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Motivation: Third-generation sequencing technologies produce long, but
noisy reads with increasing sequencing throughput and decreasing per-base
costs. Detecting read-to-read overlaps in such data is the most computation-
ally intensive step in de novo assembly. Recently, efficient algorithms were
developed for this task; nearly all of these utilize long k-mers (>10 bp) to
compare reads, but vary in their approaches to indexing, hashing, filtering,
and dimensionality reduction.

Results: We describe an algorithm for efficient overlap detection that di-
rectly compares the full spectrum of short k-mers, namely tetramers, through
geometric embedding and approximate nearest neighbor search in multidi-
mensional KD-trees. A proof of concept implementation detected read-to-
read overlaps in bacterial PacBio and ONT datasets with notably lower mem-
ory consumption than state-of-the-art approaches and allowed downstream
de novo assembly into single contigs. We also introduce a sequence-context
dependent tagging scheme that contributes to memory and computational
efficiency and could be used with other aligning and overlapping algorithms.

Availability: A C++14 implementation is available under the open source
Apache License 2.0 at: https://github.com/dzif/kd-tree-overlapper

Contact: |Alice.McHardy@helmholtz-hzi.de; pdmitri@hotmail.com
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1 Introduction

Genome sequencing and assembly of cultured microbial isolates turned from
a challenge into a routine, primarily due to the advent of long-read sequenc-
ing (Goodwin et al., [2016; Wibberg et al., [2016). Technologies offered by
Pacific Biosciences (PacBio; Menlo Park, CA, USA) and Oxford Nanopore
Technologies (ONT; Oxford, UK) currently generate multi-kb sequencing
reads resolving long genomic repeats, but deliver a high per-base error rate
of around 16% (Laehnemann et al., [2016|). This inherent noise complicates
the identification of read-to-read overlaps, which is typically a prerequisite
for de novo Overlap-Layout-Consensus (OLC) assembly (Berlin et al., [2015;
Loman et al., [2015]).

A read-to-read overlap occurs when two reads originate from overlapping
genomic regions and thus share the same (local) sequence. General-purpose
alignment algorithms have a quadratic dependence on the number of reads
when performing an all-vs-all pairwise alignments and thus do not scale well.
Moreover, the full base-to-base alignment is not needed to construct an over-
lap graph; it is sufficient to indicate read-to-read overlap candidates together
with their relative orientation (Chu et al., |2017).

As a consequence, multiple programs were developed to efficiently overlap
long noisy reads, such as BLASR (Chin et al. [2013), DALIGNER (Myers,
2014)), MHAP (Berlin et al., 2015), GraphMap (Sovi¢ et al., 2016)), and Min-
imap (Li, 2016). These all search for shared seeds between reads, but differ
in the way these seeds are found and thereafter used to determine overlap
candidates. A recent review highlights algorithmic features of the available
software and evaluates their performance (Chu et al., 2017).

Here, we describe an algorithm that efficiently determines read-to-read
overlap candidates by directly comparing short k-mer (tetramer) spectra of
reads. It maintains a low memory footprint using geometric embedding (k-
mer counting) and approximate nearest neighbor (ANN) search (Muja and
Lowe, 2014)) in a KD-tree index (Bentley, [1975). We show that this approach
is as precise as other methods and allows the subsequent assembly of MB-
sized bacterial genomes into single contigs.

2 Methods

The algorithm consists of five steps: (1) tagging of long reads, to form a
set of read subsequences of fixed length; (2) geometric embedding (k-mer
counting) of each tag; (3) KD-tree index creation; (4) searching approximate
nearest neighbors (ANNs) for each tag in this index; and (5) filtering for
read overlaps. All steps were implemented in a C+414 program available at
https://github.com/dzif/kd-tree-overlapper. For convenience, we also pro-
vide a statically linked binary and a Docker container adopting the bioboxes
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standard (Belmann et al., 2015).

2.1 Tagging of long reads

In this first step, sequence tags, i.e. subsequences of fixed-length, are placed
on each read, because eventually a comparison of all tetramer counts between
sequences will be utilized (which can straightforwardly be done for tags of
the same length). In principle, read tagging can be done by covering long
reads either regularly or randomly with the desired tags density. A simple
algorithm of GC-profile peak detection is used to anchor tags, because the
GC-profile is relatively robust against sequencing errors and invariant to
reverse-complementation.

