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Abstract  
Cognition and behavior depend on synchronized intrinsic brain activity which is organized into functional 

networks across the brain. Research has investigated how anatomical connectivity both shapes and is 

shaped by these networks, but not how anatomical connectivity interacts with intra-areal molecular 

properties to drive functional connectivity. Here, we present a novel linear model to explain functional 

connectivity in the mouse brain by integrating systematically obtained measurements of axonal 

connectivity, gene expression, and resting state functional connectivity MRI. The model suggests that 

functional connectivity arises from synergies between anatomical links and inter-areal similarities in gene 

expression. By estimating these interactions, we identify anatomical modules in which correlated gene 

expression and anatomical connectivity cooperatively, versus distinctly, support functional connectivity. 

Along with providing evidence that not all genes equally contribute to functional connectivity, this 

research establishes new insights regarding the biological underpinnings of coordinated brain activity 

measured by BOLD fMRI.  

 

Introduction 

The brain is organized into a network of synchronized activity that has a complex and 

reproducible topological structure (1, 2). Resting state functional connectivity (FC) MRI, a technique 

which measures inter-areal correlations in spontaneous brain activity, has been particularly useful for 

studying functional network organization in both health and disease. Local and global features of this 

functional network are carefully calibrated to support healthy cognition (3) and network dysfunction is 

seen in numerous neurodevelopmental (4, 5) and neurodegenerative diseases (6, 7). Therefore, identifying 

the substrates that shape functional network organization is critical in linking molecular (e.g. gene 

transcription) and behavioral (e.g. psychometric) markers of disease to brain function.  

Despite an abundance of prior work examining the correspondence of large-scale functional and 

anatomical connectivity, the precise substrates that shape functional network organization remain 

unknown. Modeling approaches to predict FC networks based on macro- or meso-scale anatomical 

connectivity networks commonly simulate mass neuronal activity by optimizing parameters that describe 

local population dynamics as well as the contribution of inter-areal connectivity (8–10). These approaches 

allow for detailed theoretical exploration regarding the relative contributions of local dynamics vs global 

coupling, but are limited by a lack of empirical data regarding true areal differences in function. 

Furthermore, analytic measures of anatomical communication appear to predict FC at comparable values 

(11, 12), suggesting an upper limit to the predictive validity of models based on anatomical connectivity 

alone.  

The integration of diverse data from different scales of investigation in such models may enhance 

our understanding of how functional networks are shaped. Although the idea is intuitive to most that FC 

may be guided by a combination of factors above and beyond anatomical wiring, studies investigating 

how the molecular properties of a given tissue influence these functional dynamics have historically been 

difficult to study and remain incompletely understood.  There is work emerging suggesting that gene 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 22, 2017. ; https://doi.org/10.1101/167304doi: bioRxiv preprint 

https://doi.org/10.1101/167304
http://creativecommons.org/licenses/by-nd/4.0/


expression and areal chemoarchitecture influence spontaneous functional brain activity. For instance, 

associations have been found between areal densities of excitatory receptors and strength of functional 

connections (13, 14). Others have found that correlated gene expression, a measure of transcriptional 

similarity between regions, is greater within than between functional networks, and that the genes driving 

these relationships are involved in ion channel activity and synaptic function (15). With that said, 

questions remain regarding the degree to which these relationships can be explained and might interact. 

Previous studies in this realm have been limited in their sparsity of regions and networks investigated and 

a detailed understanding of the brain’s complex network structure requires that gene expression data be 

comprehensively mapped onto corresponding whole-brain parcellations of structural and functional data. 

Furthermore, it remains unknown whether transcriptional similarities and anatomical connectivity 

modulate FC cooperatively, competitively, or overlap with FC uniquely depending on the connection.  

Here we present a model of inter-regional FC in the mouse brain by integrating comprehensively 

and systematically obtained measurements of axonal connectivity (16) and gene expression data (17) 

from the Allen Brain Institute (ABI). We investigated whether anatomical communication capacity and 

correlated gene expression (CGE) contribute uniquely or cooperatively to functional network architecture. 

We also examined whether these relationships are homogeneously expressed across the brain or whether 

these dependencies change according to cortical or subcortical subdivisions. Finally, in order to examine 

the molecular bases of the FC signal, we examined if specific clusters of genes disproportionately support 

these FC patterns. 

 

Results 

Resting state functional connectivity of the mouse connectome 

C57BL/6J mice (n = 23) were maintained under light anesthesia (1-1.5% isoflurane) and scanned 

in an 11.75T MRI. We computed FC (z-transformed correlations) between 160 bilateral regions of 

interest (ROIs) defined by Allen Mouse Brain Connectivity Atlas (AMBCA) (16) and detailed in previous 

work (18). ROIs excluding regions labeled as brain stem and cerebellum by the AMBCA were chosen 

(see methods and supplementary table 1 for a complete list of regions). Figure 1 shows qualitative 

clustering of the mouse functional connectome, where brain regions (nodes) are pulled together if they 

share strong functional connections (edges) and weak functional connections are further apart in graphical 

distance. Regions are colored by functional module (figure 1A) as well as anatomical assignment based 

on the ABI region set (figure 1B). The mouse functional connectome appears to cluster by both functional 

as well anatomical subdivisions; however additional variables such as polysynaptic connectivity and 

transcriptional similarity between regions may increase our understanding of the organization of the 

mouse functional connectome.  

 

Relationships between structural and functional connectivity 

Measurements of anatomical connectivity, as assessed by viral tracing, were derived from the 

from the AMBCA (16). Anatomical communication capacity between the 160 ROIs used in the functional 

analyses was then computed on the weighted structural connectivity measurements. This communication 

capacity metric is termed, communicability (denoted G), and is a weighted measure which describes the 

ease of communication between two regions (19, 20)(19, 20)(19, 20). It takes into account all possible 

routes between nodes (both mono and polysynaptic), but weights shorter pathways (those with fewer 

steps) exponentially higher. We chose this measurement of structural connectivity due to our recent work 

which highlights its improved capacity to model functional connectivity over simple mono-synaptic 

connectivity (21). We also use the matching index (denoted M) (22), an index which quantifies the 

similarity of connections between two nodes excluding their mutual connection. Matching index captures 

additional small contributions to FC driven by interregional similarities in connectivity patterns, as 

demonstrated previously (23).  

