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The rate at which a microorganism produces
offspring (specific growth rate) is a near univer-
sal selective pressure across microbial species.
Growth requires metabolic enzymes, whose
properties and expressions are moulded by evo-
lution, within the bounds set by physical and
chemical constraints. We asked therefore, if
basic (bio)chemistry can determine the out-
come of evolution. We found an evolutionary
extremum principle that dictates that specific
growth rate maximisation requires minimisa-
tion of metabolic complexity. This principle is
a mathematical consequence of maximising spe-
cific growth rate under mass-conservation and
protein-concentration constraints. We prove
that the number of growth-limiting constraints
bounds the number of active metabolic sub-
networks (defined by Elementary Flux Modes)
at maximal growth rate. Therefore, the com-
plexity of metabolic behaviour is determined
by the number of active protein constraints,
not the size of the network. The consequences
of the fundamental principle can be visualised
in a graphical framework that provides a uni-
fied understanding of metabolic behaviours con-
served across microbial species1, such as di-
auxic growth2, mixed substrate usage3 and
overflow metabolism4. This work therefore pro-
vides a biochemical basis for the fundamen-
tal limits of evolution, and the driving forces
of evolutionary change under growth-enabling
conditions.

Fitter microorganisms drive competitors to extinc-
tion by synthesising more viable offspring in time5,6.
The rate of offspring-cell synthesis per cell, i.e., spe-
cific growth rate, is a common selective pressure
across microbial species5. High growth rate requires
high metabolic rates, which in turn requires high en-
zyme concentrations7. Due to limited biosynthetic re-
sources, such as ribosomes, polymerases, energy and
nutrients, the expression of any enzyme is at the ex-
pense of others8,9. Consequently, proper balancing of
enzyme benefits and costs results in optimally-tuned
enzyme expression that maximises growth rate10–12.

We asked whether the evolutionary endpoint of this

optimisation can be predicted from general principles
of metabolism, i.e., from (i) mass conservation: steady-
state reaction-stoichiometry relations, and (ii) enzyme
biochemistry: the proportionality of an enzyme’s activ-
ity to its concentration. Such an endpoint can indeed
be found, in the form of an evolutionary extremum
principle: growth-rate maximisation drives microor-
ganisms to minimal metabolic complexity. We provide
the mathematical proof of this principle in the sup-
plemental information. Minimal metabolic complexity
can be unambiguously defined in terms of ‘Elementary
Flux Modes’ (EFM). An EFM is a mathematical def-
inition of a metabolic subnetwork at steady state: it
is a minimal set of thermodynamically feasible reac-
tions that form a network from external sources to
sinks13. An EFM is elementary (or minimal, non-
decomposable) because none of its reactions can be
removed without halting flux. An EFM is purely de-
fined in terms of reaction stoichiometry; enzyme kinet-
ics are not required, and are known to maximise spe-
cific flux14,15. Suppose that pure respiratory growth
and fermentative growth are each EFMs, then respiro-
fermentative growth is not, as it can be decomposed.
In general, any flux distribution can be decomposed
into positive linear combinations of EFMs13.

A cell requires around 250 reactions to make all
its cellular components from basic nutrients16. This
size is indeed comparable with the size of a calculated
EFM sufficient for cell synthesis17. Because of the
many combinations of parallel, alternative metabolic
routes in metabolic networks, the total number of such
EFMs in one such network is in the hundreds of mil-
lions; the exact number depends on the network and
the growth-medium conditions17. However, when we
estimate, from experimental data (SI 8), the number
of EFMs that cells actually use at a particular condi-
tion, then this number is small, in the order of 1 to 3.
That microorganisms choose only a handful of EFMs
out of millions of alternatives suggests that these al-
ternatives are not evolutionarily equivalent, and only a
small number has been selected. This can be explained
by the extremum principle, which in terms of EFMs
states: when the rate of a particular metabolic reac-
tion in a metabolic network is maximised, the number
of flux-carrying EFMs is at most equal to the number of
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active constraints on protein concentrations. We define
the constraints as sums of selected (weighted) protein
concentrations. A constraint is ‘active’ when it limits
the cell in increasing its growth rate, indicating that
the corresponding protein pool is fully used. The prin-
ciple also applies to the cell-synthesis reaction, which
makes all cellular components in the right proportions
according to the biomass composition, and is hence
also known as the biomass reaction18. The extremum
principle demands that if the number of constraints is
low, so is the number of active EFMs at optimal growth
rate.