Per default, the GC content is calculated for a sliding window of 100 bp
and tags of length 1200 bp are placed at the GC maxima, only allowing the
distance between tags to be above a 400 bp. This places tags non-randomly
and decreases the overall tag density while keeping all tags aligned in true
overlaps, due to them sharing GC-profile peaks in the same subsequences
relating to the underlying genome sequence (Fig. . This also prevents
that the number of unique tags to grow linearly with increasing sequencing
coverage and helps to keep the index size small.

reference | I I ' tags

reads —*—*—-—H—
| | e —

Figure 1: Tagging of long reads. Sequence tags, i.e. subsequences of fixed-length,
are anchored at GC-profile peaks and thus aligned in true overlaps. Shared tags
between different reads indicate read-to-read overlap candidates and their relative
orientation can be determined if they share at least two pairs of tags.

2.2 Geometric embedding of each tag

Geometric embedding, or k-mer counting, maps a sequence (here: a tag) to
a vector of counts (VC) of k-mers; the VC contains the ordered set of k-mer
occurences in a sequence (including zero counts). In our implementation,


https://doi.org/10.1101/166835
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/166835; this version posted July 21, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

k-mers and their reverse-complements are collapsed in the VC (Figure . If
two tags show substantial overlap and have similar sequences the distance
between their VCs will be small, corresponding to a small edit distance be-
tween the respective tags. Hence, searching for the nearest neighbors of a
tag’s VC will reveal tags with high sequence similarity to the query tag.
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Figure 2: Geometric embedding of each tag. A sequence tag is mapped to a vector of
counts (VC) of canonical k-mers, namely tetramers. A small edit distance between
two tags also causes a small distance between their VCs, thus enabling an efficient
detection of read-to-read overlap candidates.

2.3 KD-tree index creation

To identify similar VCs (and thus read-to-read overlap candidates) efficiently,
we first build a KD-tree index of all VCs using the FLANN software library
(Muja and Lowe, |2014). KD-trees are a generalization of binary search trees
for multiple dimensions and allow an efficient exact search in low-dimensional
data . Heuristic methods for finding approximate nearest
neighbors (ANNs) in high-dimensional data accelerate the search by several
orders of magnitude (Muja and Lowe, 2014)).
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2.4 Approximate nearest neighbor search

An exact search in high-dimensional KD-trees is inefficient because of the
dimensionality curse (Marimont and Shapiro, (1979); roughly speaking, the
search space grows exponentially with the number of dimensions. However,
searching for approximate nearest neighbors (ANNS) is several orders of mag-
nitude faster than exact KD-tree query methods (Muja and Lowel 2014). The
speed-up is particularly evident for natural, high-dimensional data with high
redundancy (i.e. correlation) among the input features, e.g. the number of
‘AAAA’ tetramers in a sequence is usually positively correlated with the
number of ‘AAAC’ tetramers because they overlap (Figure . ANNSs for all
VCs are searched for using the KD-tree index created in the previous step.

2.5 Filtering of read overlaps

At this point, each VC (and thus each tag) has been assigned a list of ANNs.
ANNSs of tags found on different reads indicate that these originate from the
same underlying sequence. Double (or more) hits, corresponding to two pairs
of tags being nearest neighbors to each other and with the tags of each pair
being spread across the same two reads, are extracted. Read-to-read overlap
candidates are reported based on the orientation of the tag pairs relative
to each other in their correct orientation (Figure . They are reported in
the MHAP output format, a tabular format compatible with e.g. the Canu
assembler (Koren et al.l 2017).

The conceptual correspondence between the overlapping read pairs and
the KD-tree index is shown in Figure

3 Results

Building upon the recent evaluation of long read overlappers, we bench-
marked KD-tree using the datasets from |Chu et al/, [2017) i.e. ONT SQK-
MAP-006 and PacBio P6-C4 E. coli sequencing reads. We include their
results, representing the “best” setting for each tool (those with the high-
est F1 score after parameter optimization), and additionally ran MHAP
v2.1.1, Minimap v0.2-r124, and KD-tree (kd) v1.0 with default and recom-
mended settings. All evaluation steps are documented in a GitHub repos-
itory (https://github.com/dzif/kd-tree-evaluation) to enable computational
reproducibility.