Assessing the relationship between FC (unthresholded), the linear combination of G and M 

explained 21.7% of the variance in FC (Figure 1C) and was driven mostly by G (β=0.501 vs β=0.148 for 

M). Ipsilateral and heterotopic region pairs conformed closely to the overall regression line. However, 
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homotopic region pairs showed consistently higher FC than expected by the overall regression line. This 

suggests an effect of functional areal similarity that is not explainable by network effects of anatomical 

connectivity alone. 

 

 
Figure 1. Clustering of the mouse functional connectome. Each brain region (node) shares a functional 

connectivity (FC) value (edge) with other nodes. Regions with strong FC are pulled more closely together 

and regions pairs with weak FC are moved further apart. Nodes are colored by functional (A) modularity 

assignment and (B) anatomical assignment. Nodes are sized by their connectivity strength (i.e., the sum of 

all connectivity weights to that region). C) Empirical FC values across all region pairs, illustrated as a 

function of anatomical connectivity network-based (i.e. structure-based) predictions of FC. Each dot 

represents a unique region pair, colored according to whether it is heterotopic, ipsilateral, or homotopic, 

and whether the region pair possesses a direct anatomical link or not. Homotopic region pairs exhibit 

markedly higher FC than what is predicted by structure.  

 

Inter-regional CGE, anatomical communication capacity, and spatial topology explain functional 

connectivity 

In order to explain additional factors that contribute to the mouse functional connectome, we 

investigated the contribution of inter-regional CGE on resting state FC. For CGE we obtained 

measurements from the ABI mouse brain in-situ hybridization (ISH) data (17), which offers finely 

sampled whole-genome expression data within each of the allen ROIs. Due to potential differences in data 

quality between coronally and saggitally collected ISH data (24), we used coronally obtained genes in 

order to ensure the highest data quality and to avoid mixing measures from both data sets. Genetic 

expression of all 3188 coronally obtained ISH probes were obtained for each ROI and for each gene. 

Expression intensities for all genes were z-scored within each ROI and fishers z-transformed pearson 

correlations were computed between each anatomical region pair across genes, yielding an 80x80 matrix 

of inter-regional CGE. The ABI gene expression data is provided as an average of both hemispheres, thus, 

for all subsequent measurements G and FC were averaged across left and right hemispheres yielding 

comparable 80x80 matrices.  

Among ipsilateral region pairs connected via monosynaptic projections, we found FC to be 

significantly correlated with the weighted measure of monosynaptic anatomical connectivity (r=0.37, 

p=10-6), but more so with communicability among monosynaptically connected ROI pairs (G; r=0.435, 

p=10-6), in accordance with previous work (21). FC and G were also correlated among region pairs with 

no monosynaptic connectivity (r=0.334, p=10-6), which is also in line with our previous work (21).  

Figure 2 visualizes scatter plots for each model detailed in Table 1. The relationship between G 

and FC among all region pairs (FC is unthresholded in all models, Figure 2A/Table 1A, R2=.227, 

β=.479). The addition of M slightly but significantly increased (Figure 2B, R2=.254, β=.171) the variance 
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explained. CGE was also strongly correlated with FC (Figure 2C, R2=.412, β=0.642). Models including 

the linear combination of both CGE and communicability (Figure 2D, R2=.452) and the addition of the 

interaction between CGE and G increased the variance in FC explained (Figure 2E; R2=.488, all 

individual terms except for M, are significant at p<10-6).  

As identified by previous work (24), as well as our own (see supplementary figure 4), Euclidian 

distance follows a logarithmic relationship with CGE. As expected, spatial topology as defined by the -

log transformed Euclidian distance between connections and spatial adjacency, a binary measure of 

whether two connections are touching, explain a large amount of variance in the FC signal (Figure 2F, 

R2=.549). Critically, the addition of each variable explains more variance than spatial topology alone, 

with the addition of structure (Figure 2G, R2=.584), CGE (Figure 2H, R2=.601), their linear combination 

(Figure 2I, R2=.601), and interaction (Figure 2J, R2=.624) explaining a total amount of variance of 62.4% 

of the FC matrix. Equations for each model shown in Figures 1 and 2 can be found in supplementary 

figure 3. Overall, we show that transcriptional similarity and network effects of axonal connectivity 

cooperatively, but also uniquely, support FC in a manner that goes beyond anatomical distance and spatial 

adjacency between regions. 
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Figure 2. Relationships between functional connectivity (FC), anatomical connectivity measures 

communicability (G) and matching index (M), and correlated gene expression (CGE). Blue points 

indicate region pairs which share a direct monosynaptic anatomical connection and red points are region 

pairs which are anatomically unconnected. FC is illustrated as a function of A) Anatomical structure 

defined by only G, B) Anatomical structure defined by the linear regression of FC on G and M. C) The 

relationship between FC and CGE. D) FC predicted by a linear combination of structure (G+M) and CGE 

E) FC relationship after the inclusion the interaction between G and CGE. Next we starting with a null 

model predicting F_ FC as a function of spatial topography (Euclidean distance + spatial adjacency), and 

show that each variable adds to the variance explained above and beyond spatial topography (G-I), ending 

with a final J) omnibus model including all variables and the interaction between structure and CGE 

which explains the most variance in FC. Full equations for models depicted in A-J can be found in 

supplementary figure 3 and beta weights and significance for each parameter are shown in figure Table 1.  
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Table 1. Multivariate models of functional connectivity (A-J) correspond to models used in figure 2. 