We focus on protein constraints because the proper-
ties and expression of proteins are the major biological
variables that evolution acts on. In addition, recent
work indicates that many aspects of microbial growth
can be understood from a protein allocation perspec-
tive.8,9,19–22. Moreover, other studied constraints such
as the solvent capacity of cellular compartments23 or
cellular membranes24 or of the entire cell20 can be re-
formulated in terms of constrained protein pools, e.g.
a limited cytosolic protein pool or a limited membrane
protein pool (SI 3). The exact nature of these pools
could vary per organism and environmental condition,
but the effects described by the extremum principle
will not.

Constraints on protein concentrations limit the cell
synthesis rate. Thus, the EFM, or the combination
of EFMs, that uses the smallest fractions of the con-
strained protein pools for reaching one unit of spe-
cific growth rate is optimal. A graphical representa-
tion of the optimisation problem in ‘constraint space’
illustrates this in an intuitive manner (Figure 1). In
the case of multiple constrained protein pools, differ-
ent EFMs vary in their usage of such pools, making the
cost of implementing an EFM a multidimensional vari-
able. Each EFM is therefore assigned a ‘cost vector’
in constraint space: a cost vector quantifies, for each
constrained protein pool, the fraction that an EFM re-
quires for producing one unit of objective flux - here
the cell synthesis flux. The direction of a cost vector
thus denotes which pool is used most by this EFM.
Specific growth rate maximisation now becomes a ge-
ometric problem in constraint space: fit the largest
possible multiple of cost vectors within the constraint
space. Shorter vectors, corresponding to EFMs with
lower enzymatic costs, will fit more often and will pro-
duce a higher flux.

This is illustrated for a 2-constraint problem in Fig-
ure 1: both constraints can be fully used with only two
vectors (EFMs). However, an EFM that sits on the di-
agonal can make full use of both constrained protein
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Figure 1: Illustration of the EFM cost vector
formalism. Left panel: The extremum principle states that
the dimensionality of the solution space is determined by the
number of protein-concentration constraints, rather than by the
dimensionality of the metabolic network. The constraints result
from fundamental limits, e.g. a limited solvent capacity. Right
panel: The cost vector di = [di1, d

i
2]ᵀ of the ith EFM denotes

the fractions of the first and second protein pool that this EFM
needs to produce one unit objective flux. The usage of a certain
combination of EFMs i and j corresponds to a weighted sum of
the cost vectors: λid

i + λjd
j . The combination is possible as

long as none of the constraints is exceeded: λid
i + λjd

j ≤ 1.
The optimal objective flux is achieved by maximising the sum
of weights (λi + λj). This optimal sum is shown by the dashed
vectors. The sole use of an off-diagonal cost vector leads to
underuse of one constraint, while diagonal cost vectors can
exhaust both constrained pools. A mixture of EFMs will always
be a combination of an above-diagonal and a below-diagonal
vector. All EFMs and combinations thereof, can be ranked by a
dot on the diagonal which denotes the average cost per unit cell
synthesis flux. Above-diagonal cost vectors should be projected
horizontally, below-diagonal vectors vertically, and for
combinations we should follow the connecting line. The
(mixture of) EFM(s) with the lowest average cost reaches the
highest growth rate (see Lemma 4 in the SI for details. The
shaded regions indicate alternative positions for the cost vectors
under different intracellular metabolite concentrations. We have
drawn two of these alternative concentrations for two EFMs.
The blue and orange cost vectors are calculated at those
concentrations that would lead to the highest growth rate when
using only that EFM. The green vectors are vectors that would
lead to a mixture of the orange and blue EFM. Upon a change
of environmental conditions, the mixture of EFMs becomes
better than either single EFM. This would lead to a qualitative
change in metabolic behaviour. Although the shown cost
vectors reflect only few choices of metabolite concentrations, our
mathematical results are valid for all possible concentrations.
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pools: hence, the extremum principle is that the num-
ber of EFMs that maximise flux is equal to or less than
the number of active constraints. We have derived the
necessary and sufficient conditions under which it is
optimal to use EFMs in combinations (SI). Note that
the length and direction of the cost vector can depend
on the metabolite concentrations. We study the con-
sequences in the SI.

