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Abstract 1

The Shine-Dalgarno (SD) sequence is often found upstream of protein coding genes 2

across the bacterial kingdom, where it enhances start codon recognition via hybridiza- 3

tion to the anti-SD (aSD) sequence on the small ribosomal subunit. Despite widespread 4

conservation of the aSD sequence, the proportion of SD-led genes within a genome 5

varies widely across species, and the evolutionary pressures shaping this variation re- 6

main largely unknown. Here, we conduct a phylogenetically-informed analysis and 7

show that species capable of rapid growth have a significantly higher proportion of 8

SD-led genes in their genome, suggesting a role for SD sequences in meeting the pro- 9

tein production demands of rapidly growing species. Further, we show that utilization 10

of the SD sequence mechanism co-varies with: i) genomic traits that are indicative 11

of efficient translation, and ii) optimal growth temperatures. In contrast to prior 12

surveys, our results demonstrate that variation in translation initiation mechanisms 13

across genomes is largely predictable, and that SD sequence utilization is part of a 14

larger suite of translation-associated traits whose diversity is driven by the differential 15

growth strategies of individual species. 16
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Introduction 17

Translation of a given messenger-RNA (mRNA) into functional protein relies on the ability 18

of the translational apparatus to recognize the proper start codon. Bacteria have evolved 19

several distinct mechanisms to discriminate between potential start codons, with the Shine- 20

Dalgarno mechanism being the most ubiquitous [1, 2]. Variants of the Shine-Dalgarno (SD) 21

sequence are frequently found upstream of bacterial start codons and functions to facilitate 22

translation initiation by hybridizing with the complementary anti-SD (aSD) sequence on the 23

16S rRNA of the small ribosomal subunit (Fig. 1A). 24

Variations of the canonical SD sequence occur across nearly the entire bacterial kingdom, 25

and the aSD sequence is highly conserved (though notable exceptions exist) [3–9]. The 26

importance of the SD sequence is further supported by the fact that SD-like sequence motifs 27

are under-represented within the coding sequences of most bacteria, possibly reflecting their 28

role in translational pausing and/or erroneous initiation [10, 11]. Like the diversity of SD 29

sequence utilization, the degree of this under-representation is highly variable across bacterial 30

species [12, 13]. 31

For a given gene within an organism, it is known that the structural accessibility of 32

the SD sequence, the thermodynamic binding potential between the SD sequence and the 33

aSD sequence, and the exact positioning of the SD sequence relative to the start codon, 34

are all features that collectively modulate the translation initiation rate of downstream 35

genes [14–24]. Despite an abundance of research showing that the SD sequence enhances 36

translation initiation and start codon recognition of downstream genes, there are several SD 37

sequence-independent mechanisms that operate in bacteria including leaderless translation 38

and RPS1-mediated translation of unstructured mRNA sequences [25–35]. Further, recent 39

research suggests that mechanisms traditionally associated with eukaryotic species such as 40

translational scanning and internal ribosome entry sites may also operate in bacterial sys- 41

tems [36,37]. 42

Given the high conservation of the aSD sequence—the reason for such diversity in trans- 43

lational mechanism utilization across species is puzzling [18, 19, 23]. For example, roughly 44

90% of Bacillus subtilis genes are preceded by a SD sequence while for Caulobacter crescen- 45

tus the comparable number is closer to 50% [2, 5, 38]. Cross-species variation in translation 46

initiation mechanisms may impact genetic isolation and transfer of genetic material, and 47

quantifying the source and extent of variation may prove useful in identifying important 48

genes in a genome or microbial community [9,39]. Further, the synthetic biology community 49

is increasingly targeting both translation-system engineering and biotechnology applications 50

involving less well-studied microbial species [40–45]. A better understanding of the factors 51

shaping the utilization of different translation initiation mechanisms will aid in the design 52

of synthetic gene constructs. 53

Here, we conduct a phylogenetic comparative analysis in order to isolate independent 54

evolutionary events and show that the proportion of SD-led genes within a genome is strongly 55

related to the growth demands faced by individual species. We develop a metric grounded 56

on sequence entropy that captures the presence of over-represented motifs in the UTRs from 57

a given genome, and demonstrate a link with protein production demands by showing that 58

this metric is predictive of minimum doubling times for 187 bacterial species. Furthermore, 59

we assemble a database of 613 phylogenetically diverse bacterial species and show that 60

