improvement in the 

subjects’ ability to control the BCI over 3 to 4 weeks of training.  

These findings provide further evidence that MI of a specific movement (e.g. opening and closing of the 

hand) can trigger broad and dispersed neural activity in motor-related areas. This non-specificity in neural 

activity, limits the improvement in both the functional outcome and BCI performance from a Hebbian 

standpoint. Furthermore, the large inter-subject variability in the MI-ME net similarity at both screening 

and retention sessions (Figure 5, Table 1) point to the same aforementioned fact. This is despite the fact 

that all participants received the exact same instructions for MI performance and they scored the 

vividness of their kinesthetic MI fairly close to each other. These findings point to the critical need for a 

“gold standard” reference frame, as a measure for MI quality monitoring, apart from self-report. To our 

knowledge, this is the first study taking a systematic approach to address the aforementioned issue, 

proposing a priming mechanism to be utilized pre-BCI training.  
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Moreover, the proposed paradigm offers low computational workload, robust accuracy and is completely 

self-paced, meaning participants are given the full benefit of using their own intent. Our results provide 

evidence that the proposed paradigm can effectively induce consistency in MI quality and thus enhance 

exercise repeatability. This would in turn, result in a more robust training routine. This could potentially 

help reduce the inter-subject heterogeneity in BCI performance and outcome, and lend to the clinical 

acceptability of BCI as a neurorehabilitation tool. This makes the outlook of producing a significant 

functional outcome through BCI training more feasible.  

However, a randomized controlled study has yet to be established to investigate the effect of conventional 

MI-BCI training (sensorimotor rhythm-based BCI) with and without using the proposed priming 

mechanism. Additionally, it should be noted that this study was conducted with healthy participants who 

are able to execute overt movements, rendering the ME-related network readily accessible through EEG. 

However, the target population for the proposed MI-BCI would be patients left with little or no movement 

residual. This would raise the question of how to generate the ME-idle RDN that was utilized in the 

proposed paradigm to drive the VR interface from such clinical populations. It has been shown that 

passive movement accompanied with movement imagination best matches overt movement execution in 

terms of neural activity in both healthy and stroke subjects [72]. In continuation of this study therefore, 

we will investigate the plausibility of using passive movement + MI as a substitute for ME in healthy and 

stroke participants. Furthermore, the ability of stroke affected participants to control sensory motor 

rhythm BCI via movement imagination has been demonstrated in multiple studies [2, 22, 73, 74]. 

However, the ability of stroke patients to operate the proposed network-based BCI that defines a 

successful MI, one that engages ME-related networks, needs further investigation. 
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7. Figure and Table Captions 

Figure 1: Flow-chart view of the MI-BCI paradigm 

Figure 2: The hand avatar used as the visual cue in fully open (A.), and fully closed (B.) positions 

Figure 3: (a.) 30-link ME-idle representational dissimilarity network (RDN), i.e. the NoI for subject S1 on 
BCI session1. b. to f. are levels 1 to 5 of difficulty for controlling the BCI respectively. With each level of 
progression, one 6-link sub-NoI is added to the training network, building up to the 30-link NoI. 

Figure 4:  The BCI interface. The subject had to imagine repeatedly squeezing the rubber ball (grey) to 
blow air into the balloon. Every time an MI was detected, the balloon would expand (left). Once a balloon 
was filled, it would detach from the pipe (middle) and would be replaced by a balloon of a different color 
(right).   

Figure 5: MI-ME net similarity calculated from the MI-ME representational similarity network (RSN) in 
the absence of feedback. The first (unfilled) and last (grey filled) sessions are screening and retention 
sessions respectively. The middle sessions (black) are the BCI training sessions. 

Figure 6: From participant S1: a. Movement execution (ME)-idle Representational dissimilarity network 
(RDN) averaged across all sessions. b-f. Movement imagination (MI)-idle RDN on the screening session 
(b), first (c), second (d) and third (e) BCI training sessions as well as the retention (f) session, with MI-
ME net similarity of 47.34%, 56.01%, 54.12% ,71.81% and 67.57% respectively. 

Table 1: Summary of outcome measures 

 

8. Figures 
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Figure 1 

 

Figure 2 

session1:
screening

•KVIQ	questionnaire, Edinburgh	handedness	inventory
•EEG	screening:	a.	three	7-minute	blocks	of	alternating	cued	MI-idle trials

b.	two	7-minute	blocks	of	alternating	cued	ME-idle trials
•Network	analysis:	generating	two	30-link	networks:
a. Network	of	interest	(NoI)	to	drive	the	BCI	on	the	first	training	session:	ME-idle	

representational	disimilarity	network	(RDN)	
b.	Screening	network	:	MI-ME	representation	similarity	network	(RSN)

BCI	training	
sessions

•Calibration:		a.	one	3-minute	block	of	alternating	cued	MI-idle	trial
b.	2-minute	calibration

•BCI	training	:	six	5-min	self-cued	training	runs,	interleaved	with		2	min	rest	
intervals.	Starting	from	"easiest"	6-link	NoI	sub-NoI,	building	up	to	30-link	NoI	in	5	
levels,	contingent	upon	75%	participant	perceived	accuracy,	paired	with	80%	
actual	accuracy	
•Network	update	trials:
a.	one	3-minute	block	of	alternating	cued	MI-idle trials
b.	one	3-minute	block	of	alternating	cued	ME-idle trials

Follow-up
session

•Calibration same	as	BCI		training	sessions
•BCI	testing:	one	5-min	BCI	training	run	on	the	"hardest"	level	
•Network	update	trials:
a.	one	7-minute	block	of	alternating	cued	MI-idle trials
b.	one	7-minute	block	of	alternating	cued	ME-idle trials
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Figure 3 

 

Figure 4 

a. 30-link NoI 

    b. Level 1 
6-link sub-NoI1         

       c. Level 2 
      sub-NoI

1,2
         

      d. Level 3 
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Figure 5 

 

Figure 6 
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9. Tables  
Table 1 

 

Subject 

 

KVIQ 

score  

(Of 5) 

 

Frequency 

Band (Hz)  

 MI-ME net similarity (%)  

Net similarity 

change rate 

 

Effort 

 

 

Frustration 

 

Screening 

Session 

Retention 

Session 

S1 4 18-22 47.34 67.57 6.3 16/20 11/20 

S2 3.5 16-19 23.09 23.70 0.002 18/20 16/20 

S3 4 11-17 8.62 45.86 4 16/20 7/20 

S4 4 10-12, 18-20 19.00 70.06 12.5 17/20 11/20 

S5 5 17-21 64.71 72.45 8 17/20 5/20 

Mean ± STD 4.1 ± 0.54 16.66 ± 3.51  32.55 ± 22.90 55.92 ± 20.90 6.16 ± 4.64 16.8 ± 0.83 10 ± 4.24 
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