3.1 Sensitivity and precision

We experimented with k-mers of up to k=7 on simulated and real long read
datasets to empirically determine the k-mer length providing the best per-
formance in terms of sensitivity, precision, CPU consumption and RAM re-
quirements for KD-tree. We found that trimer spectra are not specific enough
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KD-tree index

Figure 3: Schematic representation of overlapping reads and the KD-tree index.
Shared tags between two reads indicate read-to-read overlap candidates. These
tags’s VCs are located close-by in the KD-tree and are detected efficiently using
approximate nearest neighbors (ANNs) search.

to detect true overlaps with a high precision and observed that sometimes,
unrelated sequences had similar VCs by chance (data not shown). However,
in tests with simulated reads from bacterial and mammalian genomes, we
found that starting from tetramers, the specificity of VCs was sufficient to
detect true read overlaps with high precision. We thus used tetramers, which
generates 136-dimensional data points for the VCs.

With default settings, KD-tree generated 2—-3 times fewer overlapping pairs
than MHAP (Table . Yet, we obtained complete and single-contig assem-
blies for both the PacBio and ONT E. coli long read datasets, using KD-tree
together with the Canu assembler (v1.5; Koren et al., [2017). This indicates
that exhaustive overlap detection is not necessary for genome assembly, es-
pecially if the overlapping is precise and sequencing depth high. While this
was observed (and exploited) before (Li, 2016), we found that a sensitivity
as low as 20% is sufficient for single-contig assembly of microbial genomes.
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Subsequent assembly polishing, e.g. using Quiver (Chin et al.,[2013]), Nanop-
olish (Loman et al.|2015), or Racon (Vaser et al., 2017), is recommended in
either case and — as long as the assembly is structurally correct — determines
the per-base assembly quality.

For a region with coverage N, the number of all possible overlap pairs is
(N — 1)2/2, while the number of non-redundant overlaps is only (N — 1).
A quadratic growth of runtime for high coverage datasets is avoided by our
algorithm by reporting a limited number of ANNs (40) for each tag.

Table 1: Sensitivity, precision, and F1 scores on real PacBio and ONT long read
datasets. We determined the ground truth to compare against by mapping the reads
to the finished E. coli K12 MG1655 reference genome. KD-tree is less sensitive — by
design — but as precise as other tools.

Software PacBio P6-C4 E. coli ONT SQK-MAP-006 E. coli
Sens. (%) Prec. (%) F1 (%) Sens. (%) Prec. (%) F1 (%)
BLASR* 66.0 96.5 78.3 89.9 73.0 80.6
DALIGNER* 83.8 85.8 84.8 92.9 91.0 91.9
GraphMap* 1.7 940  8l.4 90.6 934 92,0
MHAP 46.2 86.7 60.3 83.9 7.7 80.7
MHAP* 79.8 79.8 79.8 91.2 82.0 86.3
Minimap 74.3 94.2 83.0 91.1 98.0 94.4
KD-tree 19.7 80.1 31.6 43.7 86.9 58.1

*Values taken from |Chu et al., 2017, who derived these from the best settings of
each tool (according to the highest F1 score) after an exhaustive parameter search.
We include results for the default settings of MHAP and the recommended aval0k
preset for PacBio/ONT all-vs-all read mapping of Minimap for comparison.

3.2 Computational performance

We measured the runtime and memory usage for KD-tree, MHAP, and Min-
imap. MHAP is the default and widely used overlapper in the Canu assembly
pipeline and Minimap is the most computationally efficient software to date
(Chu et al., 2017). All programs were run on a single CPU, though the
FLANN software library supports and scales well also to multiple cores and
distributed configurations.