The extremum principle is independent of the com-
plexity of the metabolic network, i.e., of its kinetics
and its structure. Rather, the metabolic complexity is
determined by the number of active constraints; the ki-
netics and structure will subsequently determine which
EFMs will be optimal and selected by evolution - as
illustrated by in silico evolution of metabolic regula-
tion towards only one active EFM25. The fact that
constraints determine metabolic complexity is the im-
portant insight that our work produces. Genome-scale
metabolic models, which contain all the annotated
metabolic reactions that a microorganism’s genome en-
codes26, will therefore behave qualitatively similar to
simplified models, and coarse-grained models can be
used without loss of generality. This greatly facilitates
our understanding of metabolic behavior as a conse-
quence of the extremum principle.

Several widely-occuring metabolic behaviours can be
understood through the extremum principle. A well-
known recurrent behaviour is overflow metabolism: It
refers to the apparently wasteful excretion of metabolic
products. Examples are the aerobic production of
ethanol by yeasts (Crabtree effect), lactate by cancer
cells (Warburg) or acetate by Escherichia coli 8,27,28.
The onset of overflow metabolism is generally stud-
ied as a function of growth rate (e.g., in chemostats).
When the growth rate is increased above some critical
value, respiratory flux decreases and the flux of over-
flow metabolism emerges. Below this critical growth
rate, the respiratory flux is proportional to the growth
rate (see Figure 2), which is one of the distinctive char-
acteristics of the usage of a single EFM (see SI 8.1).
Moreover, the continuously decreasing respiratory flux
and increasing overflow flux indicate that two EFMs
must be active and resources are re-allocated from res-
piration to fermentation proteins. Thus, according to
our theory, at least two constraints must be active.

For illustration purposes, we constructed a core
model of overflow metabolism that includes enzyme
kinetics for each step, a respiration and acetate over-
flow branch, and imposed constraints on two protein
pools: total cytosolic protein, and total membrane
protein. Figure 2 shows that overflow metabolism
can be the outcome of the cell’s strategy to maximise

b)

EFM Respira�on

Acetate

26 ATP Cellular

components

12 ATP

10 ATP

10 ADP

a)

Cost vectors at μ<μcrit

Frac�on of first enzyme pool

Fr
ac
�

o
n

 o
f 

se
co

n
d

 
en

zy
m

e 
p

o
o

l

0 10

1
Cost vectors at μ>μcrit

0 10

1

Frac�on of first enzyme pool

Fr
ac
�

o
n

 o
f 

se
co

n
d

 
en

zy
m

e 
p

o
o

l

EFM Fermenta�on

c)

normalized growth rate μ/μcrit

su
b

st
ra

te
 u

p
ta

ke
 (

q
S/

q
S,

cr
it
)

1

qS directed at fermenta�on

total uptake rate (qS)

qS directed at respira�on

1

Figure 2: Overflow metabolism can be explained by
growth rate maximisation under protein-concentration
constraints. a) A core model with two EFMs (orange:
respiration and blue: acetate overflow) that lead to cell
synthesis. All considered reactions have an associated enzyme,
whose activity depends on kinetic parameters and the
metabolite concentrations. We varied growth rate by changing
the external substrate concentration. Given this external
condition, the growth rate was optimised under two enzymatic
constraints (limited total enzyme

∑
ei ≤ 1 and limited

membrane area etransport ≤ 0.3). b) The resulting substrate
uptake flux directed towards respiration and fermentation is in
agreement with experimental data scaled with respect to the
growth rate (µcrit) and uptake rate (qcrit) at the onset of
overflow8,27,28 (see SI 8). c) The cost vectors (solid arrows) of
the two EFMs before (left) and after (right) the
respirofermentative switch. The position of the cost vectors are
shown for the optimised metabolite concentrations; the shaded
regions show alternative positions of the cost vectors at
different enzyme and metabolite concentrations. The dashed
vectors show the usage of the EFMs in the optimal solution.