Betas represent standardized coefficients. (G) Communicability and (M) match index are anatomical 

connectivity measurements. Correlated gene expression (CGE) measures gene expression similarity 

between regions and G*CGE denotes an interaction term. Distance indicates Euclidean distance between 

ROI centroids and spatial adjacency (SA) is a dichotomous variable indicating whether or not two regions 

share a border. Full formulas for each model can be seen in supplementary figure 3.  

 

Distinct anatomical modules are responsible for the contribution of correlated gene expression and 

anatomical communicability to the functional connectivity 

Prior findings suggested that CGE, independent of anatomical connectivity, may help 

shape/explain functional connectivity networks. As such, we then explored whether this relationship is 

heterogeneous or homogenous across the brain. That is, are there anatomical subdivisions in which there 

are distinct or overlapping relationships between anatomy, gene expression, and functional connectivity? 

Specifically, we examined which functional connections may be supported uniquely by CGE, G, or by a 

combination of CGE and G. First, in order to explore these patterns we binarized each matrix at the top 

15% strongest connections in the FC, CGE, and G matrices (see supplementary materials for 5%, 10%, 

and 20% connection densities). In order to examine overlapping profiles, a matrix was derived indicating 
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whether there was overlap between FC and CGE, FC and G, or between all three matrices. We then 

calculated the statistical significance of this overlap by computing a FDR corrected chi-squared statistic 

for each anatomical module, which tests whether each overlap metric was more prevalent within an 

anatomical module than expected by chance, see methods for more details on the chi-squared approach.  

Overlap between FC, G and CGE was non-uniform across the brain. As can be seen in figure 3, 

we found that overlap between the strongest FC and CGE within and between the striatum and pallidum, 

as well as within the isocortex. In contrast, we found that FC and G overlapped in hippocampal, olfactory, 

motor, visual areas, and between striatal and hippocampal connections. We also found overlap between 

all three metrics within cortical, auditory, motor, and hippocampal regions. Although these patterns are 

observed at the level of gross anatomical modules, a more granular view may also be informative. For 

instance, G, rather than CGE, may drive a subset of longer range cortical to subcortical connections. The 

degree of overlap depends on connection density, but importantly, the overall pattern is similar across 

thresholds (see supplementary materials for additional densities). Overall this suggests that FC may be 

both independently and cooperatively shaped by G and CGE, and that this relationship is non-uniform 

across the brain but depend on anatomical module. 

 

 
 

Figure 3.  Spatial topology of genetic and anatomical overlap with the functional connectivity signal. The 

strongest functional connections (FC), correlated gene expression (CGE) and anatomical communicability 

(G) matrices were binarized (top 15% density) and overlapping patterns were compared. Connections 

with shared overlap, either shared between FC and CGE (aqua), FC and G (yellow), or between all three 

metrics (red) are shown. Anatomical modules which show significant overrepresentation of one category 

are outlined (based on an FDR corrected chi-squared test). Note the strong overlap between CGE and FC 
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in the striatum and pallidum and that distant connections are primarily driven by overlap between G and 

FC.   

 

A subset of genes support the relationship between correlated gene expression and functional 

connectivity 

It is likely that not all genes contribute equally to the variations in the FC signal. Next, we asked 

whether all genes equally contribute to the relationship between CGE and FC, and how many genes drive 

this relationship. To examine this we computed the FC-CGE relationship (with and without covarying 

Euclidean distance). Next we removing one gene and recalculated a new CGE matrix. Then, we 

subtracted the variance explained in the model with all genes included in the CGE matrix from the model 

which was calculated on the leave one out CGE matrix, and rank ordered each gene according to the 

magnitude of the difference in variance explained between the full and leave one out CGE matrix.  Next, 

after rank ordering each gene by most to least related to FC, we incrementally re-introduced each gene 

into the CGE matrix (i.e., each time adding back one gene before computing the CGE matrix) and re-fit 

each model. Figure 5 shows the variance in FC explained with each model, as a function of how many 

genes were reintroduced into CGE matrix. The maximum amount of variance emerged after 568 genes 

were included in the CGE matrix (model peak without distance R2 = .613, with distance in model R2 = 

.726). Similar results were found when rank ordering genes without considering distance, with a max 

variance at 445 genes (model peak without distance, R2 = .671 and with distance in model, R2 = .702) (see 

supplementary results). Note the marked decline in explanatory power of the CGE after the inclusion of 

additional genes beyond the peak, suggesting that a subset of genes contribute disproportionately to the 

observed CGE-FC relationship.  

 

 
Figure 4. A subset of genes support the relationship between CGE and functional connectivity. Genes 

were rank ordered (x-axis) based on their contribution to the CGE-FC correlation (after correcting for 

Euclidian distance). Then, each model predicting FC was refit after incrementally adding each gene to the 

CGE matrix. The max variance was observed after the inclusion of 568 of the most explanatory genes to 

the CGE matrix, r2 = .6131). Each red line indicates a different permutation for gene expression only, 

where gene rankings were randomized on each permutation. 100 permutations are shown. 

 

These results suggest that a limited number of genes contributed to the relationship between FC 

and CGE. In order to examine the functions of genes that most strongly contributed to the FC signal we 

performed an over-representation analyses (ORA) using the software ErmineJ.Top ranked genes within 

the max variance peak in Figure 5 (Max variance 568 genes) were selected and compared to the 
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background set of genes (3079 genes). This procedure identifies clusters of genes that are overrepresented 

within this peak, their biological and molecular processes, and cellular components. Interestingly, as 

opposed to some earlier work in humans (15), no clusters passed statistical significance after FDR 

correction, potentially suggesting that these strongest related genes are equally related to several 

molecular and biological processes (see discussion). With that said, Table 1 shows the uncorrected results 

of all significant gene clusters (p<.05;  peaks identified with and without covarying for Euclidian 

distance), which do show interesting trends that lay fodder for future study and empirical manipulation.. 

Most notably with these findings was the over-representation of molecular processes related to voltage-

gated cation channel activity, a gene cluster that was consistently over-represented regardless of distance 

correction. 