KD-tree was faster than MHAP and required less memory than MHAP
and Minimap (Table . For the ONT E. coli dataset with ~40,000 reads,
loading, embedding, and tagging required 12 minutes. The tag number was
~625,000, the indexing time one minute, and the ANN search time less than
two minutes, amounting to a total runtime of 18 minutes. In comparison,
MHAP required one hour to detect read-to-read overlaps for this dataset. We
anticipate that with less sensitive settings (suitable for higher coverage and
lower noise) for a PacBio read dataset, the speed of MHAP would improve.
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KD-tree also demonstrated a substantial decrease in memory consumption;
it required 15-20 times less memory than MHAP (and a few times less than
Minimap) for these datasets. Aside from the implementation specifics we
assume that the memory efficiency of our implementation is related to the
higher compactness of the KD-tree index in comparison to the hash tables
used by other programs (Muja and Lowe, [2014).

Table 2: Runtime and memory usage on real long read datasets. The benchmarking
PacBio and ONT datasets were generated from FE. coli K12 MG1655, and contain
82,738 reads (748 Mbp) and 39,921 reads (388 Mbp), respectively. Elapsed time and
peak memory usage were measured using GNU time for single-threaded program

execution.
Software PacBio P6-C4 E. coli ONT SQK-MAP-006 E. coli
Elapsed time Peak memory Elapsed time Peak memory
(h:mm:ss) usage (GB) (h:mm:ss) usage (GB)
MHAP 1:54:35 28.96 1:00:06 19.33
Minimap 0:11:13 6.55 0:06:25 3.30
KD-tree 0:37:04 2.01 0:18:25 1.06

4 Discussion

We have demonstrated the value of a new kind of algorithm for overlapping
long and noisy reads, which uses short k-mer spectra and ANN KD-tree
search. Our implementation performed comparably and in some aspects
(e.g. memory efficiency, algorithmic and software implementation simplicity)
challenging to state-of-the-art overlappers.

The context-aware tagging technique implemented in KD-tree limits the
growth of the index size with increasing coverage, thus allowing a more effi-
cient processing of high-coverage datasets. The computational complexity for
all-vs-all comparisons of N data points with KD-trees is still N xlog(N), sim-
ilar to other overlappers. With context-unaware indexing of a read dataset,
the index size will grow linearly with the dataset size. However, if the index is
constructed dynamically, discarding redundant entries on-the-fly, our tagging
technique can allow processing time to grow linearly with data set size, as the
index size stops growing with coverage. Specifically, for high-coverage (hence
high redundancy) datasets, the dictionary size of unique (context-specific)
tags (and hence the index) can be limited in a genome as coverage grows to
multiples of genome size. For example, tagging a mammalian genome with
one tag per 1 kb average density would require about 3 millions unique tags,
which require less than 4 GB of memory in a KD-tree index. Sequencing data
can then be streamed efficiently through this index without further memory
consumption (since the index is complete), and each read will be aligned to
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a few tags, producing an overlap graph.

Surprisingly, short k-mers, starting from tetramers we used here, already
produced sufficiently precise spectrums for finding overlaps. In comparison,
other overlappers and aligners use relatively large values of k£ (>10). The
algorithm performed well also for short tags (i.e. from 50 bp), thus another
usage could be the joint processing of hybrid data sets with both short and
long reads (Koren et all [2012; Kunath et al., 2017)). Similarly to Minimap
and other programs, it would also be applicable for whole-genome alignments
and comparisons, and possibly for other -omics applications where structur-
ing of multidimensional data is needed.

Likely further gains in speed and memory efficiency are possible. For
example, it might be possible to significantly reduce the considered number
of k-mers by with a minimizer-like approach (Roberts et al., 2004). We also
found that on-the-fly points insertion/deletion into the KD-tree index and
searching tags one-by-one (not in a single batch) did not significantly affect
performance, so one could build an index discarding redundant tags one-the-
fly, further improving efficiency for datasets with high coverage.

With read lengths and throughput of the long reads sequencing technolo-
gies continuously increasing at simultaneously decreasing costs, there will
be emerging demand for methods allowing efficient handling of long reads.
Single-molecule technologies are likely to retain substantial noise, inherent
to experimenting at this physical scale. Hence the demand for efficient error-
tolerant overlappers and aligners for long reads is likely sustainable. At the
same time the trend of miniaturization of sequencers (e.g. ONT’s MinION)
and their use as portable devices in field applications (Quick et al., 2016;
Faria et al., 2017) will further increase the need for computational process-
ing efficiency.
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