its growth rate under these two protein-concentration
constraints. At low glucose concentrations, the con-
strained membrane pool limits substrate uptake and
therefore favours efficient use of glucose via respiration.
In this respiratory phase, the cytosolic pool could be
considered in excess, but in the model the expression of
extra cytosolic proteins can nonetheless reduce product
inhibition of the transporter pools. Consequently, for
a large range of external substrate concentrations pure
respiration leads to the highest growth rate by fully
exploiting the two available enzyme pools. As glucose
concentrations increase, so does the saturation level of
the enzymes, as observed experimentally29,30.

At higher glucose concentrations, however, transport
requires relatively less protein and the respiration cost
vector becomes below-diagonal: pure respiration will
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leave membrane protein pool underused; the cytosolic
pool limits respiration. A better strategy is to respire
less and make some of the cytosolic pool available for
another EFM that can exploit the underused mem-
brane pool. The net outcome is that a mixture of
EFMs attains a higher growth rate than either of the
two EFMs alone. This explains the onset of overflow
metabolism, from a basic principle: optimisation of
growth rate under a set of constrained protein pools.

Explanations for overflow metabolism offered by
other modelling methods, such as coarse-grained whole
cell models8,9,21, genome-scale M23,31–33 and ME mod-
els34, are discussed in the supplemental information.
There we show that mathematically all of them are in-
stances of the same constrained optimisation problem
and thus follow the extremum principle.

The constraint plane formalism can predict
how experimental perturbations influence overflow
metabolism. These perturbations can often be re-
interpreted as either reducing a constrained protein
pool or increasing the resource requirement of an EFM.
In both cases, this can be visualized by a reduction
of the size of the constraint box. Experimental data
from a perturbation experiment can be used to deduce
which protein pools were affected in the perturbation.
This mechanistic insight informs us about the origins
of overflow metabolism, as is illustrated in Figure
3a-d where we predict the effect of the reduction of
both pools or only the first (x-axis) constrained pool
(see SI 6 for a mathematical analysis).

Overexpression of the unneeded protein LacZ 3e
seems to reduce both enzyme pools equally. To find the
most straightforward explanation, recall that the cost
vectors denote the needed fraction of the constrained
protein pools for one unit cell synthesis flux. The syn-
thesis of LacZ requires a part of both pools that cannot
be invested in useful proteins. Since LacZ can be con-
sidered an average protein in terms of resource require-
ments, and metabolism was already tuned to make pro-
teins, the reduced parts of both pools will be equal.

The addition of chloramphenicol inhibits translation
and the cell therefore needs a larger amount of ribo-
somes per unit flux. This again adds a cost for cell
synthesis, thereby reducing both pools. The experi-
ment however shows that chloramphenicol has a more
dominant effect on the first pool (x-axis) than on the
second pool (Figure 3f). This means that the increased
number of ribosomes has an additional effect on this
first pool, which could well be related to the large cy-
tosolic volume that the ribosomes take in.

The co-consumption of substrates is another uni-
versal phenomenon that can be analysed with our
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Figure 3: Perturbation experiments that affect the
sizes of the constrained protein pools affect the optimal
flux distribution and maximal growth rate in specific
patterns visible in the titration experiments from
Basan et al.8 a,c) A constraint plane analysis of
perturbations that tighten both protein pools with the same
factor will result in proportionality of flux and growth rate, as
observed experimentally (e)) for the overexpression of LacZ
under different carbon sources (data from Basan et al.8). b,d)
We predict that perturbations that tighten the protein pool
most used by one EFM (here denoted by CO2) first lead to an
increase in flux through the other EFM (Ac), and a subsequent
decrease as its flux also becomes constrained by the
perturbation. f) This behaviour is observed, a.o., for
translation inhibitor experiments using chloramphenicol (SI 7).