2

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 23, 2017. ; https://doi.org/10.1101/167429doi: bioRxiv preprint 

https://doi.org/10.1101/167429
http://creativecommons.org/licenses/by-nc/4.0/


genome-wide variation in SD sequence utilization co-varies along-side a number of genomic 61

features previously indicated to serve as markers for the translational burden imposed by 62

rapid growth. 63

Results 64

Sequence entropy and its relation to SD sequence utilization 65

Several techniques have been previously used to quantify the overall utilization of the 66

aSD::SD mechanism within a given species. In motif-based methods, researchers predefine 67

several sub-sequences closely related to the canonical SD sequence and search a sequence win- 68

dow upstream of each protein coding genes within a given genome to determine the fraction 69

of genes that are preceded by a SD motif [9,29]. Similarly, in aSD sequence complementarity 70

based methods, researchers predefine a range upstream of the start codon to consider for 71

each gene, a putative aSD sequence, and a hybridization energy threshold for determining 72

whether a gene is SD-led or not [2, 4, 5, 7, 8]. 73

Both of these methods rely on critical assumptions that may not hold when applied 74

across large sets of phylogenetically diverse organisms. First, both of these methods carry an 75

assumption that a SD sequence, regardless of its location relative to the start codon, has the 76

same impact on translation initiation. However, experimental approaches have shown that 77

spacing between the SD sequence and start codon can have dramatic effects on translation 78

initiation rates [14–16, 18]. Second, both methods rest on a dichotomy between SD-led 79

and non-SD-led genes. While this simplification is useful for describing the phenomenon, 80

an abundance of research has shown that there are not two distinct categories but rather 81

a spectrum of sequence complementarity that affects translation initiation in a continuous 82

manner [16,18]. Third, bacterial genomes span a range of GC contents, and previous research 83

has shown that it is critical to compare the proportion of SD-led genes in a genome to an 84

appropriate null model expectation [2]. We therefore define the following term to summarize 85

SD sequence utilization using the SD-motif based method by: 86

∆fSD = fSD,obs − fSD,rand (1)

where fSD is the fraction of genes within a genome classified as SD-led and fSD,rand is the 87

expected fraction of SD-led genes derived from repeating this calculation for 500 nucleotide 88

shuffled ‘genomes’ and taking the average of these values (see Materials and Methods). We 89

similarly define ∆faSD<−4.5 to denote the same calculation as above, where SD-led genes 90

are defined via hybridization of the putative aSD sequence using a threshold binding energy 91

value of -4.5 kcal/mol (see Materials and Methods). 92

Additionally, we sought a complementary approach that would allow us to investigate 93

hundreds of diverse genomes without having to a priori define an aSD sequence or SD motifs. 94

For each genome we extract the 5′ upstream sequences from all annotated protein coding 95

sequences (see Materials and Methods). We then sum the information contained in the 96

sequences for this set within the region where SD-type motifs are expected to occur (-20 to 97
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Figure 1: Sequence entropy quantifies genome-wide SD sequence utilization. (A),
Illustration of the anti-Shine-Dalgarno(aSD)::Shine-Dalgarno(SD) sequence mechanism of
translation initiation. (B), Representative sequence logos for three species derived from
aligning the 5′ upstream region of all annotated coding sequences for individual genomes
displays heterogeneity in sequence entropy. (C), Illustration of the ∆I metric for C. cres-
centus.