   

 
Table 2. Functions of genes that support the relationship between CGE and FC. Genes which most 

strongly supported the CGE-FC relationship was (top genes identified in figure 5) compared the 

background set of all gene. Results are shown for gene rankings produced (A) with and (B) without 

correction for Euclidian distance between region pairs. Results are ordered by multifunctionality and were 

produced using the over-representation analyses in the ErmineJ software package. 

 

Discussion 

Modeling the influence of correlated gene expression and anatomical communicability across the 

functional connectome 

This report investigates the fundamental neuroarchitectonics supporting synchronous large-scale 

brain activity. We found that functional connectivity is related to distinct aspects of structural 

communication (as measured via communicability) and inter-areal similarities in gene expression. Our 

model accounts for a significant amount of variance in the resting state functional connectivity (FC) 

signal (R2=.624) at its peak without considering improvement related to spatial proximity. The present 

report extends key findings from Richiardi et al., who showed in humans that correlated gene expression 

(CGE) is enriched within key functional brain networks relative to between these networks (15). Here we 

show that these principles hold in rodents and that CGE predicts functional connectivity (FC) across the 

brain.  Interestingly, CGE explains more variance in the FC signal than anatomical communication 

capacity (G), suggesting that transcriptional similarity, and presumably similarities in protein expression, 

may be a crucial foundation of the FC signal in addition to anatomical wiring. We also found a significant 

interaction between CGE and G, suggesting that a region’s transcriptional profile and anatomical wiring 

may work in coordination to modulate functional synchrony with other regions. The addition of CGE to 

models of FC is significant given the abundance of literature that has been aimed at identifying the 

substrates that support functional connectivity via structural network analysis (reviewed in (25)). The 
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present findings suggest that a more accurate modeling strategy requires the integration of structural 

connectivity with empirical measurements of areal molecular properties. 

 

Influence of anatomical connectivity and gene expression on functional connectivity is non-uniform 

across the brain 

 The contributions of anatomical communicability and gene expression to the FC signal are not 

spatially uniform across the brain, but cluster within and between specific subnetworks. We found that the 

largest overlap between the strongest CGE and FC was within non-sensory cortical areas, between 

cortical and somatomotor areas, within the striatal and pallidal areas, and between the striatum and 

cortical subplate.  

 Large anatomical divisions such as the striatum and neocortex display relatively uniform genetic 

expression compared to subcortical areas with more discrete nuclei and compared to other cortical 

structures such as the hippocampus that have more heterogeneous cytoarchitecture (17). The functional 

signal may more easily synchronize within and between areas of relatively similar physical and molecular 

structure, leading to increased overlap between genetic and functional metrics within the neocortex and 

striatum compared to the hippocampus for example.  

We also observed that more distant functional connections exhibited stronger overlap with G than 

with CGE. Given that distant areas are more likely to be molecularly dissimilar and less likely to exhibit 

high CGE, these areas may rely more heavily on the presence of strong axonal pathways to facilitate 

functional synchrony. In the context of early development, in order to connect molecularly distinct areas 

across the brain, local attractive and repellent cues may guide axonal connectivity and the mapping of 

later functional connections between these areas. 

 

Relationships between physical proximity, functional and structural connectivity, and correlated 

gene expression 

One area of caution, and interest, is the role of spatial proximity to the relationships across the 

three modalities. Areas that are close in spatial proximity are more likely to share more similar gene 

transcription profiles, have stronger anatomical connections, and share stronger functional connections. 

These distance relationships represent biologically meaningful information; however there is nonetheless 

a concern that the spatial smoothness of the fMRI signal might artifactually inflate estimates of structure-

function correspondences. All fMRI data were processed without any spatial blurring in order to mitigate 

this possibility. Further, given the relationship between CGE and Euclidian distance, with exponentially 

higher CGE between regions pairs close in spatial proximity, it is critical that these type of studies 

properly account for spatial proximity (26). Here, we show that although highly related, these variables 

are also partly independent of spatial topology as anatomy and gene transcription are explanatory above 

and beyond null models accounting for Euclidian distance and spatial adjacency. Others have similarly 

corrected for spatial proximity when examining relationships between anatomy and CGE (24) or have 

taken alternative approaches to examine these relationships between spatially distributed functional 

networks (15). Given that covariation between distance and FC, G, and CGE is partly biological, we 

suggest that when possible the results should be compared with and without correction for spatial 

topology. Just as importantly, in our view, will be future experiments with a more thorough characterizing 

of these relationships through experimental manipulation of the expression profiles of the most strongly 

related genes and gene clusters – one particular advantage of conducting these experiments in rodent 

models. 

 

Correlated expression of a subset of genes disproportionately influence functional connectivity  

Given that transcriptional similarity between regions had a large effect on FC, our next aim was 

to understand the contributions of specific gene clusters. That is, is the regional similarity across the entire 

transcriptome predictive, or do some genes disproportionately influence this relationship? By ranking 

each gene’s contribution to the CGE-FC relationship, we found that a subset of genes (568 of 3079) 

disproportionally drive this relationship, suggesting that covariance in particular subsets of processes may 
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be more influential in supporting the FC signal. In this report we used gene ontology over-representation 

analyses (ORA) to identify the processes associated with these genes. In this section we discuss these 

analyses, some potential gene clusters, which may support FC, common themes, and considerations.  

Although it is clear that a subset of genes disproportionately drive the relationship between CGE 

and FC, in contrast to previous results (15, 24), ORA on genes which are most likely to contribute to FC 

did not yield robust results, and as noted above, no gene cluster reached FDR corrected statistical 

significance. Such discrepancies here, relative to prior reports, may be due to methodological differences 

or differences in gene selection used for ORA. Alternatively this could suggest that across the brain a 

complex mixture of genes support FC and that the contribution of the genes spreads across multiple 

functions (at least enough such that no clusters passed correction). This could also mean that different 

gene clusters are critical between different anatomical connections, and that a unifying genetic function 

cannot describe the FC to CGE relationship across the brain. Both of these considerations deserve further 

investigation.  