EFM-based perspective. A comparison of the costs for
mixed and single substrate usage determines whether a
growth-optimised micro-organism shows catabolite re-
pression or not. In E. coli, transport-mediated mixed
substrate usage was observed in medium containing
combinations of excess carbon sources35. Combina-
tions of substrates that enter upstream of glycolysis
with substrates that enter downstream often gave rise
to a higher growth rate than can be reached on the
substrates individually. Hermsen et al. showed that
growth rates on these combinations can be accurately
predicted with a core model. We performed a genome-
scale EFM-analysis (SI 10) and found Elementary Flux
Modes that use combinations of an upper- and a lower-
glycolytic substrate. However, we also found EFMs
that combine two upper-glycolytic substrates, indicat-
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ing that co-consumption of two of these substrates
could be optimal. We therefore confirmed and ex-
tended the growth experiments from Hermsen and in-
deed found co-consumption of all combinations of man-
nose, maltose, xylose and succinate (SI 11).

In Figure 4 we analyse our experimental results, by
estimating the position of the cost vectors from the ex-
perimental data. The positions of these vectors deter-
mine whether xylose is not consumed (+glucose), co-
consumed without a measurable growth rate advantage
(+maltose) or co-consumed with a growth rate advan-
tage (+succinate). Combining these vector positions
with the metabolic network allows for a new perspec-
tive: the differences between cost vectors can only be
caused by the non-overlapping parts of the EFMs, since
the enzymatic costs in the overlapping parts are equal.
Thus, larger gains in growth rate can be expected if
the network distance between the substrates is larger.

This analysis can also be applied to co-consumption
of glucose and ethanol by S. cerevisiae. Its metabolic
network includes several EFMs that simultaneously
take up glucose and ethanol. When external glucose
levels decrease, the costs of the glycolytic reactions in-
crease, making it increasingly favorable to stop these
reactions and use a new EFM that co-consumes glu-
cose and ethanol, but makes a larger part of the cell
components from ethanol. The experimental finding3

of a sequential use of several EFMs, can therefore be
readily explained using the constraint space, see SI 9.2.

The extremum principle that we derived and il-
lustrated in this work, predicts that evolution of
metabolic regulation proceeds by fixation of mutations
that influence enzyme kinetics to increase the rate per
unit enzyme – i.e., evolution shortens cost vectors of
EFMs. Resources are reallocated to those ‘efficient’
enzymes at the expense of others that are less active
per unit enzyme – i.e., evolution reduces the num-
ber of active EFMs. This shows a fundamental limit
in microbial evolution: under constant conditions, a
metabolic state is selected that uses only a small num-
ber of EFMs, or even only one, that use the available
resources from all constrained enzyme pools.

The extremum principle determines the evolution-
ary direction of microbial metabolism. Even if growth-
rate maximisation at constant conditions is at best a
crude approximation of the selective pressure at partic-
ular instances of evolutionary history, we expect that
it nonetheless provides an ‘evolutionary arrow of time’
over long time scales. When conditions change fre-
quently, other aspects might come into play and fitness
will be captured by the mean growth rate over envi-
ronments, i.e., the geometric growth rate5. Whether
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Figure 4: The (dis)advantage of co-consuming xylose in
terms of cost vectors. Left: We show, in an illustration of
the metabolic network of E. coli, EFMs that co-consume xylose
with another carbon source. The reactions in the shaded
regions can be switched off when xylose is co-consumed, but are
otherwise essential. The enzymatic costs for these reactions can
thus be traded off for the costs of xylose uptake. This will
change the cost vector positions and determine whether
co-consumption increases the growth rate. Right: The
positions of the cost vectors can be estimated from our
experimental data: the growth rate determines the place of the
projection on the diagonal (big dots), and acetate excretion
determines the relative angles with the diagonal of the
respiration and fermentation cost vector.
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extremum principles hold for the maximisation of geo-
metric growth rate is an open problem for future the-
oretical work.

The extremum principle is a null hypothesis about
the course of a particular evolutionary process36. This
has direct operational implications for evolutionary en-
gineering strategies, for example in industrial biotech-
nology where co-consumption of different sugars from
biomass-hydrolysates are pursued, or prevention of
overflow metabolism during heterologous protein pro-
duction is attempted. Our extremum principle pro-
vides a species-overarching molecular, constraint-based
perspective on the systemic capabilities of biological
networks and their contributions to microbial fitness.
We hope that it provides explanatory and predictive
power like other extremum principles in science have
done, such as the second law of thermodynamics.
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