-4 relative to the start codon): 98

Iobs =
−4∑

i=−20

(
log2 4 +

∑
k∈{A,T,G,C}

pik log2 pik

)
(2)

where pik is the probability of finding base k at position i. We repeat this process for 99

500 shuffled genomes and compare the sequence information from the actual genome to the 100

average of the nucleotide shuffled ‘genomes’: 101

∆I = Iobs − Irand (3)

By definition, ∆I is a measure of non-randomness in the translation initiation region for a 102

particular genome, which requires a single assumption: the existence of a predefined range 103

upstream of start codons to include in the analysis. Eqs. (2) and (3) are agnostic to which 104

sequence motifs are over-represented—thus alleviating the need to predefine putative aSD 105

or SD motifs, which is necessary for the other methods discussed above. Figure 1B displays 106

sequence logos of 5′ UTRs for three species to highlight the variation across species and 107

Figure 1C illustrates our approach graphically. 108
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We compiled a dataset of 613 bacterial species, unique at the genus level, for which 109

we have complete, annotated genome-sequences as well as a high-quality phylogenetic tree 110

describing their relatedness [46] (see Materials and Methods). In Figure 2A we show that 111

while summary methods based on SD-motif and aSD sequence complementarity (∆fSD and 112

∆faSD<−4.5, respectively) are linearly related for a large set of diverse species, there is a 113

change in the slope that occurs for the Firmicutes phylum. ∆I also correlates strongly with 114

these methods (Fig. 2A, Supplementary Fig. S1). However, in the Bacteroidetes phylum, 115

we observe significant variation in ∆I without any apparent variation in either of the other 116

metrics. These findings are consistent with prior research that identified changes in the 117

aSD sequence region of the 16S rRNA sequence within this phylum [3]. The fact that 118

the ∆I metric quantifies utilization of the aSD::SD mechanism for Bacteroidetes allows 119

us to incorporate them into future analyses (Fig. 2A, red data points). Consistent with 120

prior research [2], we show that SD sequence utilization according to the ∆I metric varies 121

considerably across species while showing strong phylogenetic patterns (Fig. 2B). 122

Translation initiation and organismal growth demands 123

In previous research, Vieira-Silva et al. (2010) curated a list of minimum doubling times 124

from the literature for a large number of bacterial species [47, 48]. Organisms that are 125

capable of rapid growth have high protein production demands during these periods and 126

there are a number of regulatory points that can be bottlenecks for this process. Meeting 127

high translational demands associated with rapid growth requires coordination of a number 128

of processes, and Vieira-Silva et al. (2010) showed that increasing numbers of rRNA and 129

tRNA genes, and increasing codon usage biases amongst mRNAs in individual genomes were 130

all partially predictive of the minimum doubling times of individual species. 131

At the individual gene level, translation initiation is an important control point, and we 132

reasoned that translation initiation related features may similarly play an important role in 133

meeting protein production demands imposed by rapid growth rates. We thus investigated 134

whether variation in SD sequence utilization or the percentage of ‘ATG’ start codons were 135

similarly predictive of minimum doubling times. We first replicate several of the findings of 136

Vieira-Silva et al. (2010) using Phylogenetically Generalized Least Squares regression [49] 137

to account for the lack of independence in species (see Materials and Methods). We verified 138

that rRNA gene counts, tRNA gene counts, and a measurement of relative codon usage bias 139

(a method based off the ‘effective number of codons’ (∆ENC), see Materials and Methods) 140

all have a highly significant relationship with minimum doubling times after controlling for 141

phylogenetic effects (F-test, p < 0.002 for all cases, Table 1). 142

Next, we turn to translation initiation related metrics. We find that ∆I significantly 143

correlates with minimum doubling times in this set of species (p < 10−5), showing the 2nd 144

strongest correlation of any individual trait that we considered (Table 1). In contrast, we 145

find that the proportion of protein coding genes containing an ATG start is not significantly 146

correlated with minimum doubling times (p = 0.056). 147

In order to test the robustness of these findings and to assess overall predictability of min- 148

imum doubling times, we construct a multi-variable Phylogenetic Generalized Least Squares 149

regression model that combines all of the listed factors, and find that only SD sequence 150

utilization (∆I) and relative codon usage biases (∆ENC) have statistically significant coef- 151
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B