That being said, when analyzing patterns at a relaxed threshold (p < .05, uncorrected), several 

interesting patterns emerged yielding somewhat convergent evidence to similar reports (15, 24). For 

instance, genes which were most related to FC were more likely to be involved in molecular processes 

which were specific to voltage-gated ion channel and potassium channel activity. This is in good 

accordance with Richardi et al (2014) who also found preferential enrichment for these processes within 

compared to between functional networks. This would suggest that similar mechanisms might underlie 

the FC signal across species. In our report we also identified several biological processes including 

glutamate receptor signaling, a putative candidate for neural bases for the functional signal (27, 28), as 

well as cellular components related to synaptic membrane proteins and synaptic signaling.  

When examining these results, it is also important to note that some gene clusters may have 

multiple functions that are not perfectly circumscribed to a particular process. Some genes may have 

many more functions than others (29) and this can be qualified by a multifunctionality score. Genes can 

have many diverse biological roles and highly multifunctional genes are not necessarily incorrectly 

assigned to a particular role, but should be interpreted with more caution (30). In our analyses, ion 

channels represent a gene cluster that supports FC with relatively low multifunctionality. However, we 

also identify additional overrepresented biological clusters with high multifunctionality scores including 

genes coding for homeostatic and developmental processes. These processes might be interpreted with 

caution as these genes also supply a rich diversity of alternative functions that, in turn, might also be 

related to the FC signal.  

Region by region there is a complex set of neuronal, vascular, and cellular influences on the FC 

signal. Any given region’s activity may be modulated by neurotransmitter signaling (27, 31), the 

excitatory to inhibitory ratio (13, 14), local energy demands (31–33), and/or cytoarchitectural features 

such as synaptic density (27, 31). Each of these contributions may be reflected in interregional variability 

in both gene expression and spontaneous activity. Along the same lines, molecular influences on regional 

activity might vary across different brain subdivisions. For example, we show that the distribution of 

high-CGE, high-FC links are non-uniform and occurs to a greater extent in particular types of connections 

(i.e. striato-pallidal). Future work should address whether the gene clusters which most contribute to the 

functional signal vary connection to connection. Overall, the specific relationships between gene 

transcription and FC is far from resolved and, as noted above, will require experimental manipulation; 

again, highlighting the utility of preclinical animal models. 

 

Applications and conclusions 

Models that explain functional brain organization are particularly useful in preclinical animal 

models, where genetic and pharmacological manipulation allow the exploration of both etiology and 

therapy in various neurological disorders. Structure-function relationships in the brain are known to be 

extremely complex, which poses fundamental challenges for neuropsychiatric research aimed at 

identifying substrates and treatments. In preclinical animal models and in various disorders such as autism 

and schizophrenia, atypical brain organization is characterized by complex and distributed disturbances of 
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FC and structural networks (40–42). As others have noted, identifying causal links between structural and 

functional network disturbance is fundamentally difficult (43) and depends crucially on the validity of the 

measurements and the proposed model (5, 25). Here we show that models of functional connectivity can 

be significantly improved with the integration inter-areal similarity in gene transcription. 

One of the most straightforward applications of the current statistical model would be to 

determine the theoretical impact of experimental perturbation to specific regions, systems, or even gene 

clusters within specific systems. There is evidence from work in monkeys that simulated lesions can 

accurately predict many widespread neurophysiological changes in response to focal empirical 

inactivation (21). Extending this approach to rodents, in combination with improved modeling techniques 

that account for transcriptional similarity, might be exceptionally useful given the time and cost 

associated with pharmacological screening and gene therapy testing. Recent rodent work highlights the 

usefulness of simulated lesions for predicting memory impairments (44), but has yet to account for the 

influence of areal gene expression in the modeling framework. Our results here suggest that identifying 

both candidate brain systems and candidate genes via simulated perturbation might be feasible for 

interrogating other cognitive deficits as well. Finally, experimental manipulation of activity and/or gene 

expression combined with simultaneous in vivo functional measurement might be used to assess what 

gene clusters (and what modeling framework) are best predictive of variation in typical or atypical brain 

function. 

 

Materials and Methods: 

Subjects 

In total, 23 C57BL/6J adult male mice ranging from 18-22g in body weight were used in the experiments. 

Mice were maintained on a 12-h light/dark cycle (lights on at 0600 h) at room temperature of 21 °C ± 1 

°C and allowed food and water ad libitum. All experiments were performed during the animal’s light 

cycle. Protocols were approved by Institutional Animal Use and Care Committees of the Oregon Health 

& Science University and the VA Portland HCS and conducted in accordance with National Institutes of 

Health Principles of Laboratory Animal Care. 

 

Animal Preparation 

Imaging in rodents generally requires the use of anesthesia to limit movement of the animals in the 

scanner. Here, anesthesia was induced by 3–4% isoflurane and maintained with 1–1.5% isoflurane. The 

selection of anesthesia may influence FC (37). Of various anesthetic regimines, we selected low dose 

isoflurane for the present study based on the following previous findings: 1) Functional connectivity 

following 1% isoflurane is preserved and comparable to that of awake mice and rats (34, 18, 35, 36, 45).  

2) c-Fos activation (an immediate early gene) can be observed in isoflurane-anesthetized mice and rats 

(46–48). That being said, acclimated awake animals or other anesthesia regimens, such as a combination 

of dexmedetomidine and lower dose isoflurane (.5-.75%) (38, 39), may be an alternative.   

During scanning the head was kept stationary using a custom-built head holder designed to fit in the 

radiofrequency (RF) coil. Respiration (80–100 bpm) and animal temperature (maintained at 37 °C) were 

monitored and controlled by a small animal monitoring system (Model 1030 Monitoring and Gating 

System; SA Instruments). 