A

Figure 2: Relationship between ∆I and existing metrics of SD sequence utilization.
(A), Comparison between different ways of summarizing SD sequence utilization, each data
point represents a single genome. On the left, we show the relationship between SD motif
and aSD sequence complementarity based methods (∆fSD and ∆faSD<−4.5). On the right,
we compare ∆I and ∆faSD<−4.5. The four largest phyla are color-coded according to the
legend. Arrows highlight phyla with ‘anomalous’ patterns. (B), Phylogenetic tree illustrating
variation in SD sequence utilization across species according to the ∆I metric. Note the
strong similarity in ∆I values for closely related species.
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Model for
min. doubling time R2 Pagel’s λ |∆R2|

Full model 0.31*** 0.93 -
[0.83,0.97]

∆ENC 0.17*** 0.96 0.16
[0.92,0.99]

∆I 0.11*** 0.97 0.11
[0.93,0.99]

16S gene counts 0.06** 0.98 0.02
[0.95,0.99]

tRNA gene counts 0.06*** 0.98 0.01
[0.95,0.99]

ATG start % 0.02 0.98 < 0.01
[0.95,0.99]

Table 1: Contribution of several factors for predicting minimum doubling times.
The left column indicates individual variables that we considered for predicting minimum
doubling times with the full multi-variate model listed at the top. R2 illustrates the overall
goodness-of-fit for individual factors of minimum doubling time (*** indicates p < 0.001, **
indicates p < 0.01). Pagel’s λ is the fitted phylogenetic signal parameter, which we show with
95% confidence intervals in brackets. Values of λ close to ‘1’ indicate a strong phylogenetic
signal in the residuals whereas a value close to zero indicates that there is no phylogenetic
signal present in the residuals. The right column illustrates the change in goodness-of-fit from
a model that includes all predictors to one that excludes only the variable of interest. Bold
numbers in this column indicate variables with significant coefficients in the full multi-variate
model (p < 10−5).
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ficients (p < 0.001, both cases). Overall, a model containing all factors resulted in R2 = 0.31 152

(p < 10−12, Supplementary Fig. S2), while a more parsimonious model containing only the 153

two factors with statistically significant coefficients resulted in R2 = 0.29 (p < 10−13). Re- 154

moving either codon usage biases or Shine-Dalgarno sequence utilization from the full model 155

substantially reduces its predictive power as illustrated in the right column of Table 1. In 156

order to compare our work with prior research, we also conduct a phylogenetically agnostic 157

linear regression model using all of these factors, which yields R2 = 0.57 (p < 10−15)—though 158

we caution that ignoring the effects of shared ancestry will substantially bias statistical analy- 159

ses, generally leading to inflated correlations and a high false positive rate. We also generated 160

the same data as in Table 1 using ∆faSD<−4.5 as a metric of SD sequence utilization and 161

found largely similar results with less predictive power overall (Supplementary Table S1). 162

Relationship between SD sequence utilization and other translation 163

efficiency associated traits 164

Since a coordinated effort between multiple translational processes is required to maximize 165

protein production, we reasoned that the various traits associated with efficient translation 166

are likely to co-vary across species. In order to test this hypothesis, we assess the correlation 167

between different definitions of SD sequence utilization and all of the alternative traits listed 168

in Table 1 via Phylogenetic Generalized Least Squares regression. In Figure 3A we show 169

the results of this analysis, finding that in all cases where a pair of traits is significantly 170

correlated, the correlation is positive. Increasing SD sequence utilization is thus significantly 171

associated with an increasing fraction of ATG start codons, increased 16S rRNA gene counts, 172

increasing codon usage bias in ribosomal proteins, and increasing tRNA gene counts. 173