 

Imaging acquisition  
The imaging protocol is as described in our previous publication with slight modification (18). Imaging 

was performed during a single session for each animal on an 11.75T Bruker BioSpec scanner equipped 

with a Resonance Research, Inc. high-bandwidth shim power supply. A 20 mm ID RF quadrature volume 

coil (M2M, Cleveland, OH) was used for all studies. All scans were performed with Paravision 5. Using 

MAPSHIM, a 3D Fieldmap phase image was acquired; TR = 20 ms, TE1 = 2 ms, inter echo time = 4.003 

ms, FA= 20◦, FOV= 40 mm × 18 mm × 25 mm, matrix = 80 × 90 × 125 (voxel size of 0.5 × 0.2 × 0.2 
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mm3, matching the EPI voxel size). This was followed by a T2-weighted structural image (RARE, TR = 

4590 ms, effective TE = 32 ms, RARE factor = 8, 30 contiguous slices (0.5 mm thick) with interleaved 

acquisition, FOV= 18 × 18 mm, matrix = 150 × 150, voxel size 0.12 × 0.12 × 0.5 mm3, 2 repetitions). 

Global (volume) and local (brain voxel) shimming with MAPSHIM were performed to calculate first and 

second order shims prior to the functional MRI scan. The resting state fMRI consisted of a single shot 

gradient echo-planar imaging (EPI) sequence with the following parameters: 360 repetitions (total scan 

time = 15 min), TR = 2000 ms, TE = 10 ms, FA= 60◦, 30 contiguous slices (0.5 mm thick) with 

interleaved acquisition, FOV= 25.6 × 16 mm, matrix = 128 × 80, voxel size 0.2 × 0.2 × 0.5 mm3. An 

identical EPI sequence with 20 repetitions was acquired in the reverse phase encoding direction for topup 

distortion correction.   

 

General fMRI BOLD preprocessing 

Functional images were first processed to reduce artifacts. These steps include: (1) removal of a central 

spike caused by MR signal offset; (2) correction of odd vs. even slice intensity differences attributable to 

interleaved acquisition without gaps; (3) correction of field inhomogeneities by applying topup field map 

correction. This required that data was collected with reversed phase-encode blips, resulting in pairs of 

images with distortions going in opposite directions. From these pairs the susceptibility-induced off-

resonance field was estimated using a method similar to that described in (49) as implemented in FSL 

(50) and the two images were combined into a single corrected one. (4) movement correction; (5) within 

run intensity normalization to a whole brain mode value of 1000. Processed functional data was 

transformed to an anatomical atlas for each individual via the T2 scan. Functional data was registered to 

the rodent atlas supplied by the caret software (map 015 atlas) (51, 52). Each run then was resampled in 

atlas space on an isotropic 0.2 mm grid combining movement correction and atlas transformation in one 

interpolation (53). 

 

Rs-fcMRI pre-processing  
FC pre-processed was performed as previously described with the exception of small modifications (18). 

Several additional preprocessing steps were used to reduce spurious variance unlikely to reflect neuronal 

activity (e.g. heart rate and respiration). These steps included: regression of six parameters obtained by 

rigid body head motion correction, the whole brain signal, and the first order derivative of the whole brain 

and motion parameters, followed by a temporal band-pass filter (f < 0.1 Hz). 

 

Regions of interest (ROIs)  

160 cortical pre-defined areas (right and left hemisphere), based on the connectional and architectonic 

subdivisions in the mouse, as defined by the ABCA (16). ROIs within the cerebrum were used which 

comprise both cerebral cortical areas and cerebral nuclei. Areas defined as brain stem and cerebellum by 

the allen brain institute and olfactory bulb regions were not included in this analyses due to potential 

differences in EPI data quality. All regions included in these analyses and their anatomical module 

assignments (16) can be found in supplementary table 1 and their anatomical projections can be 

visualized on the following website (http://connectivity.brain-map.org/). 

 

Extraction and computation of regionwise resting state correlations 

For each animal, 15 min of resting state BOLD time series data was collected. For each ROI, a resting 

time series was extracted post-processing and pearsons correlations were calculated for every region pair 

for each animal. Finally, ROI-ROI correlation, Fisher Z transformed r-values, were averaged across all 

subjects and used for analysis. 

 

Allen anatomical projection acquisition methods 

Structural data were obtained from the Allen Institute for Brain Science (16). Briefly, structural data on 

400 adult male C57Bl/6J mice were obtained by performing stereotaxic tracer injection (recombinant 

adeno-associated virus expressing EGFP anterograde tracer mapping of axonal projections), image 
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acquisition of tracer migration (serial two-photon tomography), and data processing to make structural 

connection matrices. Mutual connections among 426 regions (213 ipsilateral and 213 contralateral 

regions) were calculated, and of these 426 regions, 168 cortical regions were used for comparison with 

the functional data (84 ipsilateral/right hemisphere regions and 84 contralateral/left hemisphere regions). 

The best fit model for connections resulted from a bounded optimization followed by a linear regression 

to determine connection coefficients, which assigned statistical confidence (P value) to each connection in 

the matrix. Structural connectivity matrices were obtained by calculating the ratio of connection density 

to connection strength for each ROI-ROI pair and then normalizing the ratio by the volume of the target 

region (ROI). For more details see Oh et al 2014. 

 

Unlike the functional data that were undirected, the structural data contain directionality (e.g., efferent vs. 

afferent pathways between two nodes/ROIs). We found that this directed matrix required a very lenient 

threshold (P < 0.75) in order for the matrix to maintain connectedness (the ability to traverse from one 

node to any other node via one or more network links; a key property for making inferences regarding 

functional connectivity of each ROI pair). To minimize the possibility of including spurious connections, 

an undirected matrix was obtained by taking the average of the directed matrix with its transpose, 

allowing us to reduce the threshold to P < 0.05. Higher thresholds were also tested (P < 0.25) on the 

undirected matrix and did not alter any variance estimates by more than 1%. 

 

Relationships between FC and anatomical connectivity were assessed using both monosynaptic 

connectivity strength and using a metric called communicability, which describes the ease of 

communication between regions via mono- and polysynaptic connections. For instance, communicability 

between two nodes will be stronger if there are multiple, or strong alternate paths connecting the two 

regions. For communicability (19) in a weighted matrix W, we begin by normalizing each connection 

weight and defining a new matrix W’, such that 𝑊′𝑖𝑗 = 𝑊𝑖𝑗 √𝑆𝑖 ∙ 𝑆𝑗⁄ , where Si and Sj are the strengths of 

node i and j. Communicability between i and j is defined as: 

𝐺𝑖𝑗 = ∑
(𝑊′𝑘)𝑖𝑗

𝑘!

∞

𝑘=0

= (𝑒𝑊′)𝑖𝑗 

Communicability is based on the notion of communication capacity via serial relays. Given evidence that 

correlated activity may arise due to common efferent/afferent connectivity in the absence of 

communication via serial relays (23), we obtained the matching index (22) as an additional predictor of 

coupled activity that may not be communication-mediated. For weighted undirected networks, the 

matching index quantifies the similarity of connections between two nodes excluding their mutual 

connection, as follows where Θ(Wik) = 1 if Wik > 0 and 0 otherwise. 

𝑀𝑖𝑗 =
∑ (𝑊𝑖𝑘 + 𝑊𝑗𝑘)Θ(𝑊𝑖𝑘)Θ(𝑊𝑗𝑘)𝑘≠𝑖,𝑗

∑ 𝑊𝑖𝑘𝑘≠𝑗 + ∑ 𝑊𝑗𝑘𝑘≠𝑖
, 

Allen gene expression data 

Gene expression data measured using in situ hybridization (ISH) from the adult C57BL/6J male mouse at 

age P56 were obtained from the Allen Mouse Brain Atlas (17). Expression levels of mouse in situ 

hybridization data from the Allen Mouse Brain Atlas were quantified using “expression energy” (fraction 

of stained volume * average intensity of stain), as described previously (17). Because ISH data was only 

available for one hemisphere, we retrieved expression energies for the same set of 80 functional ROIs 

used in our analyses. Because of potential differences in data quality between coronal and sagittally 

collected ISH data (24) we used only coronal data. To obtain this list we queried the Allen API (api.brain-

map.org/api/v2/data) to obtain gene expression energy for each region in the coronal plane called using 

the following API query: api.brain-

map.org/api/v2/data/query.json?criteria=model::StructureUnionize,rma::criteria,section_data_set[id$eqX
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XX],structure[id$eqYYY]. This resulted in 3318 genes, of these a final set of 3079 genes had expression 

energy data available for each of the 80 ROIs, which was the set used for the analyses. Gene expression 

energies were then normalized (z-scored) across brain regions, and pearsons correlations were computed 

between brain regions to assess transcriptional similarity between ROIs.  

 

Statistical methods 

Visualization of functional networks 

Modular partitions of the network were obtained using the “Louvain” community detection algorithm 

(54) adapted for full, unthresholded networks with positive and negative weights (55). This algorithm 

identifies groups of nodes (communities, or modules) through optimization of the modularity index, or 

the fraction of edge weights within module partitions. The network was visualized using a force-directed 

graph layout where connections serve as attractive forces between nodes such that well connected groups 

of nodes are pulled closer together (56). In order to illustrate graphically the links between highly 

connected nodes, the network was thresholded at 20% (i.e. thresholded to the 20% strongest connections). 

Thresholds of 10% and 30% provided very similar layouts and did not alter the apparent modular 

organization (data not shown). 

Modeling structure-function across both hemispheres 

For making FC predictions across both hemispheres, only the structural network was used since the ABI 

gene expression data for each region is only available as an average of both hemispheres. We employed a 

general linear model of FC using communicability and the matching index as the two sole predictors. FC 

was then plotted as a function of the predicted values from the dual-variable model. ROI pairs were 

plotted as separate colors depending on ipsilateral, heterotopic, or homotopic, and the presence of a 

monosynaptic connection. 

 

Modeling the transcriptional and anatomical contributions to the FC signal.  

Because the ABI gene expression data was only available as an average across hemispheres, the following 

analyses were conducted after averaging the FC networks across hemispheres as well. A series of linear 

regression models were assessed in order to examine the relationship between FC and transcriptional 

similarity, anatomical connectivity, and anatomical distance (computed as the log transformed Euclidian 

distance between the center of each ROI). Log transform of Euclidian distance was used in order to 

account for the exponentially greater functional connectivity in nearby regions. That is connectivity was 

better explained by the exponential than linear fit of distance on functional connectivity (24). Variance in 

FC explained was assessed after the inclusion of each term, as well as after the inclusion of the anatomy 

by CGE interaction.  

 

Overlap and shared and distinct connection patterns between FC, CGE, and G 

In order to assess the overlap between each connection type the following analyses were conducted. First, 

the FC, G, and CGE matrices were thresholded and binarized, for the main analyses a 10% threshold was 

used. Next, for the overlap analyses, cells which were binarized for the CGE and FC, G and FC, or all 

three matrices were given a value of 1, and for each category, cells without overlap were given a value of 

0. Similarly, for the unique and distinct analyses, matrices which were uniquely strong for CGE, G, or FC 

were assigned a value of 1. In order to assess the significance of these overlapping patterns we took a 

network level approach to see if particular anatomical clusters (defined anatomically by the ABI) were 

enriched for each category. This was implemented with a χ2 approach (see 45 for full details). Briefly, the 

χ2 test compares the observed number of binary connections (e.g., G, FC, CGE, shared, etc) within a 

network pair (i.e., each box figure 3) with what would be expected if the overall number of connections 

were evenly distributed across all network pairs. The resulting statistic is large when there are more 

connections than expected by chance. An empirical p-value are calculated by a permutation test, which is 

non-parametric and does not make assumptions about the population distribution (57, 58). Here, 10,000 
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permutations iterations were performed, each time randomly shuffling the binary values (i.e., CGE, G, 

FC, overlap, etc.) and the reported p-values for each network reflect the observed chi-square statistic 

compared to the permuted chi-square statistics obtained from the given network-network pair. Significant 

networks for each category (p<.05, FDR corrected) are outlined in Figure 3.  