We next test the overall robustness and universality of these results by independently 174

analyzing these relationships within individual phyla. We specifically look at the 4 largest 175

phyla in this dataset—Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes—and 176

repeat the analysis from Fig. 3A. Again, we observe that every significant correlation that we 177

observe is in the positive direction (Fig. S3). Notably, this phyla level analysis also highlights 178

the advantage of the ∆I metric. When looking at relationships between variable SD sequence 179

utilization in the Bacteroidetes phylum, ∆I shows significant relationships with three of the 180

four other variables whereas ∆fSD and ∆faSD<−4.5 show no significant relationships apart 181

from with one-another. 182

Relationship between translation initiation mechanisms and opti- 183

mal growth temperature 184

Having established that genome-scale SD sequence utilization is part of a suite of traits 185

related to differential organismal growth strategies, we last wanted to assess whether other 186

ecological factors relating to an organisms habitat may play a role in further constraining the 187

evolutionary pressures related to SD sequence utilization. Specifically, we reasoned that since 188

the aSD::SD sequence mechanism operates via RNA base-pairing, stronger sequence pairing 189

would be necessary in order to get an equivalent level of stabilization of the translation 190

initiation complex at higher temperatures. 191
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p = 0.002
B

A

Figure 3: SD sequence utilization co-varies alongside a suite of translation-related
traits and according to optimal growth temperatures. (A) Correlation matrix be-
tween listed variables used in Table 1 for a set of 613 diverse bacterial species shows that
all features co-vary with one another in the positive direction for all significant cases. (B)
SD sequence utilization, quantified using ∆I is significantly higher in thermophiles than in
mesophiles.
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Nakagawa et al. (2010) investigated this possibility, but found no association between 192

SD sequence utilization and optimum growth temperatures [2]. By contrast, our phylogenet- 193

ically informed modeling approach applied to this larger dataset (481 of the 613 species in 194

our dataset have high-confidence growth temperature annotations) finds that temperature 195

constrains genome-wide SD sequence utilization. Specifically, the genomes of thermophilic 196

species display significantly larger values of ∆I than mesophilic species (Fig. 3B, F-test 197

p = 0.002 using temperature as a fixed-effect in Phylogenetically Generalized Least Squares 198

modeling). This finding further illustrates the role that ecological factors relating to growth 199

conditions places on the evolution of genome architectures. 200

Discussion 201

We have shown that variation in bacterial translation initiation mechanisms are a result of 202

the differential growth strategies and environmental demands faced by individual species. We 203

found that minimum observed doubling times and SD sequence utilization at the genome- 204

scale are significantly correlated (R2 = 0.11). In a diverse dataset of 613 species, we further 205

showed that SD sequence utilization predictably co-varies with several other genomic and 206

environmental features, including the number of rRNA genes and optimal growth tempera- 207

tures. Taken together, our findings demonstrate that organisms with greater translational 208

demands are likely to co-evolve a common suite of genomic features that help to maximize 209

translation during periods of rapid growth, and that SD sequence utilization is an important 210

component of this shared genome architecture. 211

Our analysis throughout is performed in a manner that corrects for the confounding 212

effects of shared ancestry between species, and our phyla specific results illustrate several 213

critical points. First, the sign on the relationships between features that we observe is ex- 214

tremely robust, regardless of the phylum or SD sequence utilization summary statistic under 215

consideration (Fig. 3, Supplementary Fig. S3). Increasing 16S gene counts, codon usage 216

biases in ribosomal protein genes, tRNA gene counts, and ATG start codon usage fraction 217

are universally associated with increasing SD sequence utilization. Second, ∆I is measuring 218

an aspect of translation initiation region sequence preferences in the Bacteroidetes phylum 219

that is not captured by previous models, which likely reflects novel sequence preferences in 220

this lineage, a finding in need of further investigation. Future research with larger datasets 221

may allow researchers to uncover branches within phylogenetic trees where mechanistic dif- 222

ferences in the translational apparatus—resulting in differences in the slope and/or sign on 223

the relationships between different features—have evolved. 224

Overall, our results add to the body of knowledge showing that a small number of genomic 225

traits—that includes utilization of the SD sequence mechanism—can be used to predict vari- 226

ation in minimum doubling times with surprising accuracy. Our findings demonstrate that 227

measurements of SD sequence utilization outperform more commonly known associations 228

such as the number of rRNA genes at this task. We believe that this is, in part, a conse- 229

quence of the evolutionary inertia of different features [48]. In short, genome-wide usage 230

of the SD sequence mechanism, like codon usage bias, requires hundreds of mutations to 231

substantially alter and thus this trait will evolve much more slowly across a phylogeny when 232

compared to more evolutionarily labile traits that rely on copy number variation such as 233
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rRNA and tRNA gene counts. 234