 

Peak Analyses 

In order to examine which genes were most critical for supporting the relationship between FC and CGE 

the following analyses was performed. First, we computed the FC-CGE correlation after including each of 

the 3079 genes in the CGE matrix, we then incrementally removed one gene before calculating the CGE 

matrix, and re-computed the FC-CGE correlation. Then, we subtracted the FC-CGE correlation from the 

FC-CGE correlation with one gene removed. Next, we rank ordered each gene according to how much the 

relationship dropped after the removal of the gene. Finally, after rank ordering each gene we 

incrementally re-introduced each gene (in rank order) into the CGE matrix and re-fit of the statistical 

models testing the relationship between FC and each predictor. We then identified the number of genes 

included in the CGE matrix that resulted in the highest amount of variance explained. 

 

Over-representation analysis 

ErmineJ software, version 3.0.2 (59) was used to for over-representation analyses (ORA) comparing our 

target gene set corresponding to genes most related to FC (Peaks with and without covarying Euclidian 

distance in the gene rank list) to the background list of all coronal genes (3079 genes). Gene annotations 

were assigned from GO (60) using an annotation file from GEMMA (61): Generic_mouse_ 

ncbiIds_noParents.an was downloaded from http://www.chibi.ubc.ca/microannots/ on December 6, 2016. 

From the 3079 genes in our set the annotations matched 3076 genes, the final list of genes included in our 

ORA analyses. Over-represented biological processes, molecular processes, and cellular components 

were tested. We used a maximum and minimum gene set size of 100 and 20 genes, respectively, used the 

best scoring replicate, and for scoring we weighted each gene within the peak as 1 and the remaining 

background genes as -1.  

 

Supplementary Information: 
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Figure S1. Spatial topology of genetic and anatomical overlap with the functional connectivity signal 

across multiple threshold densities (top 5, 10, 15, and 20%). The strongest functional connections (FC), 

correlated gene expression (CGE) and anatomical communicability (G) matrices were binarized at each 

density and overlapping patterns were compared. Connections with shared overlap, either shared between 

FC and CGE (aqua), FC and G (yellow), or between all three metrics (red) are shown. Anatomical 

modules which show significant overrepresentation of one category are outlined (based on an FDR 

corrected chi-squared test).  
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Figure S2. Incremental inclusion of genes into CGE matrix without distance correction during rank 

ordering of gene importance. A subset of genes support the relationship between CGE and functional 

connectivity. Genes were rank ordered (x-axis) based on their contribution to the CGE-FC correlation 

(after covarying Euclidian distance). Then, each model predicting FC was refit after incrementally adding 

each gene to the CGE matrix. The max variance was observed after the inclusion of 445 of the most 

explanatory genes to the CGE matrix, r2 = .702). Each red line indicates a different permutation for gene 

expression only, where gene rankings were randomized on each permutation. 1000 permutations are 

shown. 

 

𝐴) 𝐹𝐶 = 𝛽0 + 𝛽1  𝐺 +  𝜀 

𝐵) 𝐹𝐶 = 𝛽0 +  𝛽1  𝐺 + 𝛽2  𝑀 +  𝜀 

𝐶) 𝐹𝐶 = 𝛽0 + 𝛽1 𝐶𝐺𝐸 +  𝜀 
𝐷) 𝐹𝐶 = 𝛽0 +  𝛽1 𝐺 + 𝛽2 𝑀 + 𝛽3 𝐶𝐺𝐸 +  𝜀 
𝐸) 𝐹𝐶 = 𝛽0 + 𝛽1 𝐺 + 𝛽2 𝑀 + 𝛽3 𝐶𝐺𝐸 + 𝛽4 𝐺 𝑥 𝐶𝐺𝐸 +  𝜀 

𝐹) 𝐹𝐶 = 𝛽0 + 𝛽1 𝐸𝑢𝑐𝑙𝑖𝑑𝑖𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + 𝛽2 𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦 + 𝜀 

𝐺) 𝐹𝐶 = 𝛽0 + 𝛽1 𝐸𝑢𝑐𝑙𝑖𝑑𝑖𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + 𝛽2 𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦 + 𝛽3 𝐺 + 𝛽4 𝑀 + 𝜀 

𝐻) 𝐹𝐶 = 𝛽0 + 𝛽1 𝐸𝑢𝑐𝑙𝑖𝑑𝑖𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + 𝛽2 𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦 + 𝛽3 𝐶𝐺𝐸 + 𝜀 

𝐼) 𝐹𝐶 = 𝛽0 + 𝛽1 𝐸𝑢𝑐𝑙𝑖𝑑𝑖𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + 𝛽2 𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦 + 𝛽3 𝐶𝐺𝐸 + 𝛽4 𝐺 + 𝛽5 𝑀 + 𝜀 

𝐽) 𝐹𝐶 = 𝛽0 + 𝛽1 𝐸𝑢𝑐𝑙𝑖𝑑𝑖𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + 𝛽2 𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦 + 𝛽3 𝐶𝐺𝐸 + 𝛽4 𝐺 + 𝛽5 𝑀       
+ 𝛽6 𝐶𝐺𝐸 ∗ 𝐺 + 𝜀 

Figure S3. Models used to assess the relationships between functional connectivity (FC), and measures of 

anatomical structure, communicability (G) and matching index (M), correlated gene expression (CGE), 

Euclidian distance between region pairs, and spatial adjacency, a binary measure of whether two regions 

are touching. Models A-J correspond to models used in scatters plots on Figure 2 and models described in 

Table 1.  
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Figure S4. The relationship between Euclidian distance and correlated gene expression (CGE) is 

exponential, therefore, Euclidian distance was –log transformed before applied to all models throughout 

the manuscript. A) CGE by Euclidian distance (without transforming the distance matrix) shows an 

exponential relationship. B) The –log of Euclidean distance better fits the relationship between distance 

and CGE.  
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