Like codon usage biases and in contrast to rRNA and tRNA gene counts, summary 235

statistics based on SD sequence utilization do not require complete genome sequences and 236

therefore may be estimated with partial genome fragments. The results and methods that 237

we present here may thus have important applications in our understanding of novel, un- 238

cultivated genomes, environmental meta-genomic sequencing efforts, and the relationship 239

between higher-order genome traits and growth strategies [50]. 240

Materials and Methods 241

Data assembly 242

We first assembled a database of prokaryotic genomes from NCBI using the GBProks software 243

(https://github.com/hyattpd/gbproks), including only ‘complete’ genomes in our download 244

and subsequent analysis (accessed on: March 10, 2016). From the annotated GenBank 245

files, we excluded pseudo-genes and plasmid based sequences from all subsequent analyses 246

and proceeded to compile a data table with several traits for each genome. In addition to 247

SD sequence utilization summary statistics described below, we applied RNAmmer to each 248

genome in order to compile a list of ribosomal-RNA genes, and tRNAscan-SE to assemble a 249

list of the tRNA genes [51,52]. 250

We wrote custom scripts to calculate the fraction of annotated coding sequences that 251

begin with ‘ATG’, as well as the metric of codon usage bias (∆ENC as described in [47]). 252

For this latter metric, we first parsed the gene annotations to find ribosomal protein coding 253

genes. We next computed the relative differences in codon usage bias between ribosomal 254

protein coding genes and the rest of the genome, whereby: 255

∆ENC =
ENCall − ENCribo

ENCall

(4)

where ‘all’ and ‘ribo’ refer to all protein coding genes and ribosomal protein coding genes 256

respectively. We altered the method used to calculate the ‘effective number of codons’ or 257

‘ENC’ from the one originally used by Vieira-Silva et al. (2010) to better control for GC 258

content differences according to recent metric developed in our lab (manuscript submitted). 259

The interpretation is the same, with values close to one occurring when ribosomal protein 260

coding genes are very distinct in their codon usage bias patterns from the rest of the genome. 261

By contrast, values close to zero occur when there is little codon usage bias separation 262

between the genome and ribosomal protein coding genes. 263

For data on minimum doubling time, we downloaded the data table from Vieira-Silva 264

et al. (2010), and paired each bacterial species with a complete genome from our database 265

resulting in 187 matched species. To control for shared ancestry in subsequent analyses, we 266

constructed a phylogenetic tree based off the rRNA sequences for this set of species. We 267

first used RNAmmer to extract a randomly chosen 16S and 23S rRNA sequence from each 268

genome, followed by MUSCLE (v3.8.31) on each individual rRNA to produce a multiple- 269

sequence alignments [53]. These were concatenated together and we conducted a partitioned 270

analysis using RAxML to construct a final tree. We performed 100 rapid Bootstrap searches, 271

20 ML searches and selected the best ML tree for subsequent analysis [54]. 272
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For the larger data-set, we instead relied on a previously computed high-quality phylo- 273

genetic tree published by Hug et al. (2016) [46]. We used custom scripts to match entries 274

in this tree with genomes from our complete-genome database, and pruned away all species 275

without a high-quality match resulting in 613 bacterial species in our final dataset that were 276

used for subsequent analyses. For temperature annotations, we matched this set of 613 277

species to the ProTraits database using custom scripts, and restricted our analysis to species 278

with temperature annotations exceeding a precision of 0.9 (equivalent to a FDR < 0.1) [55]. 279

Calculating summary statistics of SD sequence utilization 280

The calculation of ∆I is illustrated mathematically in the main text. Here, we only add that 281

the calculation of the randomized sequences for all SD summary statistics is performed by 282

first shuffling the upstream region of each gene between the region -30 to 0 (the first base of 283

the start codon). Having shuffled each gene in this manner, we then performed the analysis 284

as discussed in the main text for this shuffled ‘genome’ and repeat this calculation 500 times 285

in order to derive null expectation for fSD, faSD<−4.5 and I. 286

Next, we elaborate on our calculation of the other two methods for calculating SD se- 287

quence utilization. For each genome, we extract the -20 to -4 region upstream of the start 288

codon for each gene. For fSD, we consider a gene as being SD-led if, in this defined region, 289

any of the following motifs appear: ‘GGAA’, ‘GGAG’, ‘GAGG’, ‘AGGA’, or ‘AAGG’. We 290

repeat this same process for 500 randomized ‘genomes’ where a randomized genome is de- 291

fined as noted above (with the nucleotide region from -30 to 0 for each gene shuffled on a 292

per-gene basis) prior to motif search. 293

For faSD<−4.5, we perform a nearly identical procedure to the one listed above with the 294

major difference being that instead of searching the upstream region of genes for particular 295

motifs, we evaluate the hybridization energy between each 8 nucleotide segment contained 296

within the -20 to -4 region and the putative aSD sequence defined as 5′-ACCUCCUU-3′ 297

using the the ‘cofold’ method of the ViennaRNA software package with default parameters. 298

If any sequence binds at a threshold of -4.5 kcal/mol or stronger (i.e. more negative ∆G 299

values), we consider this gene to be SD-led. 300

Phylogenetically generalized least squares 301

Throughout this manuscript, we utilize Phylogenetically Generalized Least Squares regres- 302

sion in order to mitigate the effects that arise from shared ancestry in statistical analyses. 303

Our Phylogenetically Generalized Least Squares analysis relies on the most common null 304

model, which assumes a Brownian motion model of trait evolution. For all statistical anal- 305

yses presented in the paper, we use the R package ‘caper’ and perform a simultaneous 306

maximum-likelihood estimate of Pagel’s λ, a branch length transformation, alongside the 307

coefficients for independent variables of interest. All p-values that we report come from 308

the F-test according to these results. For temperature analysis, we assigned ‘mesophiles’ 309

and ‘thermophiles’ a value of 0 and 1 respectively and performed the equivalent fixed-effect 310

analysis with ∆I as the dependent variable. 311
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Data availability and computer code 312

Data is provided as a supplementary file and all custom scripts and code that is sufficient to 313

perform the analysis can be found at http://github.com/xxxx 314
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Model for
min. doubling time R2 Pagel’s λ |∆R2|

Full model 0.27*** 0.94 -
[0.86,0.97]

∆ENC 0.12*** 0.97 0.13
[0.93,0.99]

∆faSD<−4.5 0.09*** 0.97 0.06
[0.93,0.99]

16S gene counts 0.06** 0.98 0.01
[0.95,0.99]

tRNA gene counts 0.06*** 0.98 0.02
[0.95,0.99]

ATG start % 0.02 0.98 < 0.01
[0.95,0.99]

Supplementary Table S1: As in Table 1 of main text, instead showing results when
∆faSD<−4.5 is used as the summary statistic for SD sequence utilization. Bold numbers
in the far right column illustrate the variables with significant coefficients in the complete
model (p < 0.001).

Supplementary Figure S1: As in Fig. 2A (right) of main text, instead showing the relation-
ship between ∆fSD and ∆I.
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R2 = 0.31 

Supplementary Figure S2: We show the observed and predicted values from a Phylogenetic
Generalized Least Squares regression model using all predictors in Table 1. Species data
points are colored according to phyla as in Fig. 2A.

Proteobacteria Actinobacteria

Firmicutes Bacteroidetes

Supplementary Figure S3: Correlation matrices as in Fig. 3A. We re-ran the analysis inde-
pendently for each of the 4 major clades to illustrate the robustness of the conclusions to
different groupings of species. ∆faSD<−4.5 and ∆fSD fail to show significant results for the
Bacteroidetes phylum, by contrast ∆I uncovers these relationships.
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